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SUMMARY

The public health threat posed by zoonotic Plasmodium knowlesi appears to be growing: it is increasingly reported across
South East Asia, and is the leading cause of malaria in Malaysian Borneo. Plasmodium knowlesi threatens progress towards
malaria elimination as aspects of its transmission, such as spillover from wildlife reservoirs and reliance on outdoor-biting
vectors, may limit the effectiveness of conventional methods of malaria control. The development of new quantitative
approaches that address the ecological complexity of P. knowlesi, particularly through a focus on its primary reservoir
hosts, will be required to control it. Here, we review what is known about P. knowlesi transmission, identify key knowledge
gaps in the context of current approaches to transmission modelling, and discuss the integration of these approaches with
clinical parasitology and geostatistical analysis. We highlight the need to incorporate the influences of fine-scale spatial
variation, rapid changes to the landscape, and reservoir population and transmission dynamics. The proposed integrated
approach would address the unique challenges posed by malaria as a zoonosis, aid the identification of transmission hot-
spots, provide insight into the mechanistic links between incidence and land use change and support the design of appro-
priate interventions.
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INTRODUCTION

Plasmodium knowlesi, a malaria parasite of monkeys
in South East Asia, was identified as an emergent
public health threat in 2004 (Singh et al. 2004).
Previously, P. knowlesi in humans was known only
from experimental infections carried out for clinical
research on neurosyphilis (Collins, 2012), and what
was presumed to be a single anomalous spillover
event (Chin et al. 1965; Vythilingam, 2012).
However, there has been a recent increase in the
number of human P. knowlesi cases reported, par-
ticularly in Malaysia (William et al. 2013, 2014).
The majority of these have been reported in
Sarawak and Sabah, where P. knowlesi is now the
most common cause of clinical malaria (William
et al. 2013), but cases have also been widely docu-
mented in Peninsula Malaysia (Yusof et al. 2014).
Although Malaysia has achieved malaria pre-
elimination status (World Health Organisation,
2014), there is concern that P. knowlesi may hinder

further progress towards elimination (William
et al. 2013).
Outside Malaysia, human P. knowlesi cases have

been reported from across South East Asia (Cox-
Singh and Singh, 2008; Moyes et al. 2014; Cramer,
2015). However, as diagnosis by microscopy has
been rarely confirmed by molecular techniques in
regions other than Malaysian Borneo, the overall
human burden of P. knowlesi infection may be sub-
stantially underestimated (Moyes et al. 2014).
Although artemisinin-based combination therapies
clear P. knowlesi parasites effectively, a high propor-
tion of patients with P. knowlesi develop severe
malaria (William et al. 2011; Barber et al. 2013),
and infection can be fatal (Cox-Singh et al. 2008;
Rajahram et al. 2012).
Genetic evidence suggests that P. knowlesi derives

from an ancestral parasite population that predates
the human settlement of South East Asia and,
therefore, that P. knowlesi may have spilled over
into humans prior to 2004, but was misidentified
as Plasmodium malariae (Lee et al. 2009a, 2011).
Even considering changes in diagnostics and surveil-
lance, notifications of P. knowlesi cases in Malaysian
Borneo have increased since 2004, which may reflect
an increase in incidence (William et al. 2014). Land
use change has been suggested as a key driver of this
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increase (Cox-Singh and Singh, 2008), and a recent
analysis provides the first evidence for this, indicat-
ing that forest cover and loss are associated with P.
knowlesi incidence (Fornace et al. 2016). It has also
been suggested that P. knowlesi incidence has
increased due to a loss of cross-protective immunity
following successful control of Plasmodium vivax
and Plasmodium falciparum in Malaysian Borneo
(Cox-Singh, 2012; Barber et al. 2013), an effect
that could act in combination with the influence of
land use change, but for which there is little evidence
at present (William et al. 2013).
Land use change has been hypothesized to

