ON SOME DIOPHANTINE PROBLEMS INVOLVING POWERS AND FACTORIALS

B. BRINDZA and P. ERDÕS

(Received 20 June 1989)

Communicated by J. H. Loxton
To the memory of Kurt Mahler

Abstract

In this paper the power values of the sum of factorials and a special diophantine problem related to the Ramanujan-Nagell equation are studied. The proofs are based on deep analytic results and Baker's method.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 D 61.

1. Power values of the sum of factorials

Erdös visited Mahler a few days before his death in February 1988 and discussed with Mahler the paper, his last, on which Mahler had been working. Mahler had investigated the following question.

Let $k>1$ be an integer and consider those numbers of the form $\sum_{i=1}^{\infty} \varepsilon_{i} k^{i}$ where $\varepsilon_{i} \in\{0,1\}$ such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \varepsilon_{i} k^{i}=x^{2}, \quad x \in \mathbb{Z} \tag{1}
\end{equation*}
$$

has infinitely many solutions (for $k=2$ this is of course trivial). Mahler conjectured that for $k \geq 5$ the equation (1) has only a finite number of solutions. A nontrivial solution, for $k=4$, is $1+7+7^{2}+7^{3}=20^{2}$.

[^0]On seeing Mahler's question it seems natural to ask whether it is true that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \varepsilon_{i} i!=x^{z}, \quad \varepsilon_{i} \in\{0,1\}, \quad \sum_{i=1}^{\infty} \varepsilon_{i}<\infty \tag{2}
\end{equation*}
$$

has only finitely many solutions in $\varepsilon_{1}, \ldots, x, z \in \mathbb{Z}$ with $z>1$. But in this generality the question is hopeless. However, it is an old conjecture that

$$
1+n!=x^{2}
$$

has only the solutions $n=4,5,7$. We prove
ThEOREM 1. For every positive integer r there is an $n_{0}=n_{0}(r)$ such that none of the integers

$$
\sum_{i=1}^{r} n_{i}!, \quad n_{0}<n_{1}<\cdots<n_{r}
$$

are powerful; that is, each has a prime factor which divides $\sum_{i=1}^{\infty} n_{i}!$ to the first power.

Unfortunately, there seems to be no way to give an explicit value for $n_{0}(r)$.
Proof of Theorem 1. Denote by $p_{1}<\cdots<p_{l}$ the primes in the interval $\left(\frac{1}{2} n_{1}, n_{1}\right)$. Observe that

$$
\frac{1}{n_{1}!} \sum_{i=1}^{r} n_{i}!=0 \bmod \left[\prod_{j=1}^{l} p_{j}\right]
$$

otherwise one of the p_{j} 's would divide $\sum_{i=1}^{r} n_{i}!$ to the first power only. From the known elementary inequality $\prod_{j=1}^{l} p_{j}>2^{1 / 2 n_{1}}$ we obtain

$$
\frac{1}{n_{1}!} \sum_{i=1}^{r} n_{i}!>2^{1 / 2 n_{1}}
$$

which easily implies

$$
\begin{equation*}
n_{r}>n_{1}\left(1+\frac{c_{1}}{\log n_{1}}\right) \tag{3}
\end{equation*}
$$

where the constant c_{1} depends only on r.
Now we must use a strong theorem on prime numbers for which there is no effective proof (though such a proof could be constructed in principle).

There is an absolute constant c_{2} so that for large n and $d>n^{3 / 4}$

$$
\begin{equation*}
\pi(n+d)-\pi(n)>\frac{c_{2} d}{\log n} \tag{4}
\end{equation*}
$$

(See, for example, [2, page 167].)

Applying this result we immediately have

$$
\begin{equation*}
n_{2}<2 p_{1}<n_{1}+2 n_{1}^{3 / 4} . \tag{5}
\end{equation*}
$$

If $r=2$ then from (3) and (5)

$$
n_{1}+\frac{c_{1} n_{1}}{\log n_{1}}<n_{2}<n_{1}+2 n_{1}^{3 / 4}
$$

which is a contradiction for n_{0} large enough.
In the sequel we may assume that $r \geq 3$. Let $2<s \leq r$ be the smallest index for which

$$
n_{s}>n_{1}+2 n_{1}^{3 / 4} \text { and } n_{s}-n_{s-1}>\left(n_{s-1}-n_{1}\right)\left(\log n_{1}\right)^{4}
$$

Such an s does exist by (3). Moreover, by (3) and the minimality of s we can assume that $n_{s-1}<n_{1}+n_{1}^{9 / 10}$.

