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MULTIPLICATION OPERATORS 
MARTIN SCHECHTER 

1. Introduction. Let V(x) ^ 0 be given on Rn and define 

(1-D CSiPiq,x(V) = sup \\Vu\\q/\\(X
2 ~ A ) ' / 2 I I | 

uec-
p-

This constant has played a role in many investigation. For n — 3 it was shown 
in Courant-Hilbert [7] p. 446 that 

Ci^od^r1) ^2-

In [10], Kato estimates C2,2,2,A(^) in terms of the L2 +L°° norm of V in R3. 
Stummel [22] showed that C2,2,2,i(^) is bounded by 

(1.2) C sup ( / V{xf\x - y\a'ndx 
y \J\x-y\<\ 

in Rn, n > 2, provided a < 4. Browder [6] and Balslev [3] showed that 
Cs,q,q,\(V) is bounded by 

(1.3) c s u p ( / V(x)q\x~y\a-ndx) 
y \J\x-y\<r J 

in R", n > 2, when s is a positive integer and a < sq. This was extended to s 
any positive real number by Schechter [18]. In [19] it was shown that CSi2,2,\(V) 
is bounded by (1.2) if a = 2s. 

In [12] Mazja showed that for n > 2 

and 

Ci,2,2,o(t02 ^ sup 4 jV(x)2dx/(n - 2)uo cap (e) 
e Je 

Ci,2,2,o(V)2 ^ sup [v(x)2dx/(n - 2)LJ cap (e) 
e Je 

where a; is the surface area of the unit sphere in R \ cap (c) is the Green 
capacity of e and the supremum is taken over all compact sets e C R " . 

Using the Sobolev inequality, Simon [21] and others observe that 

Cw,o(V)£C\\V\\n. 
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MULTIPLICATION OPERATORS 235 

For n = 3 he showed that 

CI,2 ,2,A(VO^ ( 7 ^ 2 / f V(x)2V(yf\x -y\-2e-2X^-^dxdy] 

(cf. [21] for references to the earlier physics literature). Schechter [17] showed 
that 

(1.4) C1Î2,2,A(V)2 = inf sup Mr)"1 / Viyf^Xh^x -y)dy 

where GSi\(x) is the Bessel potential of order s (cf., e.g., [2]). It is the kernel of 
the operator 

/2/to = /< (1.5) (A2 -Ays/2f(x) = j Gs,x(x-y)f(y)dy. 

The infimum in (1.4) is taken over all positive functions I/J(X). 

Berger-Schechter [4] were the first to consider CSiPiqi\(V) for p ^ q. They 
studied the case 

(1.6) \<p^q<oo, l/p<s/n+\/q. 

They showed that CS}P^^(V) is bounded by (1.3) provided 

0 < a/nq < s/n +\jq— l /p, 2 < n. 

Adams [1] showed that for 1 < p ^ q < 00, 2 < n, CSiPiqio(V) is equivalent to 

W 
1.7) suplj(j\x-y\s-nV(y)«dyY dx) I (Jv(y)qdy\ . 

The strongest result to date is that of Kerman-Sawyer [11] who showed that 
Cs,p,q,\(Y) is equivalent to 

(1.8) sup f j (J GsA(x - y)V{yfdy\ dx) I (j V(yfdy\ 

Here the supremum is taken over all dyadic cubes Q. They showed that this in 
turn is equivalent to 

W 1 / r \ W 
sup (J(M<s>XQVqy'dx\ I (j V{yfdy\ 
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236 MARTIN SCHECHTER 

where 

M$w(x) = sup —- / GSi\(y)dy / w(y)dy. 
QQ [\Q\ J\y\<\Q\^ J JQ 

(Here \Q\ denotes the volume of Q.) 
Before the work of Kerman and Sawyer, the author [14, 15] announced the 

results of [16] in which the norms M a / / ^(V) depending on four parameters 
were introduced. It was shown that 

(1.9) CSMx(y)£CMa,rM/x(V) 

holds for suitable choices of the parameters (we could allow q < p). In the 
present paper we strengthen these results considerably. In particular, we stream
line the norms Ma^:t^(V) to obtain stronger estimates. Details are given in the 
next section. 

