
Haplotype association analysis of human disease traits
using genotype data of unrelated individuals

QIHUA TAN1,2*, LENE CHRISTIANSEN2, KAARE CHRISTENSEN2,
L ISE BATHUM1,2, SHUXIA LI2, J ING HUA ZHAO3

AND TORBEN A. KRUSE1

1Department of Clinical Biochemistry and Genetics (KKA), Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
2 Institute of Public Health, University of Southern Denmark, Odense, Denmark
3Department of Epidemiology and Public Health, University College London, London, UK

(Received 7 March 2005 and in revised form 27 June and 16 August 2005)

Summary

Haplotype inference has become an important part of human genetic data analysis due to its
functional and statistical advantages over the single-locus approach in linkage disequilibrium
mapping. Different statistical methods have been proposed for detecting haplotype – disease
associations using unphased multi-locus genotype data, ranging from the early approach by the
simple gene-counting method to the recent work using the generalized linear model. However,
these methods are either confined to case – control design or unable to yield unbiased point and
interval estimates of haplotype effects. Based on the popular logistic regression model, we present
a new approach for haplotype association analysis of human disease traits. Using haplotype-based
parameterization, our model infers the effects of specific haplotypes (point estimation) and
constructs confidence interval for the risks of haplotypes (interval estimation). Based on the
estimated parameters, the model calculates haplotype frequency conditional on the trait value for
both discrete and continuous traits. Moreover, our model provides an overall significance level for
the association between the disease trait and a group or all of the haplotypes. Featured by the direct
maximization in haplotype estimation, our method also facilitates a computer simulation approach
for correcting the significance level of individual haplotype to adjust for multiple testing. We show,
by applying the model to an empirical data set, that our method based on the well-known logistic
regression model is a useful tool for haplotype association analysis of human disease traits.

1. Introduction

Combating complex diseases is one of the significant
challenges for twenty-first-century medicine. New
advances in human genetics, especially the sequencing
of the human genome and the recent development
of high-throughput single nucleotide polymorphism
(SNP) genotyping technology, facilitate the deci-
phering of the genetic nature in complex diseases.
Haplotypes, the combination of alleles at closely
linked multiple loci on the same chromosome, may
play a key role in the study of complex diseases due
to their functional and statistical advantages over
the single-locus approach in linkage disequilibrium
mapping (Akey et al., 2001; Schaid, 2004; Clark,

2004). Although improving genotyping efficiency
enables large-scale population-based studies, there is
a critical need to develop efficient analytical methods
for haplotype inference (risk and frequency) using
unphased genotype data.

Haplotype estimation attracts attention from many
researchers in statistical genetics. In the literature,
different statistical approaches have been proposed
for haplotype analysis. By assuming Hardy–Weinberg
equilibrium (HWE), the expectation-maximization
(EM) algorithm (Excoffier & Slatkin, 1995; Zhao &
Sham, 2002) can be applied to estimate haplotype
frequencies using unphased multi-locus genotype
data. The likelihood ratio test is used to compare
haplotype frequencies between affected cases and
normal controls when HWE holds in both groups.
Epstein & Satten (2003) proposed a retrospective
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likelihood method for haplotype inferences. Under
HWE in the controls, the method maximizes the
likelihood of the data to estimate and test the par-
ameters for all individual haplotypes. The likelihood-
based procedure also produces interval estimates
on the risks of haplotypes. However, the application
of the method is restricted to case-control data. Using
the generalized linear model (GLM), Schaid et al.
(2002) proposed a score test for haplotype inference.
The model can be generalized to a variety of different
disease traits and performs efficient tests on individual
haplotypes. It is necessary to point out that, in clinical
studies, the sampling is usually conditional on the
disease traits (such as the case – control studies). Such
a situation can lead to an over-representation of the
cases or the extremes of the traits compared with the
general population. In this case, the GLM approach
can produce biased estimates on the haplotype
parameters because it does not account for how the
sample was ascertained (Schaid, 2004).

