
11
Dense nuclear matter

One aspect of nuclear physics is the study of nuclear matter. Up until the
mid 1970s, nearly all studies used a nonrelativistic potential to describe
the nucleon–nucleon interaction. The results were not entirely satisfactory.
It was difficult to obtain simultaneously the saturation density (about
0.153 nucleons per fm3) and the binding energy (about 16.3 MeV per
nucleon with the Coulomb force turned off) in a microscopic nonrel-
ativistic approach. Part of the discrepancy was ascribed to three-body
interactions. However, relativity can also play a small but significant role
at normal nuclear matter density. The importance of relativity may be
judged by comparing the Fermi momentum pF with the nucleon mass.
The baryon density is

n =
2p3

F

3π2
(11.1)

At normal nuclear density pF = 259 MeV, and at four times normal
nuclear density pF = 411 MeV. These should be compared with the vac-
uum nucleon mass mN = 939 MeV and the Fermi kinetic energy

KF = mN

[
(1 − v2

F)−1/2 − 1
]

= 1
2mNv2

F + 3
8mNv4

F + · · · (11.2)

Although one might think that the relativistic correction at normal
nuclear density, which is of order v4

F and numerically about 2 MeV,
is rather small, still it is not insignificant compared with the binding
energy of 16.3 MeV. Of course, at higher densities, relativity certainly
cannot be ignored. As we shall learn, relativity plays an even greater
role in the interactions among nucleons. The relativistic approach to
nuclear matter was pioneered by Johnson and Teller [1], Duerr [2], and
Walecka [3].
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220 Dense nuclear matter

Fig. 11.1. Model of the nucleon–nucleon potential illustrating long-range attrac-
tion and short-range repulsion. The parameters are given in the text.

11.1 Walecka model

The force between nucleons is conventionally thought of as mediated by
the exchange of mesons. The long-range part of the nuclear force comes
from one-pion exchange. Its range is 1/mπ = 1.4 fm. However, this aver-
ages to zero unless parity is broken. The force mediated by exchange of the
ρ meson vanishes in isospin-symmetric matter (equal numbers of protons
and neutrons); the dominant one-meson exchanges in isospin-symmetric
nuclear matter come from the omega meson (ω) and a scalar meson (σ).
The ω is a vector meson, is electrically neutral, and has a mass of about
783 MeV. The σ meson represents a very broad resonance in ππ scatter-
ing at 500–600 MeV. The exchange of the electrically neutral σ is usually
thought of as simulating some part of two-pion exchange. With single-ω
and single-σ exchange, the static nonrelativistic potential between two
nucleons is the sum of two Yukawa interactions:

V (r) =
g2
ω

4π
e−mωr

r
− g2

σ

4π
e−mσr

r
(11.3)

If gω > gσ and mω > mσ then the potential looks like that shown in Figure
11.1. It is attractive at long distances and repulsive at short distances and
so has the structure necessary to bind nuclear matter.

The Lagrangian that contains the Yukawa couplings of the nucleon to
the ω and to the σ is

LW = ψ̄(i ∂ −mN + gσσ − gω ω)ψ
+ 1

2

(
∂μσ∂

μσ −m2
σσ

2
)− 1

4F
μνFμν + 1

2m
2
ωωμω

μ (11.4)
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11.1 Walecka model 221

where

Fμν = ∂μων − ∂νωμ

Now of course we know that baryons and mesons are not elementary
point particles. They are composite structures of quarks and gluons. The
idea of an effective-nuclear-field theory is to write down a Lagrangian
that contains the low-lying baryons and mesons as relativistic fields. This
allows us to use the standard machinery of relativity, quantum mechanics,
and statistical mechanics. This approach will break down if we attempt
to probe the theory at very short distances, say a few tenths of a fermi,
since then the quarks and gluons must manifest themselves.

Let us investigate the properties of dense nuclear matter using the
Lagrangian LW. The partition function is

Z =
∫ [

dψ̄p

]
[dψp]

[
dψ̄n

]
[dψn] [dσ] [dωμ]

× exp
(∫ β

0
dτ

∫
d3x
(
LW + μpψ

†
pψp + μnψ

†
nψn

))
(11.5)

where μp and μn are the proton and neutron chemical potentials. For
isospin-symmetric matter μp = μn and for pure neutron matter μp = 0,
μn = 0 (although the presence of electrons in a neutron star allows μp =
0). For the remainder of this section, we concentrate on symmetric matter
and write μ = μn = μp.