influence malaria incidence through a variety of
mechanisms (Guerra et al. 2006). In the case of P.
knowlesi, this could involve effects on humans,
vectors, primary reservoir hosts – Long-tailed
(Macaca fascicularis) and Pig-tailed macaques
(Macaca nemestrina) – and their interactions. For
example, changes to human behaviour associated
with land-use change could bring humans into
closer contact with forest-associated anopheline
vectors (Collins, 2012; Barber et al. 2013).
Migration to new areas may increase contact
between humans and the P. knowlesi forest transmis-
sion cycle, giving rise to ‘frontier’ malaria (De
Castro et al. 2006). A further possibility is that
land-use change influences the transmission dynam-
ics of P. knowlesi in a more fundamental way,
through effects on the life-history, population dy-
namics or behaviour of the reservoir host, vector or
both. For example, deforestation may cause maca-
ques to crowd into remaining forest patches
(Chapman et al. 2005; Fooden, 1995), spend more
time on the ground (Singh et al. 2001) and alter
their ranging behaviour and microhabitat use
(Riley, 2008). Macaques may also seek out human
settlements to raid crops or forage around houses
(Chapman and Peres, 2001; Hambali et al. 2012),
bringing them closer to people. The abundance
and community composition of vectors is also asso-
ciated with land use (Chang et al. 1997; Overgaard
et al. 2003; Petney et al. 2009; Brant, 2011), and
vectors may reproduce, survive and bite at
different rates in anthropogenically altered habitats
(Chang et al. 1997; Patz et al. 2000; De Castro
et al. 2006).
The large age range of P. knowlesi patients and the

existence of family clusters of cases suggest that
transmission may occur peri-domestically (Barber
et al. 2012). Human-to-human transmission of P.
knowlesi has been demonstrated experimentally
(Chin et al. 1968), and P. knowlesi gametocytes are
formed during human infections (Lee et al. 2009b;
Van Hellemond et al. 2009). However, there is – so
far – no evidence from the field of natural human-
vector-human transmission (Kantele and Jokiranta,
2011; Vythilingam, 2012; Grigg et al. 2014a;
Ramasamy, 2014). The higher number ofP. knowlesi

genotypes found in macaques compared with
humans is consistent with this, as it suggests a
higher transmission rate in macaques relative to
humans, as does the lack of clustering of P. knowlesi
genotypes in either host species (Lee et al. 2011;
Divis et al. 2015; Millar and Cox-Singh, 2015).
Here we discuss quantitative approaches to under-

standing P. knowlesi transmission, with an emphasis
on mathematical models of transmission, and how
they relate to empirical–statistical approaches such
as those used to map infectious disease risk.We iden-
tify knowledge gaps, and discuss how efforts towards
the integration of clinical parasitology, geostatistical
analysis and the mathematical modelling of trans-
mission dynamics may yield insight into the epi-
demiology of P. knowlesi. The goal of such efforts
should be to identify the determinants of P. knowlesi
infection risk in an ecological context, so that they
can be effectively mitigated to reduce the associated
burden of disease.

QUANTITATIVE APPROACHES TO

UNDERSTANDING P . KNOWLESI TRANSMISSION

Mathematical models have contributed fruitfully to
the understanding of infectious disease transmission
(Heesterbeek and Roberts, 2015; Heesterbeek et al.
2015), and much of the research effort on controlling
mosquito-borne disease during the last century has
focused on the development of transmission models
(Mandal et al. 2011; Smith et al. 2012; Reiner et al.
2013; Wallace et al. 2014). Contemporary malaria
models are increasingly geared towards including the
geographical, ecological and epidemiological hetero-
geneities that influence transmission. These models
can address questions about the relative merits of
interventions (e.g., Griffin et al. 2010), and have
played an important role in reducing mortality and
morbidity around the world (World Health
Organisation, 2014). However, a recent review
(Reiner et al. 2013) revealed that most mosquito-
borne disease models are strikingly similar as they
share central assumptions made by the earliest
malaria models, collectively referred to as Ross–
MacDonald. These drove the development of patho-
gen transmission theory, the formulation of metrics
such asR0 and vectorial capacity, and allowed for pre-
diction of the effectiveness of mosquito-borne disease
control (MacDonald et al. 1968; Smith et al. 2012).
However, the assumptions of Ross–MacDonald
models make them less applicable to the transmission
of diseases with complex ecologies such as P. knowlesi.
The simplest way to include a wildlife reservoir in

a Ross–MacDonald model is by adding a non-
human host compartment, allowing for host-
specific transmission rates, and this was the approach
taken by an early transmission model of P. knowlesi
(Yakob et al. 2010). There is growing general inter-
est in understanding how different host species
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contribute to the persistence of pathogens in multi-
host systems, so that control can be appropriately
targeted (Haydon et al. 2002; Fenton and
Pedersen, 2005; Streicker et al. 2013; Viana et al.
2014). To describe P. knowlesi transmission in the
context of this trend in disease ecology and test the
broad plausibility of natural human–vector–human
transmission, we developed a scenario exploration
tool for this review using a model similar to Yakob
et al. 2010. Following Imai et al. (2014), we assessed
P. knowlesi transmission scenarios with variable
levels of human–vector–human transmission accord-
ing to their human and macaque equilibrium preva-
lences (Box 1). The results suggest that natural
human–vector–human transmission of P. knowlesi
is plausible, but that it is likely to be rare, which is
consistent with previous work (Imai et al. 2014).