This paper is aimed at introducing a new approach
for haplotype inference using the popular logistic
regression model (Hosmer & Lemeshow, 2000).
Instead of prospectively modelling disease phenotype
(dependent variable) as a function of haplotypes
(independent variable), we retrospectively model
haplotype frequency conditional on the disease
phenotype which, as we show, can be accomplished
by the logistic regression model. Modelling haplotype
frequency conditional on trait is advantageous in
that : (a) the logit of haplotype frequency is regressed
on the disease trait, which can be binary, categorical
or continuous ; (b) it offers unbiased estimates. Our
logistic regression model allows haplotype-based
parameterization and maximization of the likelihood
function built upon the multinomial distribution of
the observed multi-locus genotypes. Point and inter-
val estimates of haplotype relative risks can be
obtained by exponentiating the corresponding point
and interval estimates of the slope coefficients in the
polytomous logistic regression model. In addition
to haplotype relative risks, our model also provides
haplotype frequency estimates for given disease status
(case and control), or given trait values (continuous)
which can be plotted against the continuous trait.
Different statistics can be applied to assess the
asymptotic significance levels for single or grouped
haplotypes. Moreover, we propose a simulation-
based approach for correcting the significance levels
of individual haplotypes to adjust for multiple testing.
As an example, we apply our model to an empirical
data set to associate the haplotypes in the promoter
region of the interleukin-6 gene with a cognitive
impairment trait derived from the Mini Mental State
Examination in a cohort of elderly subjects. Data
analysing strategies are also illustrated in the example
application.

2. Materials and methods

(i) The haplotype logistic regression (HLR) model

We start by introducing the polytomous logistic
regression model with haplotype-based parameter-
ization by assuming that each of the haplotypes is
observed explicitly as phase known. We denote the
collection of all the haplotypes arising from the typed
loci with H. Following the typical formulation of a
logistic regression model, we define the logit function
for the frequency of a haplotype pair (hi, hj) as

gi, j(x)= ln [pi, j(x)=p0, 0(x)]=ai, j+bi, jx (1)

where pi, j (x) is the frequency of haplotype pair
(hi, hj) and p0,0(x) is the frequency of the baseline
haplotype pair at the given trait value x, ai, j is the
intercept coefficient as in an ordinary regression
model, and bi, j is the slope coefficient that measures
the association between haplotype pair (hi, hj) and
the trait which is our primary interest. Equation (1)
is a typical multinomial logistic regression model
with polytomous responses which are the haplotype
pairs that occur over the multiple loci. For the
baseline haplotype pair, we set a0,0 and b0,0 to zero
to make the model identifiable. The parameteriza-
tion of (1) is based on haplotype pairs. To introduce
the haplotype-based parameterization, let ai, j=
ai+aj and bi, j=bi+bj. Substituting them into (1),
we have

pi, j(x)= exp [(ai+aj)+( bi+bj)x]= g
ik, jk2H

exp [gik, jk(x)]

= exp (ai+bix)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

ik, jk2H
exp [gik, jk(x)]

r( )

r exp (aj+bjx)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

ik, jk2H
exp [gik, jk(x)]

r( )
: (2)

Note that, since frequencies of all possible haplo-
type pairs sum up to 1, we have g

ik, jk2Hpik, jk(x)=
p0, 0(x)gik, jk2Hexp (aik, jk+bik, jkx)=p0, 0(x)gik, jk2Hexp [gik, jk
(x)]=1. Rearranging, we have p0, 0(x)=1=g

ik, jk2H
exp [gik, jk(x)]. When i=j and HWE holds,

pi, i(x)=pi(x)
2

= exp (ai+bix)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

ik, jk2H
exp [gik, jk(x)]

r( )2

: (3)

From (3), it is easy to see that under HWE (2) means
that the frequency of any haplotype pair can be
calculated by multiplying the frequencies of the two
corresponding haplotypes. Similar to the situation of
heterozygous genotypes, because we can not dis-
tinguish haplotype pair (hi, hj) from (hj, hi), we have,
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for any i, jsH,

pi, j*(x)

=

exp [(ai+aj)+( bi+bj)x]= g
ik, jk2H

exp [gik, jk(x)]

i=j

2 exp [(ai+aj)+( bi+bj)x]= g
ik, jk2H

exp [gik, jk(x)]

i<j:

8>>>>>><
>>>>>>:

(4)

Equation (4) will be used in constructing the likeli-
hood function later. For the baseline haplotype pair,
since a0,0=2a0=0 and b0,0=2b0=0, we have a0=0
and b0=0. Under HWE, once the intercept and the
slope coefficients have been estimated, we can calcu-
late the frequency for any haplotype (including the
baseline) as

pi(x)= exp (ai+bix)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

ik, jk2H
exp [gik, jk(x)]

r
,

a0=0, b0=0: (5)

(ii) Risk of haplotype

In our model, the relative risk (RR) of haplotype hi
can be calculated as RRi(x)=pi(x)/p0(x)=exp(ai+
bix) at the given trait value of x. Based on RR, we
define the relative risk ratio (RRR) for comparing
the relative risks of haplotype hi at two given trait
values x1 and x2 (x2xx1=k) as