In [18] Fefferman and Phong showed that 

(1.10) Ci,2AoOO ^ Cq sup ( V " f Viyfdy^ 
bçc \ J\x-y\<8 

holds for any q > 2. They were unaware of the result (1.4) of the author [17]. 
The proof of (1.10) given in [8] is rather long and involved. In Section 6 we 
shall show that it is a simple consequence of (1.4). In fact we shall give a direct 
easy proof of (1.10) without involving the ideas of [8]. 

In comparing our results with those of other authors, one should note that they 
are not as strong as those of Kerman-Sawyer and Adams. The norms on the right 
hand side of (1.9) are not equivalent to the expression (1.8), and theoretically 
(1.8) can be bounded by these norms. However the norms Ma^r^t^{V) do have 
advantages over expressions such as (1.7) and (1.8). Firstly, they are norms, 
while the expressions are not. Secondly, they are more easily computed than the 
expressions. Moreover, the dependence of (1.1) on À is more clearly expressed. 
In addition, inequality (1.9) holds even when q <p, while (1.1) is not bounded 
by expressions (1.7) or (1.8) in this case. In short, there are situations in which 
the norms Ma^r^t^(V) have a distinct advantage over expressions such as (1.7) 
or (1.8). 

2. The norms. For functions V(x) defined on Rn we define a family of norms 

Maj,t,b(y) f o r a e R ' l = r = °°> l - l = °°> 0 < s = °°- F o r 0 = a = n w e 

define 

(2.1) Ma,8V(x) = suppa-n [ \V(y)\dy 

and 

(2.2) Ma^6(V) = | |[Ma/(|V| r)]1/r | |o 0 < a < n, 
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where the norm is that of V — U(Rn). In defining the norms for other values 
of a we used the following abbreviations 

(2.3) \\V\\ritis = | | [AMl tT) ] 1 / r | | r , 0 < « < oo, 

\\VL,oo = \\V\\r 

I lKl loo , , ,^! ! SUp IVOOIH,. 
\y-x\<5 

We define 

(2.4) Ma^è{y)=è^-n)lr\\V\\r^ a^n 

(2.5) Mo^siV) = l | [ ^ ( |V | r ) 1 / r | | / , r < t 

= sr»ir\\v\\r^ t^r 

(2.6) Ma^s(V) = &a-n)'r\\V\\r,t,6, a<0. 

Some properties of these norms will be given in Section 3. At times we shall 
use the following abbreviations. 

MaV=MaiQOV, MV =M0V 

Ma^t{V) = Ma^X(V\ \\V\\r,t = ||V||r,M. 

Our first result is 

THEOREM 2.1. Assume that 

(2.7) \<q<r, 1 < />< oo, 0 < s < n, p' ^ t 

and 

(2.8) min(0, l/r-l/t)^ a/nr = s/n+l/q - l/p - l/t ^ s/n. 

Then there is a constant C independent of u,V and À such that 

(2.9) \\Vu\\q ^ CMa,rAl/x(V)\\(\2 -A)s'2u\\p. 

Notice that we take r > q in Theorem 2.1. In general it is not true if r — q. 
However, there is a case in which we can prove (2.9) when r = q. A function 
W(x) is said to satisfy condition Aœ if there are constants a > 1 and C such 
that 

p'n f \W(x)\°dx 1 ^ Cp~n f \W(x)\dx 
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238 MARTIN SCHECHTER 

holds for all p > 0 and all balls Bp of radius p (for another definition, cf. [13]). 
For such functions we can strengthen Theorem 2.1 in the following way. 

THEOREM 2.2. Assume that 

(2.11) 1 </>,<? <oo , 0<s<n, p'St 

and 

(2.12) min(0, l/q- 1/0 ^ a/nq = s/n+l/q- \/p - \jt ^ s/n. 

Assume further that W = \V\q satisfies condition A^. Then 

(2.13) ||Vi*||, ^ CMa^l/x(V)\\(X2 - A)s/2u\\p 

where the constant does not depend on u,V or A, but depends on the constant 
in (2.10). 

3. Properties of the norms. In this section we discuss some of the properties 
of the norms Ma?r^^(V). 

LEMMA 3.1. If a,/3 ^ 0, r , r , A , ^ , a , r ^ 1, and 

1/fz = 1/r + 1/A, 1/r = \/t + I/o-, a / r + (3/X = s/p 

then 

O.I) I | [M J I«( |V«|")] I /" | |T ^ iitM^dvrM'^iMiiAf^dHi*)]1/*!!,,. 