Spatial distribution of hosts and vectors

Although useful for illustrative scenario exploration,
the simplifying assumptions of models such as that
used in Box 1 mean they are unable to incorporate
fundamental aspects of P. knowlesi transmission.
For example, they assume that host populations are
well mixed, and that mosquitoes feed randomly on
vertebrate hosts (Reiner et al. 2013; Perkins et al.
2013). However, human populations are unlikely
to be homogenously mixed with either the forest-
associated vectors of P. knowlesi, or macaque reser-
voir hosts (Jiram et al. 2012; Wong et al. 2015).
The omission of spatial variation from models of
systems in which it is has an important influence
on transmission can bias estimation of epidemio-
logical parameters (Meyers et al. 2005; Riley, 2007;
Riley et al. 2015). Spatial variation may be particu-
larly important to include in models of zoonoses
(Alexander et al. 2012, 2015) and vector-borne
disease (Perkins et al. 2013), as their transmission
involves multiple species with distinct ecologies.
Therefore, ignoring heterogeneity in the spatial dis-
tribution of hosts, vectors and vector-biting patterns
could introduce problematic bias into analysis and
prediction of P. knowlesi transmission.
Efforts to incorporate spatial heterogeneity into

understanding of P. knowlesi transmission have
drawn on research into dengue and yellow fever,
which like P. knowlesi are vector-borne and have
forest transmission cycles (Gubler, 2004; Vasilakis
et al. 2011). Imai et al. (2014) modelled transmission
across three zones (forest, farm and village), in which
the relative abundance of macaque and human hosts
was varied. Macaques were assumed to range across
the forest and farm zones, humans were assumed to
be present in the farm and village zones, and a separ-
ate vector population was modelled in each zone.
The model predicted that humans were at greatest
risk of P. knowlesi infection when macaques were
present in sufficient numbers in both the forest and

Box 1. Modelling transmission scenarios

To describe P. knowlesi transmission in terms of
disease ecology, a Ross–MacDonald-type model
was used to compare the plausibility of
transmission scenarios with variable rates of
human–vector–human transmission. Following
Yakob et al. (2010) and Imai et al. (2014), a
differential equation model tracked the
proportions of infected macaques, vectors and
humans through time. The daily vector
mortality rate (g= 0·15), the extrinsic incubation
period (T= 10 days), and the daily mammalian
recovery rate (r= 0·07) were fixed at values
considered typical for human malarias for lack of
suitable data on P. knowlesi. To take into
account variation in remaining variables and
parameters, 100 000 sets of values were sampled
from the following ranges using Latin
hypercube sampling: number of humans, H,
(2000–200 000); number of macaques, M, (2000–
200 000); number of vectors, V, (2000–200 000);
transmission coefficients: vector–human, Cvh,
(0–1), vector–macaque, Cvm, (0–1), human–
vector, Chv, (0–1), macaque–vector, Cmv, (0–1);
vector-biting preference for humans vs
macaques, p, (0–1); biting rate (per mosquito
per day), b, (0–7).

Models were initiated with infection prevalences
of 1, 0 and 0% in the vector, macaque and
human populations, respectively, and run to
equilibrium for each scenario. Parameter sets
were considered to be plausible if they
generated equilibrium prevalences of 0·5–5% in
humans (based on empirical data from cross-
sectional surveys and active case detection in
Kudat, Sabah [Fornace et al. 2015]) and 50–
90% in macaques. The macaque prevalence
range was intentionally broad, given the
limited and variable nature of available
estimates (Vythilingam et al. 2008; Jeslyn et al.
2011; Lee et al. 2011). In a departure from
previous P. knowlesi models, we calculated the
average number of secondary human infections
caused by a single macaque infection, RMH,
and by a single human infection, RHH, for
each scenario:

