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ON CERTAIN QUOTIENTS OF 
GROTHENDIECK GROUPS 

BY 

CHARLES SMALL 

ABSTRACT. A general categorical construction is described 
which has as special cases the construction of the Brauer group of 
a field and the construction of the Witt ring of a field of character­
istic 5*2. 

The striking parallel between the construction of the Brauer group and the 
construction of the Witt ring—division rings playing the same special role in the 
one case as anisotropic forms in the other—was noticed from the start (e.g. by 
Witt himself in the Introduction to [3]). We give here a general categorical con­
struction which has these two as particular cases. 

Let (fé7, *) be a category with product in the sense of [1 ,Ch. VII, §1]. We assume 
that subcategories of ^ always contain, with any object, all objects isomorphic to 
it in # . This convention involves no loss of generality, and simplifies the verbiage 
somewhat. For example, since the isomorphism classes of ^ form a set, we can 
speak of Ob «" n Ob V for subcategories T and <€". Throughout, z± denotes 
isomorphism in fé\ 

Let # " be a full cofinal subcategory of ^ , closed under *. {Cofinal means given 
X e Ob <g there exists X' e Ob <€ with X * X' e Ob HT.) Let [W] denote the sub­
group of the Grothendieck group KQ^è\ *) generated by Ob #" , and define 
Ki$\W)=K^> *)/pH. 

Let ^ b e a full subcategory of cê. We say that (&, *, W, £f) is a v-category if 
the following condition is satisfied: 

(TT): Given Xe Ob # there exist w(X) eObiT and s{X) in Ob Sf9 the latter 
unique up to isomorphism, such that X~w(X) * s{X). 

EXAMPLE 1. Let K be a field and let # be the category of finite dimensional 
central simple ^-algebras, with product *=(g) i r . Let H^ (resp. Sf) be the full 
subcategory whose objects are the algebras isomorphic to endomorphism rings of 
K-vector spaces (resp. the central division algebras). iT is cofinal in të7, since if A 
is central simple and A0 is its opposite algebra, A (g)KA° is isomorphic to a full 
matrix ring over K. Wedderburn's theorem shows that condition (n) is satisfied, 
and K^liT) is the Brauer group of K. 
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EXAMPLE 2. Let K be a field of characteristic ^2 and let ^ be the category of 
nondegenerate quadratic forms over K (with isometries as morphisms), with pro­
duct *=orthogonal sum. Let H^ (resp. SP) be the full subcategory whose objects 
are the orthogonal sums of hyperbolic planes (resp. the anisotropic forms). iV is 
cofinal since q nondegenerate implies q * (—q) isometric to a sum of hyperbolic 
planes, and condition (jr) follows from Witt's theorem. K($>\HP) is the Witt ring of 
K (or rather its underlying additive group). 

In neither example is SP closed under *. 
We call the objects of # " (resp. SP) the weak (resp. strong) objects of cë. Condition 

(IT) says that each object X of ^ has a weak part w(X) and a strong part s(X)9 the 
latter at least well-defined up to isomorphism. The terminology is suggested by: 

THEOREM 3. Let (# , *, HP, SP) be a -n-category. Then the elements of K^€\HP) 
are in one-to-one correspondence with the isomorphism classes of strong objects. If 
x, y e K^êji^) are represented by strong objects X, Y e Ob ^ respectively then 
x+y is represented by s(X * Y). 

(The theorem makes precise the assertion—plausible enough in light of the 
decomposition given by condition (77)—that when we kill the weak part of ^ in the 
Grothendieck group, the strong part survives intact.) 

Proof. For X, Y • • • in Ob *% let x, y • • • denote the corresponding element of 
KQ^, *) and let z-+z denote the canonical projection KQ($, *)-^Ki!$\HP). Every 
element of K0(&, *) is of the form x-w with Xe Ob # and We Ob iT by [1, 
Proposition (1.3.a)]. Hence every element of K^êji^) is represented by a strong 
object of C:x—w=x—w=x=s where S=s(X). If two strong objects Zand Y give 
the same element of K($>\HP) we have x— y e [W]9 i.e., x+w=y-\-w' in K^, *) 
for some W, W e Ob HP, or equivalently X * W"~ Y * W" for some W\ W" G 
Ob HP (by [1, Proposition (1.3.b)], and the closure of HP under *). The uniqueness 
requirement in condition (77) then implies X~ Y. The statement about the sum is 
trivial: x+y=x+y=s where S=s(X * Y). 