The nucleons act as sources in the meson field equations. This sug-
gests that a net baryon density will generate scalar and vector meson
condensates. This can be checked by allowing σ and ωμ to have nonzero
expectation values. Thus we write

σ = σ̄ + σ′

ωμ = δμ0 ω̄0 + ω′
μ

(11.6)

where the bar indicates the ensemble average value of the field and the
prime indicates the fluctuation about the average. (Note that ω̄i = 0 on
account of rotational symmetry.) In the mean field approximation, one
neglects fluctuations in the meson fields. This means that the nucleons
are taken to move independently in the mean fields σ̄ and ω̄0, which them-
selves are generated self-consistently by the nucleons. Based on the success
of the nuclear shell model, we anticipate that this will provide a reason-
able first-order estimate of the properties of dense nuclear matter. The
Lagrangian LW is commonly referred to as the Walecka Lagrangian, and
when used in conjunction with the mean field approximation is referred
to as the Walecka model.
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222 Dense nuclear matter

The partition function may be evaluated exactly in the mean field
approximation because the functional integral is just a product of Gaus-
sian integrals. The argument of the exponential in (11.5) is thus approx-
imated by

ψ̄ [i ∂ − (mN − gσσ̄) + (μ− gωω̄0)γ0]ψ − 1
2m

2
σσ̄

2 + 1
2m

2
ωω̄

2
0 (11.7)

This means that the nucleon develops an effective mass

m∗
N = mN − gσσ̄ (11.8)

and an effective chemical potential

μ∗ = μ− gωω̄0 (11.9)

Using (11.5) together with (11.7), we obtain the pressure as

P (μ, T ) = PFG(μ∗, T ) − 1
2m

2
σσ̄

2 + 1
2m

2
ωω̄

2
0 (11.10)

where PFG is the Fermi-gas expression for nucleons with the quoted effec-
tive mass and chemical potential.

We now must determine the mean fields σ̄ and ω̄0. If we allow σ̄ and
ω̄0 to vary, the equilibrium configuration will be attained when P is an
extremum. Thus

σ̄ = −
(

gσ
m2

σ

)
∂PFG

∂m∗
N

(11.11)

ω̄0 =
(

gω
m2

ω

)
∂PFG

∂μ∗ (11.12)

Of these, the vector condensate can be determined directly in terms of
the baryon density n:

ω̄0 =
gω
m2

ω

n (11.13)

A quick calculation utilizing (2.99) shows that the scalar condensate is
proportional to the scalar density ns:

σ̄ =
gσ
m2

σ

ns (11.14)

where

ns ≡ 4
∫

d3p

(2π)3
m∗

N

E∗

(
1

eβ(E∗−μ∗) + 1
+

1
eβ(E∗+μ∗) + 1

)
E∗ =

√
p2 + m∗2

N

(11.15)
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11.1 Walecka model 223

Equation (11.14) is a self-consistent equation to be solved for m∗
N , as may

be seen from the alternate form

m∗
N = mN −

(
g2
σ

m2
σ

)
ns (11.16)

Now let us focus on cold nuclear matter and delay the discussion of
finite temperature to a later section. Using the above equations and the
standard thermodynamic identities, we have

P =
1

4π2

[
2
3
E∗

Fp
3
F −m∗2

NE∗
FpF + m∗4

N ln
(
E∗

F + pF

m∗
N

)]
+

1
2

(
g2
ω

m2
ω

)
n2 − 1

2

(
g2
σ

m2
σ

)
n2

s (11.17)

ε =
1

4π2

[
2E∗3

F pF −m∗2
NE∗

FpF −m∗4
N ln

(
E∗

F + pF

m∗
N

)]
+

1
2

(
g2
ω

m2
ω

)
n2 +

1
2

(
g2
σ

m2
σ

)
n2

s

where

n =
2

3π2
p3
F

E∗
F = μ∗ =

√
p2
F + m∗2

N

m∗
N = mN −

(
g2
σ

m2
σ

)
ns

ns =
m∗

N

π2

[
EFpF −m∗2

N ln
(
E∗

F + pF

m∗
N

)]

In these equations it is natural to take the Fermi momentum pF as the
one independent variable. Notice that this equation of state is given essen-
tially in analytic form with only the equation for m∗

N to be solved self-
consistently.