Let q_{1}, \ldots, q_{t} denote the primes between $n_{s-1} / 2$ and $\min \left(1 / 2 n_{s}, n_{1}\right)$. By (4), $t>\left(n_{s-1}-n_{1}\right)\left(\log n_{s-1}\right)$ (since $\log n_{1}$ and $\log n_{s-1}$ differ by $\log 2$ at most).

Now we show that

$$
\frac{1}{n_{1}!} \sum_{i=1}^{s-1} n!<\prod_{j=1}^{t} q_{j}
$$

Indeed,

$$
\frac{1}{n_{1}!} \sum_{i=1}^{s-1} n!<r n_{s-1}^{n_{s-1}-n_{1}}<n_{s-1}^{\left(n_{s-1}-n_{1}\right) \log n_{1}}<\left[\frac{n_{s-1}}{2}\right]^{t}<\prod_{j=1}^{t} q_{j} .
$$

Hence there is a prime q_{j} which does not divide $\left(1 / n_{1}!\right) \sum_{i=1}^{s-1} n!$.
On the other hand $n_{1}<n_{s-1}<2 q_{j}<n_{s}$ and $q_{j}<n_{1}$, and therefore q_{j} divides $\sum_{i=1}^{r} n_{i}!$ to the first power only, which completes the proof.

2. The Ramanujan-Nagell equation and a related problem

In the book of Erdös and Graham "Old and new problems and results in combinatorial number theory" it is asked "Is it true that the equation

$$
\begin{equation*}
(p-1)!+a^{p-1}=p^{k} \tag{6}
\end{equation*}
$$

in positive integers a, k, p, with $p>2$ and prime, has only a finite number of solutions?" More than 150 years ago Liouville proved that

$$
(p-1)!+1=p^{k}
$$

has only two solutions: $p=3$ and $p=5$. For $a>1$, a non-trivial solution is given by $2!+5^{2}=3^{3}$. It is interesting that if p is not a prime then (6) has no solution, that is, the equation

$$
(n-1)!+a^{n-1}=n^{k}
$$

has no solution in positive integers n, a, k with $n>2$ and not a prime. Indeed, if n is a composite number then $n \mid(n-1)!$ and $n^{k}>(n-1)$! implies $k>n-n / \log n$. Let P be the largest prime factor of n. Then $(n-1)$! cannot be divisible by such a high power of P except, possibly, if $P=2$. In this case, n is a power of 2 and a is even. Hence $2^{n-1}\left|a^{n-1}, 2^{n-1}\right| n^{k}$ but 2^{n-1} does not divide $(n-1)$!.

Returning to the equation (6), we prove
ThEOREM 2. There exists an effectively computable absolute constant C such that all solutions of the equation (6) satisfy

$$
\max \{p, a, k\}<C
$$

This equation is a little eccentric but the proof of Theorem 2 is rather interesting. We shall show that for every solution

$$
\begin{equation*}
\exp \left(C_{1} \frac{P}{\log p}\right)<k<C_{2} p^{3} \tag{7}
\end{equation*}
$$

where C_{1} and C_{2} are effectively computable absolute constants. Both the lower and upper bounds in (7) are proved by Baker's method and, surprisingly, the lower bound is much larger in p than the upper one. The second part of (7) is a simple consequence of the following more general result on the Ramanujan-Nagell equation.

Theorem 3. Let D be a nonzero rational integer. Then all the solutions of the equation

$$
\begin{equation*}
x^{2}+D=p^{k} \tag{8}
\end{equation*}
$$

in positive integers x, p, k with $k, p>1$ satisfy

$$
\frac{k}{\log k}<C_{3}(p \log p+\log |D|) p \log p
$$

where C_{3} is an effectively computable absolute constant.
This upper bound for k is near to the best possible in D.
The proofs of Theorems 2 and 3 are based on the following deep results on linear forms in logarithms.