Proof We have 

(V" /" |V(y)u(y)r) 
V J\y-x\<p J 

^ (pa'n [ \V(y)\rdy) r U'n [ \u(y)\xdy) . 
V J\y-x\<P J V J\y-x\<P J 

This implies (3.1). 

LEMMA 3.2. There is a constant C depending only on n such that 

(3.2) ||v||r,r,t« ^ C*"||v||r,,iS 

holds for all positive integers. 
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Proof. The ball \x\ < k can be covered by N(k) balls of radius one and 
centers zf\...,z^\ky Then the ball |JC| < k8 can be covered by N(k) balls of 
radius 8 with centers of 8z\k\ . . . ,8z$ k y Thus for v(x) ̂  0 

(f vQcYdx) £\Y][ v(xYdx) 
\J\x-y\<k6 J yj~[ J\x-y~8zf\<8 J 

N{k) f 

[ v(x)rdx 1 
J\x-y-8zf\<8 J 

Hence 

(3.3) \\v\\rAk6^N(k)\\v\\rAS. 

Now we note that there is a constant C depending only on n such that N(k) ^ 
Ckn. 

LEMMA 3.3. IflKcrSr^oo and 

(3.4) l/a^a/n+l/r 

then 

(3.5) | |M a ,Hk* £ CSa+^-"^\\v\\6A6. 

The constant C does not depend on 6 or v. 

Proof. First assume that r ̂  co. Let Bg(y) be the ball of radius 8 and center 
y. Let XN denote the characteristic function of the set N. Then for v(x) ̂  0, 

(jT (M^vYdx^j ^ f^j [Ma (xB2(y)v)]Tdx 

S C ( [ v(xfdx) . 
>B2(y) 

If we replace v(x) by u(8x), this becomes 

( f (Mafu)Tdx) ^ CS«Hn/T-n/a) f f u{xfdx\ 

\JBsiy) ' / XJBjsiy) J 

where the constant is independent of 8. Taking the V norm of both sides, we 
obtain (3.5) with 8 replaced by 28 on the right hand side. We restore the 8 by 
making use of Lemma 3.2. If r = oo we note that 

Majv(x) ^ suppa~{n'a) ( [ v(z)adz) 
p^8 \J\z-x\<p J 

^ Sa-{n/a) f f v(zfdz) 

\J\z-x\<8 J 
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240 MARTIN SCHECHTER 

since n ^ aa. We proceed as before. 

LEMMA 3.4. Iflûr<a^t^oo and 

(3.6) I/ex S a/nr + l/t 

then 

(3.7) ||[Ma,,(|Vr)]1/r||< ^ C ^ - ^ H V I I ^ 

w/z^re r7ze constant C does not depend on V or 6. 

Proof. First we note that 

(3.8) ||v||,,,,« - C«"/'||v||, 

where the constant does not depend on v or 6. Thus the left hand side of (3.7) 
equals 

Cè-"l'\\Ma,6{Vr)\\%,lr % C'aatr+"^°-"/<\\Vr\\%/r}S 

= C'8alr-nl"\\V\\a^ 

by Lemma 3.3 since r < t. 

LEMMA 3.5. If inequality (3.6) is strict, we may take a — r in (3.7). 

Proof. We merely note that we may take a — 1 in (3.5) if inequality (3.4) is 
strict. 

LEMMA 3.6. If t û r and 0 < a ^ n, then 

(3.9) [Ma^(\V\r)]/r\\ ^ C ^ - ^ l V i , , , , , 

where the constant C is independent of V and 6. 

Before proving Lemma 3.6 we introduce another set of norms. Let {Q si} be 
an enumeration of all cubes in Rn having volumes 8n and vertices at points with 
coordinates which are integral multiples of 6. If x = (JCI, . . . ,xn) is a point in 
Q si, then each Xk satisfies an inequality of the form jb ^ Xk < (j + 1)6 for some 
integer j depending on k. We define 

(3.10) ||V||t„,* = f Ç ( | \V(x)\rdxy 

= sup ( / \V(x)\rdx 
' \JQa 

= \\V\\r, « = 00 . 

, 1 ^ t < 0 O 

•A 
, t = oo 
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For r — oo we replace 

l/r 

( / ivwr*) ' 

by 

sup|V(*)| 

in these definitions. We shall use 

LEMMA 3.7. The norms HVH^^ and 6n't\\V\\Lr,t,s are equivalent. 

