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Abstract
Two-part framework and the Tweedie generalized linear model (GLM) have traditionally been used to model loss
costs for short-term insurance contracts. For most portfolios of insurance claims, there is typically a large proportion
of zero claims that leads to imbalances, resulting in lower prediction accuracy of these traditional approaches. In
this article, we propose the use of tree-based methods with a hybrid structure that involves a two-step algorithm as
an alternative approach. For example, the first step is the construction of a classification tree to build the probability
model for claim frequency. The second step is the application of elastic net regression models at each terminal node
from the classification tree to build the distribution models for claim severity. This hybrid structure captures the
benefits of tuning hyperparameters at each step of the algorithm; this allows for improved prediction accuracy, and
tuning can be performed to meet specific business objectives. An obvious major advantage of this hybrid structure
is improved model interpretability. We examine and compare the predictive performance of this hybrid structure
relative to the traditional Tweedie GLM using both simulated and real datasets. Our empirical results show that
these hybrid tree-based methods produce more accurate and informative predictions.

1. Introduction and motivation

Building regression models for insurance claims poses several challenges. The process can be particu-
larly difficult for individual insurance policies where a large proportion of claims are zeros, and for those
policies with a claim, the losses typically exhibit skewness. The degree of skewness in the positive loss
distribution varies widely for different types of insurance products. For example, within a class of auto-
mobile insurance policies, the losses arising from damages to the property may be medium-tailed but
those arising from liability-related claims may be long-tailed. For short-term insurance contracts, the
number of claims is referred to as the claim frequency, while the amount of claims, conditional on the
occurrence of a claim, is the claim severity. The information that covariates, or explanatory variables,
bring to each component in a regression context allows to capture the possible heterogeneity of the
individual policies. These two components are used as predictive models for pure premiums, expected
loss costs, and aggregate or total claims in an insurance portfolio.

There is a long history of studying insurance claims based on the two-part framework. Several
well-known families of distributions for claim frequencies and claim severities are well documented
in [15]. As more observed data became increasingly available, additional complexities to traditional
regression linear models have been introduced in the literature and in practice; for example, the use
of zero-inflated or hurdle models has been discussed to accommodate the shortcomings of traditional
models for excess zeros. Interestingly, the Tweedie generalized linear model (GLM) for insurance claims
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has been particularly popular because it is adaptable to a mixture of zeros and nonnegative insurance
claims. Smyth & Jørgensen [23] described the Tweedie compound Poisson regression models and cal-
ibrated such models using a Swedish third-party insurance claims dataset; the models were fitted to
examine dispersion within the GLM framework. The Tweedie distribution can be regarded as a repa-
rameterization of the compound Poisson–gamma distribution, so that model calibration can be done
within the GLM framework. Xacur & Garrido [25] compared these two approaches and concluded that
there is no clear superior method; the paper also discussed the advantages and disadvantages of the two
methods. The Tweedie GLM presents a larger pure premium and implies both a higher claim frequency
and claim severity due to the constant scale (dispersion) parameter; in other words, the mean increases
with the variance. The constant scale parameter also forces an artificial relationship between claim fre-
quency and claim severity. The Tweedie GLM does not have an optimal coefficient, especially under the
inflexible distribution assumption, and it leads to a loss of information because it ignores the number of
claims. On the other hand, the Tweedie GLM has fewer parameters to estimate and is thus considered
more parsimonious than a two-part framework. When insurance claim data contain small losses due to
low frequencies, the two-part framework is likely to overlook the internal connection between the low
frequency and the subsequent small loss amount. For example, the frequency model often indicates zero
number of claims for small claim policies, which leads to a zero loss prediction. Other works related to
the Tweedie GLM can be found in [5] and [14].

Within the GLM framework, the claim frequency component may not accurately accommodate
imbalances caused by the large proportion of zero claims. Simultaneously, a significant limitation is
that the regression structure of the logarithmic mean is restricted to a linear form, which may be too
inflexible for real applications. With the rapid expansion of the available data for improved decision-
making, there is a growing appetite in the insurance industry to expand its tool kit for data analysis
and modeling. However, the industry is unarguably highly regulated, so there is pressure for actuar-
ies and data scientists to provide adequate transparency in modeling techniques and results. To find a
balance between modeling flexibility and interpretation, in this paper, we propose a parametric model
empowered by tree-based methods with a hybrid structure.