Let $\alpha_{1}, \ldots, \alpha_{n}$ be nonzero algebraic numbers and let A_{1}, \ldots, A_{n} be positive real numbers satisfying

$$
A_{j} \geq \max \left\{H\left(\alpha_{j}\right), e\right\}, \quad 1 \leq j \leq n
$$

where $H(\cdot)$ is the usual absolute height function.
Lemma 1 (Philippon and Waldschmidt [4]). Let b_{1}, \ldots, b_{n} be rational integers such that

$$
\alpha_{1}^{b_{1}} \cdots \alpha_{n}^{b_{n}} \neq 1
$$

Let B be a real number satisfying

$$
B \geq \max _{1 \leq i \leq n}\left|b_{i}\right| \text { and } B \geq e .
$$

Then $\left|\alpha_{1}^{b_{1}} \cdots \alpha_{n}^{b_{n}}-1\right|>\exp \left(C_{4} \log A_{1} \cdots \log A_{n} \log B\right)$ where C_{4} is an effectively computable constant depending only on n and on the degree of $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ over \mathbb{Q}.

The following lemma is a special simple case of Yu's result for linear forms in the p-adic case.

Lemma 2 (Yu [5]). Let a_{1}, a_{2} be odd integers with $\left|a_{1}\right|\left|a_{2}\right|>1$ and let b_{1}, b_{2} be rational integers such that $a_{1}^{b_{1}} a_{2}^{b_{2}} \neq 1$. Further, let $q>2$ be a prime for which

$$
\left[\mathbb{Q}\left(a_{1}^{1 / q}, a_{2}^{1 / q}\right): \mathbb{Q}\right]=q^{2}
$$

Then

$$
\operatorname{ord}_{2}\left(a_{1}^{b_{1}} a_{2}^{b_{2}}-1\right)<C_{5} q^{6} \log \left|a_{1}\right| \log \left|a_{2}\right| \log \log \left|a_{1}\right| \log B
$$

where $B=\max \left\{2,\left|b_{1}\right|,\left|b_{2}\right|\right\}$ and C_{5} is an effectively computable absolute constant.

Proof of Theorem 2. From (6) we immediately have $a>p, k \geq p$ and

$$
\begin{equation*}
1 / 2(p-1) \leq \operatorname{ord}_{2}(p-1)!=\operatorname{ord}_{2}\left(p^{k} a^{-p}-1\right) \tag{9}
\end{equation*}
$$

Preparatory to an application of Lemma 2, we prove the existence of a prime $q>2$ for which

$$
q<2 \log \log a \quad \text { and } \quad\left[\mathbb{Q}\left(p^{1 / q}, a^{1 / q}\right): \mathbb{Q}\right]=q^{2} .
$$

Indeed, there is a prime $2<q<2 \log \log a$ such that a is not a q th power, otherwise

$$
a \geq 3^{A} \text { with } A=\prod_{P<2 \log \log a} P \quad(P \text { prime })
$$

which is a contradiction. If $a^{1 / q}$ does not generate an extension of $\mathbb{Q}\left(p^{1 / q}\right)$ of degree q then, by Kummer theory, $a=p^{r} b^{q}$ where $0 \leq r<q, r \in \mathbb{Z}$ and $b \in \mathbb{Q}$. This is not possible since a is not a q th power and $(a, p)=1$. Thus we may apply Lemma 2 with an appropriate q, obtaining

$$
\begin{equation*}
\operatorname{ord}_{2}\left(p^{k} a^{-p}-1\right)<c_{6} \log p \log a \log k(\log \log a)^{7} \tag{10}
\end{equation*}
$$

with $c_{6}=2^{6} c_{5}$. In the sequel c_{7}, \ldots, c_{18} will denote effectively computable positive absolute constants. Comparing (10) with (9) we have

$$
\frac{1}{2}(p-1)^{2}<c_{6}(\log p)\left(\log a^{p-1}\right)(\log k)(\log \log a)^{7}<c_{7} k(\log k)^{8}(\log p)^{2}
$$

and that yields $p^{3 / 2}<c_{8} k$. Combining this inequality with (6) we have

$$
\left|a^{p-1} p^{-k}-1\right|=\frac{(p-1)!}{P^{k}}<\exp -c_{9} k \log p<\exp -c_{10} p \log a .
$$