RMH¼V
M

bð1�pÞV
H
bpðcmvcvhÞexpð�gTÞ 1

gr

RHH¼ V
H
bp

� �2

ðchvcvhÞexpð�gTÞ 1
gr

R0 for each scenario was calculated as the
dominant eigenvalue of the next generation
matrix (NGM; Diekmann et al. 2010; Brooks-
Pollock and Wood, 2015):
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the farm zones, as this allowed for the maintenance
of infection in the forest, and its dissemination to
humans at farms (Imai et al. 2014). The explicit con-
sideration of the interface between the forest

transmission cycle of P. knowlesi and the at-risk
human population lays valuable groundwork for
the identification of the key interactions that deter-
mine human infection risk. However, compart-
mental zonation does not take into account the
heterogeneous spatial co-distribution of habitats or
land use types in, for example, Malaysian Borneo,
where farming practices and settlement proximity
to forest are variable. Therefore, to understand P.
knowlesi transmission dynamics in space, research
will need to look beyond a compartmental modelling
framework.
One way to capture fine-scale spatial variation in

infectious disease risk is using advanced cartographic
techniques, such as occurrence mapping and model-
based geostatistics (Patil et al. 2011; Hay et al. 2013;
Pigott et al. 2015; Dalrymple et al. 2015). In contrast
to mechanistic transmission models (such as Ross–
MacDonald), these methods use empirical models
(i.e., statistical models that do not make assumptions
about mechanism) to quantify the association
between disease occurrence or transmission metrics
and spatially dependent explanatory variables.
These models vary in form and can take into
account the auto-correlated nature of spatial data,
and other sources of bias such as unevenly distribu-
ted variation (Pullan et al. 2012; Hay et al. 2013;
Wardrop et al. 2014). Such mapping techniques
have been widely used to predict infectious disease
risk by estimating transmission metrics (e.g.,
Clements et al. 2006; Hay et al. 2009; Vounatsou
et al. 2009; Gething et al. 2011; Lau et al. 2012;
Raso et al. 2012; Wardrop et al. 2013; Grimes and
Templeton, 2015; Lai et al. 2015) and occurrence
(e.g., Bhatt et al. 2013; Cano et al. 2014; Gilbert
et al. 2014; Pigott et al. 2014; Messina et al. 2015;
Mylne et al. 2015) in space, and have been used to
guide disease control policy and practice (e.g.,
Diggle et al. 2007; Magalhães et al. 2011).
However, these techniques are not problem-free as
they make implicit assumptions about the systems
to which they are fitted (Wardrop et al. 2014). The
most relevant of these assumptions for P. knowlesi
is that the disease being mapped is assumed to be
in equilibrium with its environment. To some
extent, this can be dealt with by iteratively re-
fitting models as new data become available (e.g.,
Gething et al. 2011; http://www.abraid.ox.ac.uk).
For diseases that are not at equilibrium, though, it-
eratively re-fitting models that do not incorporate a
mechanistic description of transmission may not
lead to a cumulatively clearer picture of risk (Wood
et al. 2015). Widespread and rapid land use change
of the kind currently occurring in Malaysian
Borneo (Langner et al. 2007; Bryan et al. 2013;
Fornace et al. 2014) could give rise to this kind of un-
stable epidemiology. Therefore, insight from both
empirical and mathematical modelling approaches
(Karesh et al. 2012) will be required to understand

NGM ¼ RHH RHM

RMH RMM

� �

where

RHM ¼ V
H

bp
V
M

bð1� pÞðchvcvmÞ exp ð � gTÞ 1
gr

RMM ¼ V
M

bð1� pÞ
� �2

ðcmvcvmÞ exp ð � gTÞ 1
gr

The observed asymmetrical distribution of system
R0 (Fig. 1a) is as expected, given that RHH is an
element of the primary, while RMH is an
element of the secondary, diagonal of the NGM.
1837 of 100 000 scenarios generated plausible
human and macaque prevalences. RHH was
greater than one in ten of these plausible
scenarios (Fig. 1b), RMM was less than one in
eight of these plausible scenarios, and both of
these conditions were met in only two plausible
scenarios. These results suggest that human
infections are more likely to result from zoonotic
transmission, but that natural human–vector–
human transmission cannot be ruled out, and
that humans are unlikely to play a role in
parasite maintenance. This is consistent with
previous work (Imai et al. 2014) and builds on it
by estimating the relative contributions of each
host species to transmission.

Plausible scenarios were characterised by high
numbers of humans, low vector–human
transmission, high vector–macaque transmission
and low human-biting preference (Fig. 1c, d).
The few plausible scenarios in which RHH was
greater than 1 were characterized by high
numbers of vectors, and a combination of low
vector–human and macaque–vector transmission
with high vector–macaque and human–vector
transmission (Fig. 1c, d).

