
Canad. Math. Bull.Vol. 34 (4), 1991 pp. 520-524 

INDEPENDENCE FOR SETS OF TOPOLOGICAL SPHERES 

LEWIS PAKULA AND SOL SCHWARTZMAN 

ABSTRACT. Consider a collection of topological spheres in Euclidean space whose 
intersections are essentially topological spheres. We find a bound for the number of 
components of the complement of their union and discuss conditions for the bound to 
be achieved. This is used to give a necessary condition for independence of these sets. 
A related conjecture of Griinbaum on compact convex sets is discussed. 

1. Introduction. The notion of independence for a class of sets was introduced by 
Marczewski [3] in connection with some problems in measure theory. It is related to a 
variety of problems in combinatorial geometry; see the discussions and references in [1], 
[2], and [5]. For a collection of sets C = { Si, S2 , . . . Sk} let 

m(C) := card{ T ^ 0 : T = Tx D • • • H Tk, where each Tt is either St or S^} 

and we say that C is independent iff m(C) — 2^. It is well known that if S\,..., 5* are 
Euclidean balls in Rn then they cannot be independent if k > n + 1 ; in fact, for such 
C — { Si, 52,.. • Sk} an upper bound for m{C) is 

m /jc_ A 
(1) Afnjk := 2 X) ( t I m = min (* - l , n ) 

REMARKl. NotethatM,^ = 2* whenfc < n + 1 and Af^ < 2k if k > n+ 1. 
The most elementary setting for these ideas is the familiar Venn diagram in the plane: 

circular regions can be used to illustrate set-theoretic statements for 3 sets, but not 4. 
The result on failure of independence for Euclidean balls can be obtained using linear 

algebra [5]. The bound for m{C) was obtained in [6] via induction using stereographic 
projection and our purpose here is to establish a topological version of this result, using 
some basic ideas in algebraic topology. 

For n > 0 we call a topological space A a topological n-sphere if it is homeomorphic 
to Sn = {x € Rn+1 : ||x|| = 1}. If A is a topological n-sphere in Rn+l we will call the 
bounded component of Rn+1 \ A its inside and the unbounded component(s) its outside. 
If C is a collection {Ai , . . . , Ak} of topological (n — l)-spheres in Rn we call a set of 
the form T\ D • • • n 7\, where 7/ is either the inside or the outside of A,, a Venn cell 
of C. We then define m(C) to be the number of nonempty Venn cells of C and call C 
independent if m(C) = 2k. We will say that an indexed collection of topological spaces 
C has spherical intersections if the intersection of the sets in any subcollection of C is 
either empty, a single point, or a topological sphere. We will consider the empty set a 
sphere of dimension —1. Then 
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THEOREM 1. Suppose C = {Ai , . . . ,A*} is a collection of topological (n — 1)-

spheres in W having spherical intersections. Then m(C) < Mnj. If C is independent 

then (i) k < n + 1, (ii) the intersection of any distinct r of the Ai's is a topological 

(n — r)-sphere, and (Hi) each bounded Venn cell has the homology of a point, and the 

unbounded Venn cell has the homology of an (n — \)-sphere; in particular, the Venn cells 

are connected. 

2. Main results. Theorem 1 will follow from Theorems 2 and 3. 

Suppose A\,...,Ak are subsets of a topological «-sphere. We will say that C = 

{A\,... ,Ak} has proper spherical intersections if, for r < min(k,n + 1 ) and distinct 

indices i\,..., ir, we have that Aix D • • • H A[r is a topological (n — r)-sphere. 

Suppose K = U^Ai C Sn. H* will denote reduced Cech-Alexander cohomology 

with integer coefficients, and we define bq(K) = rmkHq(K). (See [7], Chapter 6, and 

[4] Chapter 6.) We will need the following special case of the Alexander duality theorem: 

(1) Hq(S
n \K)& Hn-q-\K) 

where //* denotes reduced homology. This follows e.g. from [4] Theorem 6.6. By [7], 

Corollary 4.4.8, the number of nonempty components of Sn \ K is bn~l(K) + 1. 

THEOREM 2. Suppose C = {A\,..., Ak} is an indexed collection of subsets ofSn, 

n > 1, having spherical intersections. Then 

(i) MHyk is an upper bound for the number of components ofSn \ U^=1A^; 

(ii) the upper bound in (i) is achieved if and only if C has proper spherical intersec­

tions; and 

(Hi) if C has proper spherical intere sections then Hqi}J^Ai) = Oforq < n — 1. 

PROOF. By our remarks above, (i) is equivalent to bn~x{0\Ai) + 1 < Mn^. We 

proceed by induction. Since M\^ = 2k, (i), (ii) and (iii) are easily seen to hold for k > 1 

whenn = 1. Since Mn,\ — 2 for k > 1 it we also check that (i), (ii) and (iii) hold for n > 1 

when k = 1. Suppose we have established (i), (ii) and (iii) for (n',k!) when 1 <n' < n 

or n' = n and Id < k. Now let X = Ai and Y = Ai U . . . U Ak. We can assume that 

X ft Sn since otherwise S" \ A\ = 0. By the argument leading to Theorem 6.1.13 in [7], 

the Mayer-Vietoris sequence 

- • Hq~\X) 0 H q ~ \ Y ) -> Hq-l(Xn Y) - • Hq(XU Y) - • Hq(X) 0 Hq(Y) -+ 

is exact. It follows that 

(2) bq(X U Y) < bq-\X PiY) + bq(X) + bq(Y). 

with equality holding if Hq~l(X) = Hq~l(Y) = Hq(X n Y) = 0. Note that by using 

Remark 1 together with (k~l) = (k~2) + ( ^ ) one can see by induction that 

(3) Mn,k = Mn,fc_i + Mn-it-i 
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Observe that by our hypotheses XD F is a union of k— 1 topological spheres or points, 
with spherical intersections, which can be regarded as subsets of an (n — l)-sphere, and F 
is a union of k — 1 topological spheres or points in Sn. Thus, by the induction hypothesis, 
we have 

(4.1) bn-\xnY)+l <Af„_U-i; 

(4.2) bn~\Y) + \ <AfnJk_i; 

(4.3) bn~\X)<\. 