Proof. Assume first that r, t, S are not oo. We may take V(x) ^ 0. Then 

t/r \ ' / ' 

Y, I ( I Way) rdx 

i JQ6< \JBS(X) J 

For k > 0 and Q a cube, let kQ denote the cube having the same center as Q 
and edge length multiplied by k. If x is in Q^, then B$ix) is contained in 3Qsi-
If r ^ f, then 

(3.11) / ( / V(y)rrfy) ^ ^ | / (f V(yYdx) dy) 
JQt! \JB6{X) ) yJlQst \JQsi J J 

^Sn([ ViyYdy) . 
\JsQsi J 

If t < r, the left hand side of (3.11) is bounded by 

( f f V(yYdydx) ( f dx) g 8" ( f ViyYdy) . 
\jQsiJBs(x) J \JQSi J \J3QSi J 

Thus 

K(y)rdy ) 

The cube 3Q& is contained in the 3n cubes Qsjk adjacent to Q^. Thus 

(3.12) \\Mnfi<yr)x'r\\t £ 6n'* yY (I ViyYdyS 

(3.13) (( ViyYdy] ^ V [ / ViyYdy) 
\J3Qs, ) k=l \JQsJk J 
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242 MARTIN SCHECHTER 

Hence 

(3.14) | |W^(V)1 / r | |»^3"«"/ ' | |V| |^,{ . 

Conversely, let k be any number ^ y/n. Then any ball of radius k6 and center 
in Q Si contains Q &-. Let y be a point in Q &• such that 

*" (Mn#Vr(y))t,r £ [ MnM(Vry/r. 
JQSI 

Such a point exists since the integrand cannot always be greater than the average 
value of the integral. Thus 

( f V(x)rdx) ^b'n f MnviVy/'. 
\jQsi ) JQK 

Summing over / and taking the Mh root, we obtain 

(3.15) | | V | | ^ . , S r " / ' | | V | | r ^ . 

We now make use of Lemma 3.2 to reach the desired conclusion. When t — oo 
we have 

||M^(Vr)1/r||oo = sup ( f V(yYdy) £ sup ( [ V(y)rdy] 
x \JBs(x) J i \J3Q6l J 

since B&(x) C 3Qsi if x G <2&- If we use (3.13) we obtain the desired estimate. 
The converse is obvious. The case r — oo is also simple and is omitted. 

Now we give the 

Proof of Lemma 3.6. Assume that r,r, 6 are not oo and that V(x) ^ 0. Note 
that 

(3.16) Mafiv{x)^ [ \y-x\°-n\v(y)\dy. 
J\y-x\<5 

Hence 

Y,JQ Ma,{XiQiiV)"rdx\ 

l - ( / /r ) \ '/' 

<Sn/<-n/r(j2^J jf ]y _ ̂ a-ny ̂ y dydx^' J 

g CênMa-n)/r | ç ( jf V(y)'rfy) 'A>) 

^ C'fi»/'-K«-»)A||v||trA, 
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Now we apply Lemma 3.7. 

COROLLARY 3.8. / / 

(3.17) l/r<a/nr + l/t 

then the norms Ma^5(V) andè(a-n)/r\\V\\rA S are equivalent. 

Proof. When a > 0 and t S r, inequality (3.9) holds by Lemma 3.6. On the 
other hand, we always have 

(3.18) \\V\\rAS = \\Mnf(V
r)l'r\\t ^ \\Ma,è(V

r)llr\\t. 

If a ^ 0 and t £ r, the two norms are equal by definition. When a > 0 and 
r < t, inequality (3.9) follows from Lemma 3.5. The case a ^ 0 and r ^ / i s 
excluded by (3.17). 

COROLLARY 3.9 Ifr^p and rut, then 

(3.19) \\V\\rA8 ^ C « " / ' W ' W W P | | V | | P | T J , . 

Proof. The inequality 

(3.20) \\V\\Lr,,,s^8nlr-nl"\\V\\L^ 

is a simple consequence of the definition. We apply Lemma 3.7. 

For s > 0, À ^ 0 we let GSi\(x) be the Bessel potential of order s. It satisfies 

(3.21) (\2-k)~s/2f = Gs,x*f 

(3.22) G5i\ * Gt,\ = Gs+tl\ 

(3.23) G5,A - M5-", A|JC| ^ 1, 0 < s < n 

~ M (5- , ,-1)/VAW, A|JC| > 1. 