Although designed for demonstration rather than
inference, this model shows how key aspects of P.
knowlesi transmission could be identified and used
to inform control and surveillance programmes.
For example, high numbers of vectors may
increase the risk that sustained human-to-human
transmission emerges. In this case, the influence
of land use change on vector population
dynamics may be an important determinant of
human disease risk, and vector control may be
an effective intervention option.
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spatial heterogeneity in human risk of P. knowlesi
infection.
A constructive way in which quantitative methods

from across disciplines may be integrated is through
the development of new types of vector-borne
disease transmission models. Increasing recognition
of the importance of heterogeneity in aspects of
vector-borne disease transmission supports an argu-
ment for ‘recasting’ standard models by switching
their focus from transmission onto host and vector
movement, and the ecological and social variation
that drive them (Smith et al. 2014). Such a shift in
emphasis could simultaneously address the pro-
blems of the uneven distribution of vector bites
amongst vertebrate hosts, non-random mixing of
hosts and vectors, and finite host population sizes,
which are not taken into account (simultaneously)
by current models (Perkins et al. 2013). This ap-
proach may be particularly applicable to the investi-
gation of zoonotic infections such as P. knowlesi: due
to constraints on the flexibility of models to incorp-
orate their interface, transmission models of zoo-
noses have tended to focus either on dynamics in
the reservoir or outbreaks in the target population
(Lloyd-Smith et al. 2009; Lloyd-Smith et al.
2014). The re-organization of model mechanics pro-
posed by Smith et al. (2014) may allow for the sim-
ultaneous estimation of reservoir transmission
dynamics, spillover events, and onward transmission
in the target population. In addition, it may allow for
the incorporation of stochasticity, which is particu-
larly important for systems in which rare events
(e.g., spillover) may have high impact (Lloyd-
Smith et al. 2005; Smith, 2008; King et al. 2015).
However, although promising, it remains to be
seen whether the requisite fine-scale spatial data on
P. knowlesi host and vector movement will be avail-
able, and therefore whether this data-intensive ap-
proach will provide further insight into the
dynamics of P. knowlesi transmission.

Spatial scales of transmission

Epidemiological and ecological processes that
influence zoonotic disease transmission operate
over different spatial scales; for example, on
average humans move over greater distances than
mosquitoes. In addition to variability in the static
spatial distribution of hosts and vectors discussed
above, variation in their movement is likely to have
an important influence on vector-borne disease
transmission. This is because it affects contact
between individuals, the distances over which para-
site is moved, and the spatial scales over which indi-
viduals interact with the environment.
Compartmental models of malaria transmission,

such as Ross–MacDonald, implicitly assume that
mixing between hosts and vectors is homogenous
at a defined spatial scale. The results of such

models, therefore, are likely to be misleading if
related to real world scenarios in which spatial
scale assumptions are unjustified; for example, if an
area into and out of which hosts migrate is modelled
as self-contained. Bias introduced by the spatial scale
assumptions of transmission models has been shown
to interact with the degree of clustering of hosts in
space (Perkins et al. 2013), and how it influences
the estimation of transmission metrics such as inci-
dence is likely to vary between pathogen–host
systems (Mills and Riley, 2014; Riley et al. 2015).
For vector-borne pathogens and zoonoses, such as
P. knowlesi, the multiplicity of spatial scales impli-
cated in transmission may be particularly problem-
atic, as they involve multiple species with varied
ecologies (Lambin et al. 2010; Ben-Ari et al. 2011;
Johnson et al. 2015).
To illustrate the challenge spatial scale presents to

understanding transmission, we used data from a
case–control study carried out in Kudat, Malaysian
Borneo (Grigg et al. 2014a) to analyse how the
strength of association between key environmental
variables and human P. knowlesi infection status
varied with scale (Box 2). The results show that
different environmental variables were most strongly
related to infection status when summarized over
areas of different sizes. The exercise illustrates how
spatial scales that characterize transmission may be
identified, and suggests that incorporating multiple
scales into inferential and predictive analysis of P.
knowlesi transmission may be beneficial. In addition,
this approach could be used for designing disease
interventions: the scale at which the density of
aquatic breeding sites was most strongly associated
with infection status, for example, could inform
the deployment of larvicidal control.