Before investigating the equation of state in detail, it is worthwhile to
consider the extremes of low and high density. At low density pF → 0,
and we recover the equation of state of a nonrelativistic ideal Fermi gas.
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224 Dense nuclear matter

The quantities in (11.17) have the following limits:

P → 2
15π2

p5
F

mN

ε →
(
mN +

3
10

p2
F

mN

)
n

m∗
N → mN

ns → n

(11.18)

At high density, pF → ∞, the effective nucleon mass goes to zero:

m∗
N → mN

1 + (g2
σ/π

2)(p2
F/m

2
σ)

(11.19)

The pressure and energy density are dominated by the vector mean field:

P → ε → 1
2

(
g2
ω

m2
ω

)
n2 (11.20)

Thus the speed of sound, c2s = ∂P/∂ε, approaches the speed of light at
very high density. This is to be compared with the speed in sound in a
massless Fermi gas, which is 1/

√
3.

In these equations there are only two parameters at our disposal, g2
ω/m

2
ω

and g2
σ/m

2
σ. The nucleon mass is mN = 939 MeV and the vector meson

mass is mω = 783 MeV. For definiteness we take mσ = 550 MeV, corre-
sponding to the scalar–isoscalar resonance in π−π scattering. Then the
choice of couplings g2

ω/4π = 14.717 and g2
σ/4π = 9.537 leads to a binding

energy of 16.3 MeV per nucleon and a saturation density of 0.153 nucle-
ons per fm3. The curve of energy per nucleon versus density is shown in
Figure 11.2. The energy per nucleon rises rather dramatically with den-
sity. In fact the compressibility of nuclear matter at saturation density
turns out to be

K ≡ p2
F

d2(ε/n)
dp2

F

= 563 MeV (11.21)

The generally accepted value, based on measurements of the isoscalar
giant monopole resonance in heavy nuclei, is 250 ± 30 MeV [4–7]. The
Walecka model predicts m∗

N = 0.57mN , which is somewhat smaller than
some estimated values of the effective nucleon mass at nuclear satura-
tion density [8] but quite consistent with others [9, 10]. Nevertheless, we
should not expect to fit a large body of nuclear-matter properties to high
accuracy for several reasons: (i) the Lagrangian LW is too simple to rep-
resent accurately the complicated nuclear forces, and (ii) the mean field
approximation neglects nucleon–nucleon correlations.
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11.1 Walecka model 225

Fig. 11.2. The average energy per nucleon minus the nucleon mass as a function
of the baryon density in the mean field approximation to the Walecka model.

One may ask whether the numerical values obtained for the two Yukawa
couplings are reasonable. Fitting nucleon–nucleon phase shifts up to 300
MeV typically yields similar values. For example, Machleidt, Holinde,
and Elstor [11] used a boson-exchange model employing the π, ρ, ω, and
σ mesons, and found that g2

ω/4π = 20 and g2
σ/4π = 9.2. This agreement

is satisfactory considering that the Yukawa couplings used in the mean
field approach are really effective couplings that are fine-tuned to mimic
all the many-body effects not included. Fine-tuning is actually required
in the Walecka model, where the delicate cancelation between short-range
vector repulsion and medium-range scalar attraction is really a relativistic
effect. This may be seen in the following way. In the nonrelativistic mean
field approximation the average potential energy felt by a nucleon is

〈V 〉 = n

∫
d3r V (r) (11.22)

The average kinetic energy is (3/5)(p2
F/2mN ). Since n ∝ p3

F this means
that

∫
d3r V (r) > 0 for the energy to be bounded from below. Hence both

the average kinetic and potential energies must be positive at all densities,
and an equilibrium bound state cannot arise. Relativity plays an impor-
tant role in the sense that the baryon (vector) density and the scalar
density are not the same; they differ by a velocity factor m∗

N/E∗ in the
relevant integrands at zero temperature. In this vein it is illustrative to
expand the energy per nucleon as a power series in the Fermi velocity
at T = 0. The difference between the scalar and baryon densities shows
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226 Dense nuclear matter

Fig. 11.3. The nuclear optical potential as a function of momentum at nuclear
saturation density in the Walecka model.

up at order v5
F, which is just one power more than the first relativistic

correction to the kinetic energy. See, for example, Serot and Walecka [12].
The nuclear optical potential U is defined by

E(p, pF) =
√

p2 + m2
N + U(p, pF) (11.23)

Here E is the single-particle energy of a nucleon. The optical potential
is both density and momentum dependent. From (11.10), (11.14), and
(11.16),

E(p, pF) =
√

p2 + m∗2
N +

(
g2
ω

m2
ω

)
n (11.24)

The optical potential at saturation density is plotted in Figure 11.3.
Various phenomenological optical potentials of this form are widely used
in interpreting proton–nucleus scattering [13] and nucleus–nucleus scat-
tering [14, 15] at energies of several hundred MeV. The optical potential
in the Walecka model rises too rapidly at high momentum compared with
the data. Such disagreement should not be a surprise, for the reasons
given above.