RRRi=RRi(x2)=RRi(x1)

= exp (ai+bix2)=exp (ai+bix1)

= exp [ bi(x2xx1)]= exp (kbi): (6)

When k=1, such as in a case – control study, we have
RRRi=exp(bi). Similarly, we can estimate RRR for
any haplotype pair (hi, hj) as

RRRi, j=
pi, j(x2)

p0, 0(x2)

�
pi, j(x1)

p0, 0(x1)

= exp (ai, j+bi, jx2)=exp (ai, j+bi, jx1)

= exp [(x2xx1)bi, j]= exp (kbi, j): (7)

In a multiplicative model,

bi, j=bi+bj and RRRi, j= exp [k(bi+bj)]

= exp (kbi) exp (kbj)=RRRi RRRj:

Based on the estimated variance of the slope coeffi-
cients (see below), we obtain the confidence interval
(CI) of RRR for haplotype hi by exponentiating

k times the endpoints of the CI of bi, i.e. exp[kbi¡
z1xa/2kSE(bi)] where z1xa/2 is the upper 100(1x
a/2)% point from the standard normal distribution
with a type 1 error rate of a and SE(bi) the standard
error of bi. Again using the variance information for
the slopes, we can estimate the CI of RRR for any
haplotype pair. Since

Var( lnRRRi, j)=Var( lnRRRi+ lnRRRj)

=Var(kbi+kbj)=k2[Var( bi)

+Var( bj)+2Cov( bi, bj)],

we construct CI of RRR for haplotype pair (hi, hj) as

exp [ lnRRRi, jtz1xa=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var( lnRRRi, j)

p
]

= exp [k( bi+bj)

tz1xa=2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var( bi)+Var( bj)+2Cov( bi, bj)

q
]:

(iii) Non-multiplicative effects

Under HWE, (4) is a multiplicative effects model for
all the haplotypes with bi, j=bi+bj for (hi, hj) and
bi, i=2bi for (hi, hi). The parameterization of the
slope coefficients in our model also allows the fitting
of non-multiplicative effects models (dominant, re-
cessive). If haplotype hi is dominant over the other
haplotypes, we have bi, j=bi, i=bi. In this case, (7)
becomes RRRi, j=exp(kbi)=RRRi which means that
the disease risk is only imposed by haplotype hi.
Likewise, when it is recessive, we simply have bi, j=0
and bi, i=bi so that only homozygous carriers of the
haplotype are at risk of the disease. It is important to
note, however, that when the disease trait value x=0,
no matter how the slopes are parameterized, (4)
becomes

pi, j*(0)=

exp (ai+aj)= g
ik, jk2H

exp [gik, jk(0)] i=j

2 exp (ai+aj)= g
ik, jk2H

exp [gik, jk(0)] i<j:

8><
>: (8)

Equation (8) means that, in any model, HWE is a
prerequisite in the population whose trait value is
zero. Since it is sensible to assume HWE in a normal
population, we suggest coding or transforming the
trait value such that it is zero in those free from the
disease. For example, in a case – control study, we can
code the controls with 0 and the cases with 1.

(iv) Sex-specific effects

By specifying sex-specific slope parameters, our
model can measure sex-dependent haplotype effects
to infer haplotype – sex interactions. When the effect
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of haplotype hi is sex-dependent, we have, instead
of (1),

gi, j(x)=ai, j+[m biU+f bi(1xU)+bj]x (9)

where mbi and fbi stand for the effects of haplotype
hi in males and in females ; U is an indicator of sex
(0 for females and 1 for males). The sex-dependent
RRRi can be calculated by introducing formula (9)
to (6). Given the haplotype and sex, for example
male (U=1), we have mRRRi=exp(ai, j+mbix2)/
exp(ai, j+mbix1)=exp(kmbi). In a case – control study
(k=1), the risk of the haplotype for males is
exp(mbi) as compared with the baseline haplotype.
In the same manner, we have fRRRi=exp(kfbi).
Using the covariance information available from
the maximum likelihood procedure (see next section),
we can construct the Wald test for comparing mbi
and fbi as W=(m bixf bi)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(m bixf bi)

p
with the

null hypothesis of mbi=fbi. Here Var(mbixfbi)=
Var(mbi)+Var(fbi) x2Cov(mbi, fbi). When mbi and

f bi are not significantly different, we set mbi=fbi=bi
so that (9) reduces to (1). Note that, based on the
law of segregation, we assign the same intercept
parameter for both sexes to reduce the number of
parameters in the model.