CHALLENGES AND OPPORTUNITIES

Data gaps

Data on human P. knowlesi infection are accumulat-
ing, particularly in Malaysian Borneo, and under-
standing of the clinical epidemiology of P. knowlesi
is improving (Daneshvar et al. 2009; Barber et al.
2012, 2013; William et al. 2013, 2014; Grigg et al.
2014a, b). However, most data are from hospitals
and clinics, and there is a shortage of community-
based estimates of human infection patterns.
Therefore, P. knowlesi transmission is only begin-
ning to be understood in the ecological context of
spillover from wildlife (Fornace et al. 2016). The
major challenge facing this effort is the unbiased col-
lection of data on human infections, reservoir hosts
and vectors of P. knowlesi of sufficient geographical
spread for integration into a generalized model of
P. knowlesi transmission. This review has focusses
on the details of the quantitative methods that
might be used for this integration, but without the
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requisite data, the approaches discussed may not be
feasible.
Studies of P. knowlesi in macaques suggest that

prevalence is particularly high in Malaysia and
Long-tailed macaques (Vythilingam et al. 2008;
Lee et al. 2011). However, published P. knowlesi
prevalence estimates in macaques are based on
small numbers of individuals and are variable. In
addition, there are few data available on macaque
population densities, and how these vary across the
geographical range of P. knowlesi, which would be
required to put prevalence estimates into epidemio-
logical context (Fooden, 1995; Moyes et al. 2014).
Additionally, data on the habitat preferences,

movement patterns and social dynamics of macaques
will be necessary for predictions about P. knowlesi
transmission in future scenarios of land use change.
At present, the data available are either not
sufficiently specific to P. knowlesi (e.g., Chapman
and Peres, 2001; Singh et al. 2001; Chapman et al.
2005; Riley, 2008) or too geographically limited to
allow for generalization (e.g., Hambali et al. 2012).
Macaque data would also allow for deeper explor-
ation of the biting preferences of P. knowlesi
vectors, through better estimates of host availability.
If P. knowlesi infectious bites fall on humans because
macaques are temporarily absent – and other bite-
able mammals are permanently absent from

Fig. 1. (A) The average number of secondary human infections caused by a single macaque case (x-axis) and by a single
human case (y-axis), and system R0 (colours), for each scenario; (B) the same information plotted only for scenarios that
generated prevalences deemed plausible (humans: 0·5–5%; macaques: 50–90%), scenarios in whichRHH was >1 are circled;
(C) the medians and interquartile ranges of the ratios of humans to vectors, humans to macaques and macaques to vectors
for all scenarios, plausible scenarios, and plausible scenarios in which RHH >1; (D) the median and interquartile ranges of
the four transmission coefficients: Cvh (vector–human), Cvm (vector–macaque), Chv (human–vector) Cmv (macaque–
vector); and the vector-biting preference for humans vs macaques (p).
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degraded forest (Civitello et al. 2015; Keesing and
Ostfeld, 2015; McCallum, 2015) – this could have
implications for interventions aimed at lowering
human infection risk, particularly if macaque move-
ment patterns are influenced by human movement
patterns.

Similar data gaps exist for vectors, but the chal-
lenges associated with addressing them are different.
The geographical diversity of the region across
which P. knowlesi has been reported means extrapola-
tion between areas is inadvisable (Ahmed and Cox-
Singh, 2015). This is especially true for vector
ecology, as the principalAnopheles species responsible
forP. knowlesi transmission varies locally and between
regions. The vectors of P. knowlesi belong to the
Anopheles leucophyrus group: An. hackeri has been
incriminated in Selangor; An. introlatus in Hulu
Selangor; An. cracens in Kuala Lipis; An. latens in
Sarawak; An. balabacensis in Sabah; and An. dirus in
Vietnam (Vythilingam et al. 2006, 2008, 2014; Tan
et al. 2008; Marchand et al. 2011; Jiram et al. 2012;
Wong et al. 2015). Reliable data on vector abundance
and behaviour as required to estimate vectorial cap-
acity are limited, and the information that is available
is drawn from such different settings that generaliza-
tion is inadvisable (e.g., Jiram et al. 2012; Wong
et al. 2015). Although there are some data on how
the diversity, abundance and life history of P knowlesi
vectors vary between habitats and respond to an-
thropogenic disturbance (Chang et al. 1997; Petney
et al. 2009; Brant, 2011; Wong et al. 2015), they are
not yet detailed or geographically diverse enough to
inform predictions of human P. knowlesi infection
risk under scenarios of future land use change.
In addition, there is little available data on land

use to put data on P. knowlesi hosts and vectors
into geographical context. The collection of land
use data of sufficient resolution over sufficiently
large areas is challenging given the speed of
land-use change in parts of P. knowlesi’s range, par-
ticularly in Malaysian Borneo (Fornace et al. 2014).
In addition, the classification of such remotely
sensed data poses a problem given that the ecotypes
relevant for P. knowlesi transmission are – as yet –
unknown; the land use categories that best describe
variation in macaque behaviour, for example, are
likely to be different from those that best describe
variation in mosquito life history.
Finally, it is important to consider the added com-

plexity of human behaviour, and how it relates to
land use change, and might interplay with other
influences on P. knowlesi transmission to determine
risk.