It is easy, if slightly clumsy, to jazz up the definition so as to include the multi­
plicative structure in Example 2, as follows. Let (^, *) be a category with product 
and Sf a full subcategory, closed under *, which is itself a category with product 
under an operation o. We say that (3), o) is a multiplication for (^, *) if o distri­
butes over *, i.e., if J o ( F * Z ) and ( J o Y) * ( J o Z ) are isomorphic functors 
© X ® x ^ - > ® . We say the multiplication has a unit if there is an IeObSiï 
(necessarily unique up to natural isomorphism) such that X-+I ° X is isomorphic 
to the identity functor on 3). 

PROPOSITION 4. Let {Q), o) be a multiplication for (^, *). Then o gives K0(&, *) 
the structure of a commutative ring, and the unit for o (if there is one) represents a 
unit element for this ring. 
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Proof. Write x, y • • • for the elements of K0(@, *) corresponding to objects 
Z, 7 • • • of 3, as before. Then every element of K0(3, *) is of the form x—w with 
Z, W e Ob 3. Define the product (x—w)(y—z) of two elements to be x ° j — x o z— 

w o y-\-w o z where x ° j means the element of K0(3, *) corresponding t o l o 7. 
Everything follows if we show this is well-defined for elements x, y. Thus assume 
that Z, X' G Ob S) represent the same element x of K0(@, *) and that Y, Y' 
represent the same element y. Then X * WcztX' * W and Y * Z^. Y' *Z for some 
W and Z in Ob S , and consequently X * S ^ Z ' * 5 and Y * fc F ' * S (where 
S=W*Z). Hence ( J o 7) * (So ( 5 * X * 7 ) ) ^ ( Z * S) o ( 7 * S ) ~ ( Z ' * 5) o 
( 7 ' * S ) ~ ( Z ' o F ) * (S o(S*X'* Y% Now letting T=S o (Z* S * F * S) we 
have (Z o 7) * r ~ ( Z ' o 7') * T, which shows that Z o 7 and Z ' o Y' represent the 
same element, as required. 

The empty subcategory Q) gives any category with product a trivial (i.e. never-
defined) multiplication. At the other extreme if ̂ = ^ we say o is a, full multiplication 
for (fé7, *). We need one further definition. If (fé7, *, W, £f) is a 7r-category and 
(3, o) is a multiplication for (^, *), we call the whole works (^', *, Q), o5 ^ 5 y ) a 
multiplicative ir-category provided : if Z 6 Ob 3) and 7 G Ob 2 O Ob /#~ then 
Zo Ye Ob -#". 

COROLLARY 5. Le£ ( ^ , * } ® , o , ^ , 5^) Z>e a multiplicative ir-category. Then we 
have the conclusions of Theorem 3. Ifthe multiplication is full, it gives KCejiT) the 
structure of a commutative ring; ifx, y G KÇëj'W*) are represented by strong objects 
Z, Y respectively then xy is represented by s(X <> 7) ; the unit for o9 if there is one, 
represents a unit element for this ring. 

Proof. To get the conclusions of Theorem 3 we simply forget the multiplication. 
The definition is rigged to make the rest of the proof equally trivial: multipli-
cativity makes [W] an ideal in K^ff, *). 

In applying Corollary 5 to Example 1 we impose the empty multiplication and 
get (again) the Brauer group. In the case of Example 2, tensor product of quadratic 
forms is a full multiplication, and Corollary 5 yields the Witt ring of K (not just its 
additive group). The strong form (1) (i.e. q{x)—x2) represents a unit. Note, how­
ever, that nondegeneracy of (1) requires the invertibility of 2 in K; the Witt ring 
defined for any commutative ring by the construction described here will in general 
be a ring without unit. (See [2, Ch. V, §2] for a "natural remedy".) The Brauer group 
can of course also be defined for any commutative ring as a quoteint of a Grothen-
dieck group as above (again see [2]). In both cases, however, in passing from fields 
to arbitrary commutative rings one loses the strong objects: the categories are not 
7T-categories. 

Exercise. Ignoring the pessimistic tone of the preceding sentence, find natural 
examples of ̂ -categories other than the two the notion was invented to accommodate. 
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