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INDEPENDENCE FOR SETS OF TOPOLOGICAL SPHERES

LEWIS PAKULA AND SOL SCHWARTZMAN

ABSTRACT.  Consider a collection of topological spheres in Euclidean space whose
intersections are essentially topological spheres. We find a bound for the number of
components of the complement of their union and discuss conditions for the bound to
be achieved. This is used to give a necessary condition for independence of these sets.
A related conjecture of Griinbaum on compact convex sets is discussed.

1. Introduction. The notion of independence for a class of sets was introduced by
Marczewski [3] in connection with some problems in measure theory. It is related to a
variety of problems in combinatorial geometry; see the discussions and references in [1],
[2], and [S]. For a collection of sets C = {SI,S;_, ... Sk} let

m(C):=card{T# @ :T =T, N ---N Ty, where each T; is either S; or S} }

and we say that C is independent iff m(C) = 2*. It is well known that if S, ..., Sk are
Euclidean balls in R" then they cannot be independent if k > n + 1; in fact, for such
C = {S1,52,...5} an upper bound for m(C) is

1) Muy:=25 (kzl), m = min(k — 1, n)
£=0

REMARK 1. Note that M,,; = 2 whenk <n+1and M,; < 2*ifk > n+ 1.

The most elementary setting for these ideas is the familiar Venn diagram in the plane:
circular regions can be used to illustrate set-theoretic statements for 3 sets, but not 4.

The result on failure of independence for Euclidean balls can be obtained using linear
algebra [5]. The bound for m(C) was obtained in [6] via induction using stereographic
projection and our purpose here is to establish a topological version of this result, using
some basic ideas in algebraic topology.

For n > 0 we call a topological space A a topological n-sphere if it is homeomorphic
toS" = {x € R™!' : ||x|| = 1}.If A is a topological n-sphere in R"*! we will call the
bounded component of R**! \ A its inside and the unbounded component(s) its outside.
If C is a collection {Ay,...,A;} of topological (n — 1)-spheres in R" we call a set of
the form 77, N --- N Ty, where T; is either the inside or the outside of A;, a Venn cell
of C. We then define m(C) to be the number of nonempty Venn cells of C and call C
independent if m(C) = 2. We will say that an indexed collection of topological spaces
C has spherical intersections if the intersection of the sets in any subcollection of C is
either empty, a single point, or a topological sphere. We will consider the empty set a
sphere of dimension —1. Then
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THEOREM 1. Suppose C = {Ai,...,Ac} is a collection of topological (n — 1)-
spheres in R" having spherical intersections. Then m(C) < Myy. If C is independent
then (i) k < n + 1, (ii) the intersection of any distinct r of the A;’s is a topological
(n — r)-sphere, and (iii) each bounded Venn cell has the homology of a point, and the
unbounded Venn cell has the homology of an (n — 1)-sphere; in particular, the Venn cells
are connected.

2. Main results. Theorem 1 will follow from Theorems 2 and 3.

Suppose Aj,...,A; are subsets of a topological n-sphere. We will say that C =
{A\, ..., A} has proper spherical intersections if, for r < min(k,n + 1) and distinct
indices iy, ..., i,, we have that A; N ---MN A; is a topological (n — r)-sphere.

Suppose K = UfA, C S". A* will denote reduced Cech-Alexander cohomology
with integer coefficients, and we define b%(K) = rank H9(K). (See [7], Chapter 6, and
[4] Chapter 6.) We will need the following special case of the Alexander duality theorem:

(1 H,S"\ Ky~ H7\(K)

where H, denotes reduced homology. This follows e.g. from [4] Theorem 6.6. By [7],
Corollary 4.4.8, the number of nonempty components of §" \ K is 4"~ !(K) + 1.

THEOREM 2. Suppose C = {Ay,..., A} is an indexed collection of subsets of S",
n > 1, having spherical intersections. Then
(i) M, is an upper bound for the number of components of S" \ U[(‘ZIA 05
(ii) the upper bound in (i) is achieved if and only if C has proper spherical intersec-
tions; and
(iii) if C has proper spherical interesections then HI(UFA,) = 0 forq < n— 1.

PROOF. By our remarks above, (i) is equivalent to b" '(UfA¢) + 1 < M, We
proceed by induction. Since M = 2k, (i), (ii) and (iii) are easily seen to hold for k > 1
whenn = 1.Since M,,; = 2fork > 1 it we also check that (i), (ii) and (iii) hold forn > 1
when k = 1. Suppose we have established (i), (i) and (iii) for (n’, k') when 1 < n' < n
orn = nandk < k.NowletX = Ajand Y = A, U ... U A;. We can assume that
X % S" since otherwise S" \ A; = (). By the argument leading to Theorem 6.1.13 in [7],
the Mayer-Vietoris sequence

—HT'\WeHT (V) - AT'XN YY) - BYXU Y) — BU(X) @ AYY) —
is exact. It follows that
) PIXUY) < b (X N Y)+b4(X) + b(Y).

with equality holding if A9~'(X) = HI"'(Y) = HY(X N Y) = 0. Note that by using
Remark 1 together with (’71) = (";2) + (’;:21) one can see by induction that

(3) Mn,k = Mn,k—l +Mn—l,k—1
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Observe that by our hypotheses XM Y is a union of k— 1 topological spheres or points,
with spherical intersections, which can be regarded as subsets of an (n — 1)-sphere, and Y
is a union of k — 1 topological spheres or points in S”. Thus, by the induction hypothesis,

we have

4.1) XN YY)+ 1 < My_jia;
(4.2) BNV +1 < Myyis
4.3) pyix) < 1.