Opportunities

Acquisition of detailed data onmacaques and vectors
across broad geographic scales will require rando-
mized sampling. The same is true of data on
humans, which could be achieved by carrying out
cross-sectional surveys, and by incorporating
P. knowlesi screening into existing surveys. This
would have numerous benefits such as allowing for
the distinction between human and non-human
drivers of infection, and taking into account case-

Box 2. Spatial scale of environmental risk factors

To illustrate the problem of variable influence on
transmission across multiple spatial scales, we
used data from a case–control study in Kudat,
Malaysian Borneo (Grigg et al. 2014a) to
explore how the strength of association between
key environmental features and human P.
knowlesi infection status changed with spatial
scale. Forest cover and loss variables were
extracted from classified satellite data (Hansen
et al. 2013) for neighbourhoods of varying size
(radii 2·1–5·5 km) around households where P.
knowlesi was reported. To compare with case
household locations, the same forest variables
were extracted from neighbourhoods around
points randomly sampled in space (pseudo-
absences, Barbet-Massin et al. 2012) from inside
the catchment area of the case–control study. A
threshold of >50% canopy cover was used to
define forest, and the four variables calculated
were: proportional forest loss (2000–2012),
fragmentation of forest lost (perimeter area ratio,
2000–2012), proportional forest cover (2012) and
fragmentation of cover (perimeter area ratio,
2012). Each environmental variable was fitted as
the only explanatory variable in a generalized
additive model of infection probability (case vs
pseudo-absence) for all neighbourhood sizes
(2·1–5·5 km).

Figure 2a shows neighbourhoods of three example
sizes around a household. Figure 2b shows how
the strength of the association between
environmental variables and infection status
changes with spatial scale, and that the scales at
which variables have the strongest association
with infection status are different. Forest loss
was most strongly associated with infection
status when summarized over an area with radius
5·5 km, while forest cover was most strongly
associated with infection status when
summarized over an area with radius of 3·5 km.
This analysis is designed to demonstrate the
problem of multiple spatial scales for
understanding and predicting P. knowlesi disease
risk. The question of how combinations of
relevant spatial scales might be incorporated into
analysis and prediction is discussed in the main
text, but remains a challenge, and will be the
focus of future work.
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reporting bias (Barber et al. 2012, 2013;William et al.
2013, 2014; Grigg et al. 2014a). New techniques for
P. knowlesi diagnosis (Millar and Cox-Singh, 2015)
mean randomized sampling would provide data on
asymptomatic P. knowlesi infection in humans (e.g.,
Van den Eede et al. 2010; Cox-Singh, 2012), which
would allow for more accurate estimates of human
exposure. It would also allow for estimates of expos-
ure using serology, for which P. knowlesi-specific
assays are currently being developed. Relevant sero-
logical markers maximize the information derived
per sample, as antibody responses last longer than in-
fection, and information frommarkers with different
time signatures can be combined (e.g., Helb et al.
2015). The ability to control for sampling effort
would broaden the scope of genetic studies aimed at
tracking parasite diversity and transmission (e.g.,
Noviyanti et al. 2015), and provide the necessary
tools for surveillance of natural human–vector–
human transmission. Currently, genetic studies on
P. knowlesi (e.g., Lee et al. 2011; Divis et al. 2015)
use opportunistically collected samples that re-
present parasite populations to an unknown degree.
A randomized sampling design would also allow for
the use of more powerful quantitative analysis tools.
For example, model-based geostatistical techniques
require spatial data on the absence as well as presence
of infection, and a broader geographical spread of
data would confer greater predictive power. If
sufficient environmental variation were incorporated
into sampling designs, environmental interpolation
would equate to geographical extrapolation, allowing
for risk estimation outside of the study area
(Matthiopoulos et al. 2011; Gilbert et al. 2014).
Together, the above illustrates the many potential
benefits of the incorporation of randomized sampling
into data collection efforts on P. knowlesi.
Research on zoonotic P. knowlesi necessitates the in-

tegration of a wider range of disciplines than human
malarias. Mathematical models are useful tools for
such interdisciplinary integration (McKenzie, 2000),