11.2 Loop corrections

The mean field used in the previous section has two great advantages: it is
relativistically and thermodynamically self-consistent, neither of which is
a trivial achievement. By fine-tuning only two input parameters, the bind-
ing energy and the density of cold isospin-symmetric nuclear matter, one
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11.2 Loop corrections 227

may extrapolate to both lower and higher densities, to isospin-asymmetric
matter (after the ρ meson is included, see Chapter 16), and to moderate
temperatures. However, the coupling constants are large, of the order of
10, making a convergent loop expansion highly unlikely. Both one-loop
and two-loop corrections have been computed in the Walecka model, and
we shall present the results in this section. The two-loop corrections, in
particular, are very large, as expected. However, nucleons are composite
objects, constructed from quarks and gluons. Therefore any effective the-
ory using baryons and mesons as the degrees of freedom will necessarily
bring form factors into play. It will turn out that with reasonable choices
of the form factors, the sum of the two-loop contributions to the energy
per nucleon is surprisingly small. This does not, of course, imply that
other physical observables are also small.

11.2.1 Relativistic Hartree

The Walecka model is renormalizable even though it has a massive vector
boson because it couples to the conserved baryon current. Regarding the
scalar boson, the Walecka model truncates the Lagrangian at order σ2.
However, all terms that keep the theory renormalizable and respect the
symmetries can and should be kept. This means powers of σ up to and
including 4. In fact, these are required in order to cancel divergences
coming from the shift in the zero-point energy of the nucleons. Relative
to the vacuum, the shift in the zero-point energy is [16]

εZP(m∗
N ) = −2

∫
d3p

(2π)3

(√
p2 + m∗2

N −
√
p2 + m2

N

)
−

4∑
n=1

cn
n!

σn

(11.25)
The coefficients cn of the counterterms are dependent upon the regular-
ization scheme. In momentum-cutoff schemes they diverge as the cutoff
goes to infinity, and in dimensional regularization schemes they diverge
as four dimensions are approached. The minimal procedure is to choose
the cn so as to cancel the first four powers of σ arising from the inte-
gration over momentum. (Recall that m∗

N = mN − gσσ̄.) Although this
procedure is not unique, it has the feature of minimizing the many-body
forces arising from this vacuum correction. The result is

εZP(m∗
N ) = − 1

4π2

[
m∗4

N ln
(
m∗

N

mN

)
+ m3

N (mN −m∗
N ) − 7

2
m2

N (mN−m∗
N )2

+
13
3
mN (mN −m∗

N )3 − 25
12

(mN −m∗
N )4
]

(11.26)

This formula assumes an isospin degeneracy factor 2.
The pressure and energy density in the one-loop relativistic Hartree

approximation are related to those in the relativistic mean field
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228 Dense nuclear matter

approximation by

PRH = PMF − εZP

εRH = εMF + εZP

(11.27)

This equation of state is also thermodynamically consistent. Minimizing
the energy at fixed density leads to a modification of the mean field self-
consistency condition for the scalar condensate, namely

m∗
N = mN −

(
g2
σ

m2
σ

)
ns +

g2
σ

m2
σ

1
π2

[
m∗3

N ln
(
m∗

N

mN

)
−m2

N (mN −m∗
N )

− 5
2
mN (mN −m∗

N )2 − 11
6

(mN −m∗
N )3
]

(11.28)

A small change to the parameters in (11.4) again reproduces the satura-
tion density and binding energy of nuclear matter. Numerical results will
be shown in the next subsection, where we consider two-loop contribu-
tions.

11.2.2 Two loops

Two-loop contributions to the partition function can be performed in the
usual fashion. The general form is

lnZ2 = −1
2

∑
n1n2

∫
d3p1

(2π)3
d3p2

(2π)3
Tr [G(p1)Γ(p1, p2, k) G(p2)Γ(p2, p1, k)D(k)]

(11.29)

Here G is the nucleon propagator, D is the boson propagator (for either
the scalar or vector meson), Γ is the relevant vertex, and k = p1 − p2.
Lorentz and Dirac indices are suppressed.