(v) Linking haplotype with genotype and the
likelihood function

Up to now, our model has been formulated on
unambiguous haplotypes. However, in practice the
phase information is missing in the genotype data of
unrelated subjects. Since what we observe are multi-
locus genotypes, it is necessary to set up a link be-
tween haplotype and multi-locus genotype in order to
estimate the haplotype parameters using the observed
genotype data. For a multi-locus genotype g, we can
find the collection of haplotype pairs that are con-
sistent with g and which we denote as S(g). Based on
this, we can calculate the frequency of the multi-locus
genotype as the summation over the frequencies of all
the haplotype pairs in S(g), i.e.

pg(x)= g
i, j2s (g)

pi, j*(x) (10)

where pi, j*(x) is the frequency of haplotype pair
(hi, hj) in S(g) as expressed in (4). Expression (10) links
the observed multi-locus genotypes with the ambigu-
ous haplotypes which we do not observe. With this
relationship, we can construct the likelihood function
to estimate the haplotype parameters in the model.
To do this, we first create an indicator variable
for grouping the membership of an individual. Let
yg, s take the value of 1 if the multi-locus genotype
of subject s is g and 0 otherwise. Then the likeli-
hood function for the whole data set consisting of

n subjects is

L(a
!
, b
!
)=

Y
s

Y
g2G

pg(xs)
yg, s : g

g2G
yg, s=1,

s=1, 2, 3, . . . . . . , n: (11)

Here ~aa and ~bb are vectors of the intercept and slope
coefficients to be estimated, G is a collection of all the
multi-locus genotypes observed in the data. The co-
variance matrix obtained by inverting the observed
information matrix for (11) can be used to calculate
the univariate Wald statistic (asymptotically standard
normal) for significance inferences on specific slope
parameters (Jennings, 1986).

(vi) Multiple haplotypes and multiple testing

Haplotypes as super-alleles are highly polymorphic.
Such a situation weakens the statistical power of
the current haplotype inference methods (Schaid,
2004). As the power for detecting associations with
rare haplotypes is very low (Comeron et al., 2003), we
suggest grouping the rare haplotypes to form one
combined haplotype (Lake et al., 2003). The synthetic
haplotype can serve as a baseline haplotype in our
logistic regression model since the heterogeneous
group is biologically meaningless. Grouping of rare
haplotypes helps us to focus on more informative
haplotypes. At the same time, the strategy also re-
duces the number of multiple test and thus false
positive results.

Since in our polytomous logistic regression model,
there are two parameters (one intercept and one
slope) for each haplotype, the total number of par-
ameters in the model is twice the number of non-
baseline haplotypes. In order to increase the statistical
power, one can first estimate the slope parameter for
each haplotype separately by assuming no effect from
the other haplotypes with their slopes set to zero.
The estimation can be done by assuming that the
haplotype effect is multiplicative, dominant or re-
cessive. The Akaike information criterion (AIC)
(Akaike, 1973) can be calculated and recorded for
model selection. Haplotypes with low AICs can be
picked up for fitting an extended model in which the
slope parameters for the rest of haplotypes are set
to zero. To find the best-performing model, different
combinations of the number of the selected haplo-
types can be included in the extended model and their
recorded AICs compared. Final parameter estimates
are obtained from the best-performing model that
has the lowest AIC amongst all the combinations.
When assuming that the effects of all haplotypes are
multiplicative, a full haplotype model can be fitted.
In this case, we suggest using the convenient log-
likelihood ratio test to obtain an overall significance
level for a group or all the haplotypes (equivalent to
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the testing of goodness-of-fit). That is, we calculate
minus twice the change in the log-likelihood be-
tween the saturated full-haplotype model and the
intercept-only model, G=x2[ lnL(~aa)x lnL(~aa,~bb)],
which asymptotically follows a chi-squared distri-
bution with the length of~bb as degrees of freedom.

Note that the P values obtained by the univariate
Wald test are haplotype-specific and are prone to false
positive results due to multiple comparisons. In order
to reduce the type 1 error rate inflated by multiple
testing, we introduce a simulation-based empirical
approach similar to that used in linkage analysis. To
do that, we first shuffle the observed phenotype values
to form random samples. For each random sample,
we apply our model to estimate the haplotype par-
ameters and record the absolute Wald statistics for
the slopes of all the haplotypes. When this is done
for a total number of B random samples, we obtain
the adjusted P value for an individual haplotype
with the observed univariate Wald statistic Wobs as

p� g
B

i=1
I g

L

j=1
I [abs(Wi, j)oabs (Wobs)]

( )
o1

* +
=B (12)

where I(.) is an indicator function, L is the number of
testing haplotypes and Wi, j is the univariate Wald
statistic calculated for haplotype j from random
sample i.