However, from Lemma 1

$$
\left|a^{p-1} p^{-k}-1\right|>\exp -c_{11} \log a \log p \log k
$$

The last two inequalities imply $\exp c_{12} \frac{p}{\log p}<k$.
To prove the second part of (7) we set $x=a^{(p-1) / 2}$ and $D=(p-1)!$. Then

$$
x^{2}+D=p^{k}
$$

and Theorem 3 gives $k>c_{13} p^{3}$ which completes the proof of Theorem 2.
Proof of Theorem 3. We factorize equation (8) in the field $\mathbb{Q}(\sqrt{p})$:

$$
\left((\sqrt{p})^{k}-x\right)\left((\sqrt{p})^{k}+x\right)=D
$$

Let ε be the fundamental unit for $\mathbb{Q}(\sqrt{p})$ with

$$
1<|\varepsilon|<\exp c_{14} p \log p
$$

The norm of the factors $(\sqrt{p})^{k} \pm x$ is D or $-D$. Hence the factors can be written in the form

$$
\begin{equation*}
(\sqrt{p})^{k}+x=d_{1} \varepsilon^{t}, \quad(\sqrt{p})^{k}-x=d_{2} \varepsilon^{-t} \quad(t \in \mathbb{Z}) \tag{11}
\end{equation*}
$$

where d_{1} and d_{2} are conjugate to one another (over \mathbb{Q}) and where we may assume that

$$
\begin{equation*}
|\log | d_{i}| |<c_{15} p \log p+\log |D|, \quad i=1,2 \tag{12}
\end{equation*}
$$

(see for example [1, Lemma 3]). Let $\{1, \omega\}$ be an integral basis for $\mathbb{Q}(\sqrt{p})$ with $\omega \in\{\sqrt{p},(1+\sqrt{p}) / 2\}$ and $\varepsilon=u+v \omega$. Then

$$
|\varepsilon|>\frac{1}{2}\left(|\varepsilon|+\frac{1}{|\varepsilon|}\right) \geq|v \omega| \geq|\omega| \geq \frac{1}{2}(1+\sqrt{p}) \geq \frac{1}{2}(1+\sqrt{2})>1
$$

and from (11) and (12)

$$
|t|<c_{16}|t| \log |\varepsilon| \leq c_{16}\left(\log \left((\sqrt{p})^{k}+x\right)+|\log | d_{1} \mid\right)<c_{17} k \log p
$$

under the assumption that $k>\max \{p, \log |D|\}$, for otherwise, Theorem 3 is proved. Obviously,

$$
d_{1} \varepsilon^{t}+d_{2} \varepsilon^{-t}=2(\sqrt{p})^{k} .
$$

Hence

$$
\Lambda=\left|2(\sqrt{p})^{k} d_{1}^{-1} \varepsilon^{-t}-1\right|<\frac{\left|(\sqrt{p})^{k}-x\right|}{\left|(\sqrt{p})^{k}+x\right|}<\frac{1}{(\sqrt{p})^{k}} .
$$

But from Lemma 1,

$$
\Lambda>\exp -c_{18}(\log p)(p \log p)(p \log p+\log |D|) \log k
$$

which proves Theorem 3.
Remark. A p-adic version of a recent result of Mignotte and Waldschmidt [3] would lead to a sharper bound for k.

References

[1] K. Györy, 'Solutions of linear diophantine equations', Algebraic Integers of Bounded Norm, Ann. Univ. Scien. Budapest 22-23 (1980), 225-233.
[2] Y. Motohashi, Lectures on sieve methods and prime number theory, Springer, Berlin, 1989.
[3] M. Mignotte and M. Waldschmidt, 'Linear forms in two logarithms and Schneider's Method (II)', to appear.
[4] P. Philippon and M. Waldschmidt, 'Lower bounds for linear forms in logarithms', New Advances in Transcendence Theory, ed. A. Baker, Cambridge Univ. Press, 1988, pp. 280-313.
[5] K. Yu, 'Linear forms in logarithms in the p-adic case', New Advances in Transcendence Theory, ed. A. Baker, Cambridge Univ. Press, Cambridge, 1988, pp. 411-434.

Mathematical Institute
Kossuth Lajos University
4010 Debrecen
Hungary

[^0]: The first author is a National Research Fellow, funded by the Australian Research Committee. (c) 1991 Australian Mathematical Society $0263-6115 / 91 \$$ A2.00 +0.00