as has been recognized since the earliest days of
malaria epidemiology: ‘The aim of mathematical epi-
demiology is to integrate biological and circumstantial
data into one coherent whole’ (MacDonald, 1957).
The study ofP. knowlesi transmission represents an op-
portunity to link functional ecology with mathematical
epidemiology, and combine the strengths of the empir-
ical–statistical approaches largely used by the former
with those of the mechanistic models largely used by
the latter. The incorporation of functional ecology
into descriptions of P. knowlesi transmission of the
kind being called for in vector-borne disease research
in general (Smith et al. 2014; Hartemink et al. 2014)
and malaria research in particular (Ferguson et al.
2010; Godfray, 2013; Perkins et al. 2013), could
inform the design of disease control programs, and
provide insight into the processes of zoonotic emer-
gence, the implications of which could be significant
beyond P. knowlesi.
Functional ecology can be incorporated into pre-

dictions of infectious disease risk through analytical
focus on the biological resources necessary for
pathogens to complete their life cycles (Hartemink
et al. 2014; Killeen et al. 2014). This has the advan-
tages of introducing a spatial dimension often
lacking from mathematical models of human
malaria transmission and taking into account bio-
logical mechanisms often lacking from ecological
statistics (Hartemink et al. 2014). As applied to P.
knowlesi, the multiple spatial scales implicated in
transmission complicate the incorporation of re-
source-dependence into spatial predictions of infec-
tion risk. However, this multi-scale problem has
been identified in other areas of ecological research,
including prediction of animal habitat use (Beyer
et al. 2010), and analytical tools have been developed
to deal with it (e.g., Matthiopoulos et al. 2011). One
such method with potential application to P. know-
lesi frames animal habitat use in the context of avail-
ability (Aarts et al. 2013), whereby, for example, the
use of forest by macaques on one scale (e.g., a zone of

Fig. 2. (A) Three example neighbourhood sizes drawn around a case household, showing % forest cover in 2012, and (B)
the deviance explained by four example forest variables at 13 neighbourhood sizes in univariate generalized additive
models of infection status.
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radius of 1 km) is dependent on its availability on
another (e.g., a zone of radius 5 km). The application
of such an estimation framework to prediction of P.
knowlesi infection risk would allow both for the vari-
able influence of environmental factors across spatial
scales, and for the possibility that environmental
factors may have important influences on more
than one spatial scale.
Anymethod seeking insight into P. knowlesi trans-

mission needs to consider how fast the landscape is
changing in parts of P. knowlesi’s range, particularly
in Sabah and Malaysian Borneo (Langner et al.
2007; Bryan et al. 2013; Fornace et al. 2014).
Another development of ecological theory that
could be usefully applied to this problem for predict-
ing P. knowlesi infection risk is research into the links
between animal habitat use and population dynam-
ics (Morales et al. 2010; Matthiopoulos et al.
2015). Animals use habitat in different ways depend-
ing on their population density and whether it is
changing (Matthiopoulos et al. 2015). Therefore, if
land use change impacts the population densities of
mosquitoes and macaques, this may change not
only how they are distributed in space, but also the
parameters and functional forms that define their
distribution in relation to environmental variables.
This could have an important influence on human in-
fection risk in an area of rapid land use change such as
Malaysian Borneo, and adoption of ecological model-
ling approaches may be the key to understanding the
environmentally dependent epidemiology of zoonoses
such as P. knowlesi. Such approaches may even be ap-
plicable to quantifying human movement and habitat
use, and could be explored as a way of plugging socio-
logical studies into an integrated framework for under-
standing P. knowlesi transmission.

Concluding remarks

Clinical investigation has advanced understanding of
P. knowlesi epidemiology. To move towards predic-
tion of human infection risk, the next phase of P.
knowlesi research should focus on its ecology.
Aspects of spatial variation in P. knowlesi infection
risk have begun to be mapped on a broad spatial
scale (Moyes et al. 2014), and P. knowlesi has been
identified as a priority disease for future mapping
efforts (Pigott et al. 2015). Although infectious
disease mapping of this kind brings many advan-
tages (Hay et al. 2013), given the rapid rates of land-
scape change in areas where human risk of P.
knowlesi appears highest, efforts to understand and
control P. knowlesi transmission will benefit from
work on the mechanisms that give rise to spatial pat-
terns of infection risk to complement their empirical–
statistical description through mapping. If sufficient
appropriate data are available, and spatial heterogene-
ities can be accounted for, such mechanistic models
would confer greater power for extrapolation and

prediction, and allow for more effective identification
of risk groups and areas, optimization of intervention
deployment, and surveillance for natural human–
vector–human transmission.
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