(For properties of Bessel potentials, cf. e.g., [2]). It follows from (3.23) that 

(3.24) Mstf£C5Gs,l/s*\f\, 0<s<n. 

The following was proved in [20] employing a method of Muckenhoupt-
Wheeden [13]. 

LEMMA 3.10. If 1 ^ t < oo and 0 < s < n, then there is a constant C 
independent of v and X such that 

(3.25) ||GJ,A*v||/^C||AfJ,1/Av||,. 
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244 MARTIN SCHECHTER 

We also have 

LEMMA 3.11. / / 

(3.26) l / r = 1/ro + l / n , \/t = l/t0 + l/h 

then 

(3.27) | |Vn| | r | f f^ | |V|U,M | |« | | r i ,M . 

Frao/. By (3.26) 

( f \V(y)u(y)\rdy] 
\JBS(X) J 

^ ( [ \V(y)\rody) ° ( [ \u(y)\r*dy 
\JBS(X) ) \JBS(X) 

If we take the V norm of both sides, we obtain (3.27). 

LEMMA 3.12. Suppose 

(3.28) 1/r^ l/p£ 1/a + s/n. 

where a ̂  oo if n = sp. Then 

(3.29) |Mkr,i/A ^ C A ^ - ' / ' - ^ - ' I K A 2 - A)J/2«||P 

where the constant C does not depend on n or X. 

Proof. By the local Sobolev imbedding theorem there is a constant C inde
pendent of y such that 

(3.30) ( [ \v(x)\adx) 
\J\x-y\<\ / 

£c([ \(1-Êi)s'2v(x)\pdx) . 
\J\x-y\<2 J 

Since p ^ r, we have 

(3.31) \\v\\a^cij U \{\-±yl\{x)\Pdx\ " dy\ 

\(l-^y/2v(x)\Tdy) dx 

^c (f\(\-kyi\(x)\pdx 

= c . 
1 l\y-x\<2 

UP 
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This proves (3.29) for A = 1. For the general case, substitute v(x) = u(x/\) in 
(3.32). The left hand side becomes 

( / ( / frbWdx) dy\ 

= [[([ W)\"Xndxf\ Xndy') 

= \»/™'T\\u\\„,T,l/x 

where we made the substitutions x = Xx\y — A/. The right hand side becomes 

c(f|(i-Ay'2u(x/x)\pdx\ P 

= ( f |(1 - \-2A)s/2u(xf)\p\ndx'} 

= c\n/p~s\\(\2-iiy'2u\\p. 

This gives (3.29). 

4. The proofs. In this section we give the proof of Theorem 2.1. We begin 
by considering the case 0 ^ a ̂  n. Take 

[i = 1, T — /?', À = r', /? = (sr — a)r' jr 

in Lemma 3.1. Then we have 

(4.1) \\Ms4Vu)\\p, ^ \\[Ma4\V\r)]l/r\\,\\[Mfi,s(\u\r')]l/r'\\l7. 

where 

(4.2) \/p'=\/t+l/a. 

Let 

(4.3) K = \\[M^(\V\r)]^\\t. 

Since r' <cf ^ a and 

we see by Lemma 3.4 that 

(4.4) WWMHUWW+OZCWUWS. 
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Let 8 = 1/A. In view of Lemma 3.10, inequalities (4.1) and (4.4) imply 

(4.5) \\Gs,x*(Vu)\\pl^CK\\u\\q, 

By duality we have 

(4.6) \\VGSiX*v\\q£CK\\v\\p. 

If we take v = (A2 - A)5/2w, we obtain (2.9). 
Next we note that Lemma 3.11 implies 

(4.7) | | V t t | | ^ C r ^ | | V | | r , r , « | | u | | ^ . 

provided 

(4.8) \jq = 1/r + \ja = 1/r + 1/r. 