These contributions have been evaluated at zero temperature by Furn-
stahl, Perry, and Serot [17]. The two-loop diagram has several physical
contributions. One contribution originates from the exchange of momen-
tum between two nucleons in the Fermi sea. A second contribution comes
from the Lamb shift, the change in the properties of a nucleon as it prop-
agates in the medium. The third contribution is a shift in the zero-point
vacuum fluctuations owing to the presence of nuclear matter. Unfortu-
nately the results cannot be expressed in terms of elementary functions
because the nucleon and meson masses are all nonzero. The diagrams are
as follows:

=⇒ + +
vacuum
fluctuations
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11.2 Loop corrections 229

Fig. 11.4. The energy per nucleon as a function of density. The solid curve
labeled RHA is the relativistic Hartree approximation. The solid curve labeled
TOTAL includes the exchange, Lamb shift, and two-loop vacuum fluctuations
as well. Point vertices are used.

Figure 11.4 shows the equation of state in the relativistic Hartree
approximation (RHA). In this figure the values of the parameters are
g2
σ/4π = 4.32, mσ = 458 MeV, g2

ω/4π = 8.18, and mω = 783 MeV. Also
shown are the contributions from the exchange term, the Lamb shift, and
the vacuum fluctuations. They are computed as if they were perturba-
tions, with no change in the numerical values of the coupling constants.
The exchange term is relatively modest but the Lamb shift and the vac-
uum fluctuations are enormous. When all are added, the binding energy
changes to nearly 400 MeV from 16 MeV at a density of 3.7 times the
empirical value. The two-loop contributions are not perturbatively small,
quite the contrary. This is not unexpected, owing to the large values of the
coupling constants. Undoubtedly higher-loop contributions are important
too, and the whole calculational scheme breaks down.

11.2.3 Form factors

The integrals in the two-loop terms receive contributions from internal
momenta as high as 5 GeV. But nucleons and mesons are not point
particles. Their finite spatial size should soften these contributions sig-
nificantly. Prakash, Ellis, and Kapusta [18] introduced form factors at
both vertices with the philosophy that they do not arise from interactions
within the confines of the Walecka model. The origin of these form fac-
tors runs deeper, back to the quark and gluon substructure of hadrons.
Of course, the full meson–nucleon vertex function will include dressings
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230 Dense nuclear matter

from the hadronic degrees of freedom too. A consistent treatment of form
factors is not yet available. In general, they will involve several scalar
functions, the number of which depends on the Lorentz structure of the
vertex. Each one may depend on the invariants p2

1, p
2
2, and k2. The min-

imal assumption is that the scalar and vector form factors are functions
of k2 only and have the simple monopole form

f(k2) =
1

1 − k2/Λ2
(11.30)

when k2 < 0 (spacelike) and where Λ is a cutoff of order 1 GeV. Then the
vertices to be used in the two loop diagrams are just the point vertices
multiplied by f(k2).

Three comments are in order. First, the selection of relativistic
monopole form factors with a cutoff of this order is consistent with the
relativistic dipole structure of the on-shell nucleon electromagnetic form
factor. In that case, one monopole factor arises from the finite size of the
nucleon while the other arises from the ρmeson propagator in the context
of the vector-meson-dominance model [19]. Second, if one were to include
the off-mass-shell p2

1 and p2
2 dependences as well then it might be possi-

ble to get an even greater suppression of the two-loop contributions than
that displayed in Figure 11.5. Third, since the vector meson couples to the
baryon current there is a generalized type of Ward identity. This identity
is different from that in QED because in the strong-interaction case the
vector–current coupling is nonlocal. Since the form factor f(k2) is taken
to be intrinsic to the nucleon rather than generated by the Yukawa inter-
actions of the nucleons with the meson fields, there is no inconsistency in
using the mean field propagators in the loop expansion. To lowest order
in gσ and gω the identity must be such that it is satisfied by the free-field
form of the nucleon and meson propagators.

Multiplying the bare point-particle vertices by f(k2), it can easily be
shown that the energy density is obtained from the identity

ε =
Λ2

Λ2 −m2

{
Λ2

Λ2 −m2

[
εpt(m2) − εpt(Λ2)

]
+

dεpt(Λ2)
d ln Λ2

}
(11.31)

Here m is the mass of the exchanged meson and εpt is the two-loop energy
density with point vertices.