Thus, from (3) and (2) withg = n — 1, we get
() PN XU YY)+ 1 S Moy gt + Myjo1 = My

which proves (i) for (n, k). Next we prove (iii) for (n, k). Suppose ¢ < n — 1. C hav-
ing proper spherical intersections in S” implies that X = A; ~ S"! and also that
{A,,..., A} has proper spherical intersections in 8" so H9(X) = H4(Y) = 0 by in-
ductive hypothesis. Now X N Y = UX,(A; N A;) and {A| N Ay,...,A; N A} have
proper spherical intersections in A; & $"~! 50 also, inductively, H~'(XN Y) = 0. Then
by exactness of the Mayer-Vietoris sequence, HI(XU Y) = 0, proving (iii). Now we
prove (ii) for (n, k). In view of (3) and part (i), for the upper bound to be achieved, i.e.
for b"~' (XU Y)+ 1 = M, to hold, it is necessary and sufficient to have equality in both
(2) (with g = n — 1) and (4.1)—(4.3). Suppose first that the upper bound is achieved. If
r < k — 1, we can assume that the r sets under consideration are among the k — 1 sets
Aj, ..., Ag; since we must have equality in (4.2) we see by induction that any r of these
must intersect in a topological sphere of the appropriate dimension. The only remaining
case is r = k (so we must have k < n + 1 by assumption). By equality in (4.3) we have
X = A; & 8" ! and then NX | A; = NX,(A| N A;) is an intersection of k — 1 topological
spheres in A} & §"~!. Using the induction hyphotheses and (4.1) with equality we get
Nk A; &~ S=D=(=D — §n=k Conversely, suppose C has proper spherical intersections.
It then follows from (iii) that " 2(X) = b"2(Y) = b" (XN Y) = 0. Thus we have
equality in (2) with ¢ = n — 1. Moreover, since { Az, ..., A} has proper spherical in-
tersections, we have equality in (4.2) by induction. Similarly, we conclude that equality
holds in (4.1) and (4.3) and hence in (5). This finishes the proof.

THEOREM 3.  Suppose C = { A\, ..., A} is acollection of subsets of S* with proper
spherical intersections. Then each component of S" \ UA, has the homology of a point.

PROOF. We need only show that I?,,(S” \ K) = 0forq > 1 where K = UIE:1 Ag.
But this follows immediately from (1) and part (iii) of Theorem 2.

PROOF OF THEOREM 1. We can regard the A;’s as compact subsets of R" U { oo} ~
S" Each nonempty Venn cell is a union of components of R \ K with K = U‘_, A,
so m(C) < M, . By Theorem 2 and Remark 1, m(C) = 2* implies that k < n + 1 and
that furthermore, each nonempty Venn cell consists of a single component of R" \ K,
and so is connected. The bounded components of R\ K have the homology of point by
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Theorem 3. The result is clear for n = 1 so assume n > 1. The unbounded component
U of R" \ K corresponds to the the component of S" \ K which contains oo. It follows
from a simple excision argument that U has the homology of "~

EXAMPLES. If C is a compact convex subset of R” with nonempty interior then the
boundary of C is a topological sphere. We call a set homothetic to C if it is a translate
of kC for some k > 0. Following [2], let A(C) be the maximal number of sets in an
independent collection consisting of sets homothetic to C. Thus h(C) = n+ 1 when C is
the Euclidean sphere $"~! C R".

Suppose C is a regular tetrahedron in R3. If we are given a finite collection of sets
homothetic to C we can find, if needed, arbitrarily small translations of these sets which
will make their boundaries have spherical intersections and will not increase the num-
ber of components of the complement of the union of their boundaries. It follows from
our results that #(C) = 4. In the same way we can show that the maximal number of
independent translates of a fixed cube is 4. However, it is possible to find 3 homothetic
cubes whose boundaries intersect in 4 points (we thank R. Sine for this observation) so
the hypothesis of Theorem 1 do not hold and in fact it is possible to find 5 independent
cubes homothetic to a fixed one. Figure 1 shows the intersection of the surfaces of 4 such
cubes on the surface of a fifth.

Griinbaum [2] conjectured that h(C) = n + 1 holds for any compact convex C; the
last example shows that this is false (although it holds when n = 2, [2]). In fact, it is
possible to construct a C in R? such that A(C) = oo. This follows from the 2.13 and
Proposition 3.19 in [1].
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FIGURE 1
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