3. Results

As an example, we apply our model to a multi-locus
genotype data set collected in a study on the inter-
leukin-6 gene (IL-6) and human ageing in the Danish
population (Christiansen et al., 2004). In this study,
multi-locus genotypes are available from two SNP
loci (–572G/C and –174G/C) and one AT-stretch
locus (–373AnTm, four alleles) in the promoter
region of the IL-6 gene. In the sample, full genotype
information is available on 555 participants aged
93 years who also underwent the Mini Mental State
Examination (MMSE), a test that assesses mental
status. The reported MMSE score varies from 2 to 30,
with the lowest score indicating the most severe
cognitive impairment. In general, a score under 24 is
an indication of dementia. We chose to examine IL-6
and MMSE phenotype because a significant associ-
ation between the –174C allele and Alzheimer’s
disease, the most common form of dementia, was
reported in a recent study (Licastro et al., 2003).
Using our example data, we show how our haplotype
logistic regression model can be used to estimate
haplotype frequencies in the cases (MMSE f24) and
controls (MMSE >24) or at given (continuous) trait
values, while at the same time measuring the haplo-
type association with MMSE trait. To ensure that our
HWE assumption is for the normal population, we

use (30 – MMSE) instead of the MMSE score in
fitting the model.

We start by fitting our model for each haplotype
while setting the slope parameters of the others to
zero. As described before, this is done for different
modes of haplotype function (multiplicative, domi-
nant and recessive). Results from analyses of the six
most common haplotypes (Christiansen et al., 2004)
are presented in Table 1. The haplotypes in Table 1
are formed with the sequence of –572G/C (G=1,
C=2), –373AnTm (A8T12=1, A9T11=2, A10T10=3,
A10T11=4) and –174G/C (G=1, C=2). The rare
haplotypes are combined to form the baseline haplo-
type in the logistic regression model. Wald tests on
the estimated slope parameters in Table 1 showed that
no haplotype displays a significant association with
the MMSE trait. However, it is interesting to see
that the lowest AIC is achieved by the multiplicative
model of the 1-1-2 haplotype which contains
the – 174C allele, a result that supports the finding
by Licastro et al. (2003). The slope parameter of this
haplotype suggests a frequency increase of the haplo-
type with (30 – MMSE), which means increased
haplotype frequency in the poor-performance indi-
viduals. Christiansen et al. (2004) reported a modest
but harmful influence of the same haplotype on
human survival, with a lower frequency in aged

Table 1. Parameters from the multiplicative and
non-multiplicative effects models

Haplotype
model

Inter-
cept a

Slope

AICb SE
P
value

Multiplicative
1-1-2 2.038 0.016 0.010 0.118 2681.911
1-2-1 1.621 x0.016 0.013 0.206 2682.726
1-4-1 1.549 x0.004 0.012 0.735 2684.243
1-3-1 0.509 x0.026 0.022 0.244 2682.925
2-3-1 x0.474 0.018 0.026 0.494 2683.904
1-2-2 x0.990 0.019 0.034 0.578 2684.056

Dominant
1-1-2 2.110 0.011 0.013 0.404 2683.654
1-2-1 1.590 x0.015 0.014 0.269 2683.119
1-4-1 1.495 0.003 0.013 0.802 2684.295
1-3-1 0.446 x0.018 0.022 0.400 2683.629
2-3-1 x0.464 0.017 0.027 0.513 2683.945
1-2-2 x0.990 0.019 0.034 0.578 2684.056

Recessivea

1-1-2 2.119 0.017 0.014 0.221 2682.904
1-2-1 1.512 x0.011 0.024 0.652 2684.147
1-4-1 1.555 x0.027 0.026 0.296 2683.157
1-3-1 0.365 x0.229 0.234 0.328 2682.005
2-3-1 x0.332 0.019 0.109 0.861 2684.328

AIC, Akaike information criterion.
a No estimation on the 1-2-2 haplotype due to its very low
frequency.
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subjects. Our analysis could imply that carriers of the
haplotype who manage to survive to the high age of
93 years are likely to be more mentally impaired than
the others of the same age.