Figure 11.5 shows what happens when form factors are inserted at
each vertex with the cutoff chosen as 1 GeV for both the scalar and
vector meson vertices. There is a tremendous reduction compared with
the case of point vertices. Near the equilibrium density, both the scalar
and vector meson exchange terms are reduced by 10%–15%. For the Lamb
shift the reduction is by a factor 5 for scalar mesons and by a factor 10
for the vector mesons. The vacuum fluctuation contributions are reduced
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Fig. 11.5. The same as Figure 11.4 except that form factors with Λ = 1 GeV
have been used at each vertex.

by similar amounts. Because the exchange terms are generally positive
while the other two are negative in the density range shown in the figure,
the final result is a reduction in the two-loop contribution by a factor of
more than 100. Now the largest contribution is the exchange, followed
by the Lamb shift and vacuum fluctuations. This is satisfying, in the
sense that the exchange term survives in the quantum nonrelativistic limit
whereas the Lamb shift and vacuum fluctuations are truly field theoretic
in origin. With the form factors included, the two-loop contributions really
are perturbative additions to the relativistic Hartree equation of state. A
minimization of the Hartree equation plus two-loop contributions with
respect to the effective nucleon mass at each density gives results nearly
identical to those neglecting the two-loop contributions.

As the cutoff Λ increases, the two-loop contributions increase in mag-
nitude, of course. When Λ is increased to 1.5 GeV the binding energy is
increased by 11 MeV and the equilibrium density increases by about 30%.
A small change in the coupling constants will restore the location of the
empirical minimum in the equation of state.

It still remains a great challenge in strong-interaction physics to under-
stand in detail the nature and structure of these form factors. The point
of view presented here is that form factors represent the quark and gluon
substructure of hadrons and cannot be calculated within the bound-
aries of hadronic degrees of freedom alone; one unfortunate consequence
is that this renders the theory unrenormalizable. This is not the only
point of view to which one may subscribe. For example, Serot and Tang
[20] computed the effects of vertex corrections within the Walecka model
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232 Dense nuclear matter

itself instead of using imposed form factors. Whatever the point of view,
however, it seems that the relativistic Hartree approximation, or even
the mean field approximation, may not be an unreasonable approach
to parametrizing the nuclear equation of state. It is consistent with our
empirical knowledge near the equilibrium point and with relativity and
the thermodynamic identities.

11.3 Three- and four-body interactions

The Lagrangian given in (11.5) represents a renormalizable theory. Even
though a low-energy effective theory need not be renormalizable (form
factors should cut off unphysical short distance contributions) one may
desire to keep this property. Then one may add the cubic and quartic
terms −1

3bmN (gσσ)3 − 1
4c(gσσ)4 to the Lagrangian. Just as σ2 represents

a two-body interaction, σ3 represents a three-body interaction (a vertex
with three σ lines emanating from it and attached to external nucleon
lines) and σ4 represents a four-body interaction (a vertex with four σ
lines emanating from it and attached to external nucleon lines). It has
been found that a phenomenological three-body interaction is necessary
to describe bound nuclear matter in a nonrelativistic-potential approach.
There is less information available on a microscopic four-body interaction.

In the relativistic mean field approach, the cubic and quartic terms can
be used to fit more of the empirically known properties of nuclear matter.
These include the following:

the saturation density [4]

n0 = 0.153 fm−3 (11.32)

the binding energy [4]
ε

n
−mN = −16.3 MeV (11.33)

the Landau mass [8]

mL =
√
m∗2

N + p2
F = 0.83mN (11.34)

the compressibility [4–7]

K = p2
F

d2

dp2
F

( ε
n

)
= 250 MeV (11.35)

Of these, the compressibility has the greatest uncertainty, approximately
±30 MeV. With the freedom of two additional parameters, b and c, in the
Lagrangian it is possible to fit all four of the above numbers.

The consequences of adding the cubic and quartic terms are to add to
the energy density the quantity 1

3bmN (gσσ̄)3 + 1
4c(gσσ̄)4 and to subtract
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Fig. 11.6. The average energy per nucleon minus the nucleon mass as a function
of baryon density in the mean field approximation when three- and four-body
forces are included.

the same amount from the pressure. The self-consistency condition for
the mean scalar field that replaces (11.14) is

m2
σσ̄ + bmNg3

σσ̄
2 + cg4

σσ̄
3 = gσns (11.36)

where once again ns is the scalar density. One deduces from a numerical
calculation that g2

σ/4π = 6.003, g2
ω/4π = 5.948, b = 7.950 × 10−3, and c =

6.952 × 10−4. The resulting equation of state is plotted in Figure 11.6.
This may be viewed as a means of quantifying the nuclear equation of
state in such a way that known nuclear properties are fitted at saturation
density and also that the extrapolation to both lower and higher densities
is consistent with the principles of relativity and is thermodynamically
consistent.