On the other hand Lemma 3.12 tells us that (3.29) holds if (3.28) holds and 
o ^ oo. Inequalities (3.28) and (4.8) are equivalent to 

(4.9) 1/r + \/p - s/n ^ \/q Û \/t + \/p 

which is implied by (2.8). Moreover, in our case o ^ oo since q ^ r. Hence 
(2.8) implies 

(4.10) ||V«||, ^ CA("-a)A||V||r,,,«||(A2 -ày/2u\\r 

where the constant does not depend on w, ^ or A. Here we took 6 — 1/A in 
(4.7) and noted that 

n(l/q+ l/p — \jo — 1/r— s/n) = (n — a) jr. 

In view of (2.4)-(2.6), inequality (4.10) implies (2.9) for the cases a < 0 and 
a ^ r. The remaining cases follow from (4.6). 

Proof of Theorem 2.2. Let W satisfy (2.10) for a > 1. Let r = aq. Then 
(2.7) and (2.8) are satisfied with a replaced by (3 — aa. Thus by Theorem 2.1 

(4.11) ||Vn||, ^ CM^l/x(V)\\(X2 - k)s'2u\\p. 

It is easily checked that in general 

(4.12) Maa^8(V) ^ CMa^6(V) 
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when W = \V\q satisfies (2.10), the constant in (4.12) depending only on the 
constant in (2.10). In fact we have 

( r \ "/r / r \ ^/a(i 

po«-n Wa\ = supp*/«L-n / w<r\ 

£Csuppa'«(p-n[ w) q = CMa:S(\V\«)l,q. 

Inequality (4.12) certainly holds if a > n or if a è 0. If we now combine (4.11) 
and (4.12) we obtain (2.13). 

5. Relationship to other norms. The norms (3.10) give rise to mixed LP 
spaces known as "amalgams" (cf. [9] for references to the literature). Lemma 
3.7 and Corollary 3.8 give conditions under which they are equivalent to the 
Mas,t,6(V) norms. 

Another set of related norms are given by the Lorentz spaces Lpr (for defini
tions and discussions we refer to [5]). We note the following 

THEOREM 5.1. If 

(5.1) \ûr <a <tûoo and 0 < a/nr é \/a - \/t < 1 

then 

(5.2) AV,,(VO^C||V|L,. 

Proof. First we note that by Sobolev's inequality 

(5.3) \\Gs*f\\ti^Ci\\f\\ai, i=l,2,Gs = GSil 

provide <j/ ̂  1, u ̂  oo and 

0<s/n= l/di-l/ti < 1. 

Let 0 satisfy 0 < 0 < 1, and set 

I/O" = (1 - 0)/<7i + 0/(72, 1A = 0 ~ ®)'l + St2-

If we apply the real method of interpolation to (5.3), we obtain 

(5.4) \\Gs*f\\tèC\\f\\L„ 

provided a ̂  1, t~^oo and 

(5.5) 0<s/n= \ja-\jt< 1. 
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Inequality (5.4) implies by (3.24) 

(5.6) ||A/S,,/||( ^ H / I L 

provided (5.5) holds. Moreover (5.6) holds even when t — oo. To see this note 
that 

/ \f<y)\dyû\\f\\uAXBpM\\Ljx. 
JBP(X) 

It is easily checked that 

\\XBeix)\\L„=Cp^. 

Consequently, 

(5.7) M„latf(x) ^ C\\f\\L^ 

showing that (5.6) holds when t = oo. Now let a,r,a,t satisfy (5.1). Then by 
(5.6) 

WM^V^,, £C\\Vr\\L„r„/r =C\\V\\lr 

The last equality is a simple consequence of the definition of the space Lat. 

6. A simple proof of the Fefferman-Phong estimate. We give a proof of 
(1.10) using only an elementary argument. By Holder's inequality 

Mi(Vxl*u)£Mq{V<>l2)XlqM(\u\4)iM 

holds for any q ^ 1. Let p > 1 be given and take q = 2p > 2. If 

KP = 11^(^)11^, 

then 

I I M K W / ^ I U ^ / 2 i iM( | M | «y /^ i | 2 

= ^/2nw(i«K)ii^scis-;/2iii«Kii^ 

since q' < 2. By a theorem of Muckenhoupt and Wheeden [13], this implies 

\\h(V^u)\\2^C'K^\\u\\2. 
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This in turn is equivalent to 

\\V^IlV\\2^C'K^\\v\\2. 

If K = / ,V, then ||v|| = ||V«||. Thus 

(Vu,u) = \\V^IlV\\2 ^ C'2Kp\\v\\2 = C%| |V M | | 2 . 

This shows that (1.10) holds. 
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