Thus, from (3) and (2) with q — n — 1, we get 

(5) ^ ( X U F)+ 1 < M n _ u _, +MnJk_i = MnJk 

which proves (i) for (rc,/:)• Next we prove (iii) for (n,k). Suppose q < n — 1. C hav­
ing proper spherical intersections in Sn implies that X = A\ » Sn_1 and also that 
{A2 , . . . , A*} has proper spherical intersections in Sn so Hq(X) = Hq{Y) = 0 by in­
ductive hypothesis. Now X Pi F = U/l2(Ai Pi A/) and {Ai Pi A2 , . . . ,A\ D A*;} have 
proper spherical intersections in A\ œ Sn_1 so also, inductively, ^ _ 1 ( X n F) = 0. Then 
by exactness of the Mayer-Vietoris sequence, Hq(XU Y) — 0, proving (iii). Now we 
prove (ii) for («, k). In view of (3) and part (i), for the upper bound to be achieved, i.e. 
for bn~l(XU F) + 1 = Mnj to hold, it is necessary and sufficient to have equality in both 
(2) (with q — n — 1) and (4.1)-(4.3). Suppose first that the upper bound is achieved. If 
r < k — 1, we can assume that the r sets under consideration are among the k — 1 sets 
A2,.. . , Ajt; since we must have equality in (4.2) we see by induction that any r of these 
must intersect in a topological sphere of the appropriate dimension. The only remaining 
case is r — k (so we must have k < n + 1 by assumption). By equality in (4.3) we have 
X — A\ « Sn_1 and then Pl^A, = D/i2(Ai Pi A/) is an intersection of k — 1 topological 
spheres in A\ ^ Sn_1. Using the induction hyphotheses and (4.1) with equality we get 
n^LjA/ ^ s(n-1)~(*-1) — sn~k. Conversely, suppose Chas proper spherical intersections. 
It then follows from (iii) that bn~2(X) = bn~2(Y) = bn~l(Xn F) = 0. Thus we have 
equality in (2) with q = n — 1. Moreover, since {A2 , . . . ,A^} has proper spherical in­
tersections, we have equality in (4.2) by induction. Similarly, we conclude that equality 
holds in (4.1) and (4.3) and hence in (5). This finishes the proof. 

THEOREM 3. Suppose C — { Ai , . . . , A*} is a collection of subsets ofSn with proper 
spherical intersections. Then each component ofSn \ UA^ has the homology of a point. 

PROOF. We need only show that /^(S" \ K) = 0 for q > 1 where K = U* = 1 A£. 
But this follows immediately from (1) and part (iii) of Theorem 2. 

PROOF OF THEOREM 1. We can regard the A/'s as compact subsets of Rn U {00} & 
Sn Each nonempty Venn cell is a union of components of Rn \ K with K = Û  = i Â  
so ra(0 < Ntnjk.. By Theorem 2 and Remark 1, m(C) = 2k implies that k < n + 1 and 
that furthermore, each nonempty Venn cell consists of a single component of Rn \ K, 
and so is connected. The bounded components of R" \ K have the homology of point by 
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Theorem 3. The result is clear for n — 1 so assume n > 1. The unbounded component 
U of Rn \ K corresponds to the the component of Sn \ K which contains oo. It follows 
from a simple excision argument that U has the homology of Sw_1. 

EXAMPLES. If C is a compact convex subset of Rn with nonempty interior then the 
boundary of C is a topological sphere. We call a set homothetic to C if it is a translate 
of kC for some k > 0. Following [2], let h(C) be the maximal number of sets in an 
independent collection consisting of sets homothetic to C. Thus h(C) = n + 1 when C is 
the Euclidean sphere Sn_1 C Rn. 

Suppose C is a regular tetrahedron in R3. If we are given a finite collection of sets 
homothetic to C we can find, if needed, arbitrarily small translations of these sets which 
will make their boundaries have spherical intersections and will not increase the num­
ber of components of the complement of the union of their boundaries. It follows from 
our results that h(C) = 4. In the same way we can show that the maximal number of 
independent translates of a fixed cube is 4. However, it is possible to find 3 homothetic 
cubes whose boundaries intersect in 4 points (we thank R. Sine for this observation) so 
the hypothesis of Theorem 1 do not hold and in fact it is possible to find 5 independent 
cubes homothetic to a fixed one. Figure 1 shows the intersection of the surfaces of 4 such 
cubes on the surface of a fifth. 

Griinbaum [2] conjectured that h(C) = n + 1 holds for any compact convex C; the 
last example shows that this is false (although it holds when n = 2, [2]). In fact, it is 
possible to construct a C in R3 such that h{C) — oo. This follows from the 2.13 and 
Proposition 3.19 in [1]. 

FIGURE 1 
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