11.4 Liquid–gas phase transition

It is generally true that any system of fermions that is self-bound, in three
space dimensions, will undergo a liquid–gas phase transition. This phase
transition is essentially of the Van der Waals type. The reason for a phase
transition is easy to understand intuitively. First, consider nuclear mat-
ter at T = 0 and density n < n0. The binding energy curves of Figures
11.2 and 11.6 suggest that it is energetically favorable for the nucleons to
form isolated clumps or droplets with a local density n0 rather than to
be distributed homogeneously throughout space. The space surrounding
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the isolated droplets is simply a vacuum. As the temperature is turned up
from zero, two things happen. Nucleons within a droplet have an increased
kinetic energy owing to the finite temperature, and so the droplet swells
in size and is reduced in local density. Finite temperature also means
that the droplets will evaporate nucleons into what was formerly the vac-
uum. Thus we have a phase mixture: isolated droplets of nuclear liquid
with local density nL < n0 are surrounded by a nuclear gas with density
nG < nL. As T increases, nG increases and nL decreases. Eventually, at
some temperature Tc we reach a critical point where nG = nL and the
distinction between liquid and gas disappears.

The liquid–gas phase transition is readily studied in the relativistic
mean field model of nuclear matter with cubic and quartic interactions.
The equation of state is

P (μ, T ) = PFG + 1
2

(
g2
ω

m2
ω

)
n2 − 1

2m
2
σσ̄

2 − 1
3bmN (gσσ)3 − 1

4cmN (gσσ)4

(11.37)

where

PFG = 4T
∫

d3p

(2π)3
[
ln
(
1 + e−β(E∗−μ∗)

)
+ ln

(
1 + e−β(E∗+μ∗)

)]
n = 4

∫
d3p

(2π)3

(
1

eβ(E∗−μ∗) + 1
− 1

eβ(E∗+μ∗) + 1

)
ns = 4

∫
d3p

(2π)3
m∗

N

E∗

(
1

eβ(E∗−μ∗) + 1
+

1
eβ(E∗+μ∗) + 1

)
E∗ =

√
p2 + m∗2

N

gσns = m2
σσ̄ + bmNg3

σσ̄
2 + cg4

σσ̄
3

m∗
N = mN − gσσ̄

μ∗ = μ−
(

g2
ω

m2
ω

)
n (11.38)

From these it is possible to verify the thermodynamic identity n =
∂P (μ, T )/∂μ, and to compute the entropy density and energy density
according to s = ∂P (μ, T )/∂T , ε = −P + Ts + μn. Strictly speaking, the
contribution of thermal mesons should be added. However, for the tem-
peratures of interest here, T < 30 MeV, the σ and ω mesons contribute
very little since T � mσ,mω.

Some isotherms of pressure versus density are plotted in Figure 11.7.
Consider moving along the T = 10 MeV isotherm. For very small n, 0 <
n < nA, only the gas phase is present. When n > nD, only the liquid
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Fig. 11.7. Isotherms of pressure versus baryon density in the mean field approx-
imation with the inclusion of three- and four-body forces. The horizontal line
is the Maxwell construction for phase equilibrium. The critical temperature is
16.4 MeV.

phase is present. The points A and D are defined by the condition that
they have the same value of the chemical potential μ. The straight line
connecting A and D is the Maxwell construction. For densities nA < n <
nD the equilibrium configuration is a mixture of the liquid phase (with
local density nD) and the gas phase (with local density nA). The reason is
that the Gibbs criterion of equal P , T , and μ is satisfied. From A to B it
is possible for the system to remain in the gas phase, but it is metastable
and will not survive indefinitely. Similarly the liquid phase is metastable
from C to D. The portion of the curve between B and C is unstable.
Recall the stability condition [21] ∂P (n, T )/∂n > 0. If the inequality does
not hold then the isothermal speed of sound is imaginary and isothermal
perturbations will grow exponentially.

For T < Tc, the phase transition is first order. At Tc, the points A, B, C,
D merge into one point, an inflection point, also called the critical point.
At the critical point, the line of first-order phase transitions terminates in
a second-order one. For T > Tc, there is no distinction between gas and
liquid and no phase transition.