By assuming multiplicative effects for all the
haplotypes, we fitted a full haplotype model for the
six haplotypes in Table 1, again using the combined
group as baseline, and displayed the haplotype fre-
quency trajectory as a function of the MMSE trait
value (Fig. 1). Although the most frequent haplotypes
exhibit decreasing or increasing trends, none is stat-
istically significant. Note that the frequency trajectory
of the baseline haplotype (unbroken line) is nearly
flat. To illustrate how our model works on discrete
traits, we code the MMSE phenotype value to 0
(control) for MMSE>24 or 1 (case) for MMSEf24.
This roughly converts our continuous phenotype
into a binary trait (dementia or non-dementia). In

Table 2, we present the results of a full haplotype
model again assuming multiplicative haplotype
effects. Though the same trend remains for the 1-1-2
haplotype, the P value has increased greatly, perhaps
as a result of reduced power due to dichotomizing
the trait values. Most importantly, with the outputs
from our logistic regression model, we can estimate
RRR and its confidence interval for each haplotype
as shown in Table 2. Moreover, using the intercept
and the slope coefficients, our model estimates
the frequencies of each haplotype in the cases and
controls. Although we know that no significant
haplotype was found in our data, for illustrative
purposes we conducted a likelihood ratio test to get
an overall significance level of IL-6 haplotypes and
MMSE association. We have G=x2 (x1335.1872x
(x1333.6039))=3.1666. From the chi-squared
distribution with 6 degrees of freedom, we obtained a
P value of 0.7877 which means no significant associ-
ation. In Table 2, we also present the adjusted P values
for specific haplotypes obtained by the simulation-
based empirical approach (B=1000, L=6). Although
no adjusted P value was expected to be significant,
the P values were all increased as a result of correcting
for multiple testing.

Finally, as shown at the right-hand side of Table 2,
we compared the frequencies of the six haplotypes
estimated by our model with the frequencies esti-
mated by GENECOUNTING software (Zhao et al.,
2002), which implements the EM algorithm. One can
see that the haplotype frequency estimates by these
two different approaches are very close.

4. Discussion

We have introduced a haplotype logistic regression
model for haplotype-based association analysis using
unphased multi-locus genotype data. The formulation
of our model allows us to infer the effect of a specific
haplotype (point estimation), to construct a confidence

0 10 20

MMSE

30

0·0

0·1

0·2

0·3

0·4

0·5

Fr
eq

.

1-1-2
1-2-1
1-4-1
1-3-1
2-3-1
1-2-2
baseline

Fig. 1. The estimated haplotype frequencies plotted
against the Mini Mental State Examination (MMSE) score
for all haplotypes (including the baseline haplotype) by the
multiplicative effects model. A flat frequency pattern is
shown by the combined haplotype group which serves as
the baseline haplotype in the model.

Table 2. Model outputs for the grouped case – control dataa

Haplo-
type

Inter-
cept a

Slope
Risk

Frequency

Case Control

b SE
P value,
unadjusted

P value,
adjusted RRR 95% CI HLR EM HLR EM

1-1-2 2.034 0.237 0.404 0.558 0.851 1.267 0.574–2.800 0.439 0.440 0.410 0.409
1-2-1 1.451 0.087 0.438 0.843 0.993 1.090 0.463–2.571 0.211 0.211 0.229 0.227
1-4-1 1.412 0.190 0.405 0.640 0.923 1.209 0.546–2.675 0.225 0.224 0.220 0.223
1-3-1 0.381 x0.118 0.384 0.759 0.974 0.889 0.419–1.887 0.059 0.059 0.079 0.080
2-3-1 x0.430 0.191 0.594 0.748 0.971 1.210 0.378–3.876 0.036 0.035 0.035 0.035
1-2-2 x1.105 0.462 0.616 0.453 0.717 1.588 0.475–5.311 0.024 0.023 0.018 0.017

RRR, relative risk ratio; HLR, haplotype logistic regression; EM, expectation-maximization.
a By definition cases had a Mini Mental State Examination (MMSE) score of f24 and controls MMSE >24.
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interval for the risk of the haplotype (interval esti-
mation), to estimate haplotype frequency conditional
on the trait value for both discrete and continuous
traits, and to obtain an overall significance level for
the association between the disease trait and a group
or all of the haplotypes. Although HWE is assumed
for fitting a multiplicative haplotype effects model, it
is only required in the control or the normal popu-
lation in fitting the non-multiplicative models.
Moreover, our direct maximization also supports the
simulation-based empirical significance for correcting
multiple testing.