The critical temperature in this model is 16.4 MeV. Other models of
nuclear matter typically yield Tc in the range 14–19 MeV [22–25]. Gen-
erally, Tc is a monotonically increasing function of the compressibility
K.
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There have been attempts, which have met with some success, to find
experimental evidence of a nuclear liquid–gas phase transition in heavy
ion collisions. Unlike in the theory, in the experiments the Coulomb force
cannot be turned off and this complicates the analysis. Interested readers
are referred to the reviews by Csernai and Kapusta [26] and by Das Gupta,
Mekjian, and Tsang [27].

11.5 Summary

The relativistic field theories used to describe dense nuclear matter can
only be effective because nucleons and mesons are composite objects, con-
structed in a complicated way from quark and gluon fields. Nevertheless,
nucleons and mesons are the relevant degrees of freedom for densities up
to perhaps four to eight times nuclear saturation density and temper-
atures less than about 150 MeV. One should not think of the effective
Lagrangians as providing a fundamental theory that must be solved to
all orders in the coupling constants. On the contrary, this is bound to fail
because of the large numerical values of the coupling constants. Explicit
two-loop calculations with point vertices show just how large these contri-
butions can be. Inserting physically plausible form factors at the vertices
softens these contributions considerably, resulting in only minor correc-
tions to the relativistic mean field or relativistic Hartree approximations.
The practical view, which we espouse, is that the relativistic mean field
approximation is the simplest way to parametrize the nuclear equation of
state. It does so in a way that embodies as much of our empirical knowl-
edge as possible (binding energy and density, compressibility, etc.) while
being consistent with special relativity and the thermodynamic identi-
ties. The approach is flexible enough to allow such additional degrees of
freedom and additional interaction terms as are necessary to bring about
agreement with new data on nuclear matter properties.

In this brief introduction to the subject of dense nuclear matter, we
have focused on relatively simple, renormalizable, Lagrangians with only
a vector meson and a scalar meson. Much work has been and continues to
be done with theories involving more mesonic degrees of freedom, such as
ρ mesons, pions, and kaons, and more baryonic degrees of freedom, such
as hyperons and delta resonances. An extension of this sort is presented
in Chapter 16 for the purpose of obtaining the equation of state to be
used in computing the structure of neutron stars. Since these theories are
effective-field theories there is no reason why they should be restricted to
normalizable interactions. In principle, all low-lying degrees of freedom
and all interactions consistent with the symmetries of QCD ought to be
allowed. Such low-energy expansions have been worked out by Furnstahl,
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Serot, and Tang [28]. Not only must the effective Lagrangian be con-
sistent with the symmetries of QCD, so also must the approximations
one employs to calculate the properties of nuclear matter. The problem
of the pion self-energy in nuclear matter [29, 30] is a good illustration
of how chiral symmetry can be violated by the mean field approximation
when used in conjunction with certain representations of the pion–nucleon
interaction.

11.6 Exercises

11.1 Evaluate the integrals that result in (11.17).
11.2 Calculate

∫
d3r V (r) using (11.3) and evaluate it numerically with

the parameters of the Walecka model. Show that the nonrelativistic
limit of the Walecka equation of state is equivalent to the sum of the
average kinetic and potential energies calculated directly from the
nonrelativistic Hamiltonian in the mean field approximation.

11.3 Verify the Hugenholtz–Van Hove theorem [31], which states that the
single-particle energy at the Fermi surface equals the binding energy
per nucleon at saturation density, for the Walecka model.

11.4 Derive the formula (11.31).
11.5 Calculate the nuclear optical potential with the inclusion of three-

and four-body interactions. Compare the result with the cited liter-
ature on the optical potential used in proton–nucleus and nucleus–
nucleus scattering experiments.

11.6 Estimate the dependence of the critical temperature and density
of the nuclear liquid–gas phase transition on the binding energy,
compressibility and other nuclear matter properties as follows. Near
the saturation point of cold nuclear matter the energy per nucleon
may be parametrized as

E0(n) =
K

18

(
n

n0
− 1
)2

−B

where B = 16.3 MeV is the binding energy. If the thermal excitation
energy is taken to be that of a degenerate Fermi gas then the pressure
may be written as

P (n, T ) =
K

9
n2

n0

(
n

n0
− 1
)

+
1
3

(
2π
3

)2/3

mn1/3T 2

See [32] for more details, especially regarding the entropy.
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