Although the estimated haplotype frequency in the
controls in a case – control study is only relevant to
the intercept parameter in our model, the estimation
of the intercept parameter together with the slope
coefficients is done using all the data. This means that
the genotype information for the cases also con-
tributes to the estimation of haplotype frequencies in
the controls. This is different from and more efficient
than the traditional approach using the EM algorithm
(Excoffier & Slatkin, 1995), which separately esti-
mates haplotype frequency for a given disease
status. Meanwhile, as the number of genotyped loci
increases, there will be a large number of multi-
locus genotypes in S(g). Since our model uses haplo-
type-based parameterization, the parameter space
is considerably reduced. This is the same as using
allele- instead of genotype-based analysis in single-
locus studies (Sasieni, 1997; Tan et al., 2004). On the
other hand, the number of intercept parameters
parallels the number of haplotypes included in the
model. As already suggested, one can always group
the rare haplotypes to reduce the number of
parameters to be estimated. Nevertheless, since our
interest in haplotype analysis concerns both risk and
frequency, all parameters in our model are meaning-
ful. Since our model uses haplotype-based para-
meterization, the same risk parameter can be assigned
to haplotypes with a similar effect on the trait to
reduce the number of parameters in the model. Schaid
(2004) summarized the approaches for a cladistic
analysis and clustering of haplotypes. Due to poten-
tial limitations in the existing methods, for example
disregard of the association of haplotype with trait,
important aspects remain to be solved. However, once
the haplotypes have been clustered, parameterization
based on the haplotype clusters will help to largely
reduce the parameter space and thus increase the
statistical power.

The formulation of our haplotype logistic re-
gression model resembles the retrospective likelihood
approach for case – control data proposed by Epstein
& Satten (2003). In our model, parameter estimation
is achieved by modelling the frequencies of the poly-
tomous haplotype pairs which, with haplotype-based
parameterization, link the unobserved haplotypes

with the observed multi-locus genotypes. In our
retrospective framework, the observed disease trait
is assigned as an independent variable which can be
easily modelled as in any ordinary logistic regression
model whether the trait is discrete or continuous.
Since in our haplotype logistic regression model
the disease phenotype is an independent variable, the
estimated haplotype frequency (dependent variable)
is thus unaffected by the over-representation of cases
in the samples. This is important in clinical appli-
cations where the sampling is highly dependent on
the disease phenotypes. In addition, because our
retrospective approach summarizes all possible
haplotype pairs that are consistent with the observed
multi-locus genotypes, the model produces unbiased
estimates of the effects of specific haplotypes.

For a given trait value x, our model calculates the
relative risk of a haplotype as the ratio between the
frequency of the haplotype in question and that of
the baseline haplotype. Since the relative risk ratio
is defined as the ratio between the relative risks at
two given trait values, it measures the risk of the
haplotype on the transition over the disease status.
Since our relative risk ratio is estimated from a
retrospective model, it is necessary to study its con-
nection with the relative risk parameter in a general
prospective model. In the Appendix, we derive the
relationship between the risk parameter in our retro-
spective model and that in the prospective model. It
is shown that, when the disease is rare, the relative
risk in a prospective model can be approximated by
the relative risk ratio estimated from our retrospective
model. This is important because, provided the dis-
ease incidence is low in the population, our model
can estimate the haplotype risk parameters that can
be interpreted in term of trait penetrance as in a pro-
spective model. Likewise, in case of a sex-specific
effect, our estimated sex-specific RRR for a haplotype
can be seen as the relative risk of the haplotype in
developing the disease for given sex. Finally, as shown
by equation (7), testing the null hypothesis of b=0 is
equivalent to testing Ho :RRR=1. This is also shown
by the 95% confidence intervals for the estimated
RRRs in Table 2. Since no slope parameter for the
haplotypes is statistically different from zero, all the
95% confidence intervals of RRR cover the null risk
of one.

Although the logit is linearly dependent on the
trait, as shown in formula (5), the relationship be-
tween haplotype frequency and the trait is actually
not linear. Because the logistic regression model does
not make any assumptions on normality and linearity
of the independent variable, it is less stringent than
the ordinary least squares (OLS) regression model.
Hosmer & Lemeshow (2000) illustrated different types
of models for the relationship between the logit and
a covariate or independent variable and concluded
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that the logistic regression model can capture the
main effect except for a U-shaped pattern. From
formula (5), one can see that the fitted haplotype
frequency is a monotonic function of the trait value.
Efforts have been made in transforming the indepen-
dent variable into modelling a non-monotonic fre-
quency pattern (Hosmer & Lemeshow, 2000), but
only when the dependent variable is dichotomous. In
our case, if a U-shaped frequency exists, it would
mean that the same haplotype is responsible for both
the low and the high status of the disease phenotype,
which is biologically contradictory. Although a non-
linear relationship can be modelled using the frac-
tional polynomials when the dependent variable is
dichotomous, transformation of the independent
variable in the multinomial logistic regression model
has been rare. When the functional form of depen-
dence is questioned in multinomial logistic regression,
Hosmer & Lemeshow (2000) suggested approximat-
ing the fit of a multinomial logistic model by fitting
separate binary models using fractional poly-
nomials. In haplotype analysis, this is infeasible
because individual haplotypes are not observable.
Given the situation, we think that the linear model
is a practical approach because the main effect of
haplotype association is captured. In addition, be-
cause haplotype frequency is modelled conditional
on the trait, non-genetic covariates can not be
analysed alone in our model. However, as described
in Section 2, our model does allow us to assess the
interaction effects between haplotypes and other
binary or categorical covariates, for example the sex-
dependent effects. More work is needed in extending
the present model to cover additional non-genetic
covariates.
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Institute on Aging (NIA) research grants NIA P01
AG08761, -AG13196, the microarray center project under
the Biotechnological Research Program financed by the
Danish Research Agency and the Danish Medical Research
Council. The authors are grateful to Kirsten Pagh for her
help in preparing the manuscript.

Appendix

Suppose we have a case – control study with x=1 for
cases and x=0 for controls. We designate the haplo-
types arising from the observed multiple genotype
data as ha, hb, hc, ……, ho with haplotype ho as the
baseline or reference haplotype. Let N be the size of
the population from which the samples were taken
and p be the frequency of the outcome (disease) in the
population. With all the parameters, we can present
the entire population in Table A1 in which the total
population is divided according to their disease status
and haplogenotype (haplotype pair).

In Table A1, pi, j(1) and pi, j (0) are the frequencies
of haplotype pair (hi, hj) in the cases and the controls
respectively. Likewise, po,o(1) and po,o(0) are the fre-
quencies of the reference haplogenotype in the cases
and the controls because haplotype ho is assigned as
the baseline haplotype. Applying formula (7) to the
table, we have the RRRi, j as

RRRi, j=
pi, j(1)

po, o(1)

�
pi, j(0)

po, o(0)
=

pi, j(1)po, o(0)

pi, j(0)po, o(1)
: (A1)

Now, for the entire population, the rate of the disease
among carriers of haplotype pair (hi, hj) is

p(Djhi, hj)=
pi, j(1)pN

[pi, j(1)p+pi, j(0)(1xp)]N

=
pi, j(1)p

pi, j(1)p+pi, j(0)(1xp)
: (A2)

Similarly, the rate of the disease among carriers of
the reference haplotype pair (ho,ho) is

p(Djho, ho)=
po, o(1)pN

[po, o(1)p+po, o(0)(1xp)]N

=
po, o(1)p

po, o(1)p+po, o(0)(1xp)
: (A3)

From (A2) and (A3), we obtain the relative risk of
haplotype pair (hi, hj) in a standard prospective

Table A1.

Haplotype pair

Disease status

TotalCase (x=1) Control (x=0)

(a, b) pa,b(1)pN pa,b(0)(1xp)N [pa,b(1)p+pa,b(0)(1xp)]N
(c, d) pc,d (1)pN pc,d (0)(1xp)N [pc,d (1)p+pc,d (0)(1xp)]N
…… …… …… ……
(i, j) pi, j (1)pN pi, j (0)(1xp)N [pi, j (1)p+pi, j (0)(1xp)]N
…… …… …… ……
(o, o) po,o(1)pN po,o(0)(1xp)N [po,o(1)p+po, o(0)(1xp)]N

Total pN (1xp)N N
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model :

RRi, j=
p(Djhi, hj)
p(Djho, ho)

=
pi, j(1)p

pi, j(1)p+pi, j(0)(1xp)

�

po, o(1)p

po, o(1)p+po, o(0)(1xp)
=

pi, j(1)

pi, j(1)p+pi, j(0)(1xp)

r
po, o(1)p+po, o(0)(1xp)

po, o(1)
: (A4)

When p is small, we have in (A4), pi, j(1)p+pi, j(0)
(1xp)%pi, j(0) and po,o(1)p+po,o(0)(1xp)%po,o(0).
With this approximation, we have

RRi, j �
pi, j(1)po, o(0)

pi, j(0)po, o(1)
=RRRi, j: (A5)

Equation (A5) shows the connection between the risk
parameters in our retrospective model and the general
prospective model under the condition that the
disease in the population is relatively rare. With this
relationship, the relative risk parameter in the pro-
spective model can be approximated by the RRR in
our retrospective model.
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