Since [1] introduced the Classification and Regression Tree (CART) algorithm, tree-based mod-
els have gained momentum as a powerful machine learning approach to decision-making in several
disciplines. In particular, single-tree models, such as the CART algorithm, can be interpreted straight-
forwardly by visualizing the tree structure. The CART algorithm involves separating the explanatory
variable space into several mutually exclusive regions and thus creating a nested hierarchy of branches
resembling a tree structure. Each separation or branch is referred to as a node. Each of the bottom nodes
of the decision tree, called terminal nodes, has a unique path for observable data to enter the region.
Once the decision tree is constructed, it is possible to predict and locate the terminal node for scoring
the dataset using a new set of observed explanatory variables.

Before further exploring the hybrid structure, it is worth mentioning that a similar structure called
Model Trees (MT), with an M5 algorithm, was first described in [21]. In the M5 algorithm, it constructs
tree-based piecewise linear models. While regression trees assign a constant value to the terminal node
as the fitted value, MT use a linear regression model at each terminal node to predict the fitted value for
observations that reach that terminal node. Regression trees are a special case of MT. Both regression
trees and MT employ recursive binary splitting to build a fully grown tree. Thereafter, both algorithms
use a cost-complexity pruning procedure to trim the fully grown tree back from each terminal node. The
primary difference between regression trees and MT algorithms is that, for the latter step, each terminal
node is replaced by a regression model instead of a constant value. The explanatory variables that serve
to build those regression models are generally those that participate in the splits within the subtree that
will be pruned. In other words, the explanatory variables in each node are located beneath the current
terminal node in the fully grown tree.

It has been demonstrated that MT have advantages over regression trees in both model simplicity and
prediction accuracy. MT produce decision trees considered not only relatively simple to understand but
are also efficient and robust. Additionally, such tree-based methods can exploit local linearity within the
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dataset. When prediction performance is compared, it is worth mentioning the difference in the range
of predictions produced between traditional regression trees and MT. Accordingly, regression trees are
only able to give a prediction within the range of values observed in the training dataset. However, MT
are able to extrapolate the prediction range because of the use of the regression models at the terminal
node. Especially, when the regression function is a smooth function of explanatory variables, MT may
solve the problem that regression trees may not fit the data well. For further discussions of MT and the
M5 algorithm, see [22].

Inspired by the structure and advantages of MT when compared to traditional regression trees, we
develop a similar algorithmic structure that can uniquely capture the two-part nature of insurance claims.
While it is true that MT and regression trees are used for the general regression task, insurance claim
datasets present an additional layer of information, the frequency component, which is a classification
task. In this paper, we propose hybrid tree-based methods as a two-step algorithm: the first step builds a
classification tree to identify themembership of claim occurrence, and the second step uses a regularized
regression technique to determine the claim severity at each of the terminal nodes. In essence, such
hybrid tree-based methods integrate the peculiarities of both the classification tree and linear regression
in the modeling process. These sets of models are suitably described as a hybrid structure, which has the
appearance of a segregated two-step structure, but in actuality, they are an integrated approach so that
they are more reasonably comparable to the Tweedie GLM than the two-part framework. Furthermore,
in model evaluation, it becomes unreasonable to compare the frequency and severity components in
segregation.

The rest of this paper has been organized as follows. In Section 2, we provide technical details of
the algorithm arising from hybrid tree-based methods applicable to insurance claims, separating the
modeling of claim frequency and claim severity. In Section 3, to investigate the predictive accuracy
of our hybrid tree-based methods, we create a synthetic dataset based on a simulation produced from
a true Tweedie distribution. Within the simulation, we introduced some deviations to mimic real-life
situations for a more reasonable comparison. In Section 4, using empirical data drawn from a portfolio
of general insurance policies, we illustrate the calibration results and compare the prediction accuracy
based on a holdout sample for validation. Section 5 provides visualization of the results of the hybrid
structure, which provides a better interpretation. We conclude in Section 6.

2. Description of hybrid tree-based methods

Hybrid tree-based methods use information that arises from both frequency and severity components.
As already alluded to in Section 1, it is a two-stage procedure. In the first stage, we construct a classifi-
cation tree-based model for frequency. In the subsequent stage, we employ a penalized regression model
at each terminal node within the tree-based model, based on severity information. Such methods can be
drawn from the hybrid structure, which can be viewed as an ecosystem that is able to accommodate a
variety of characteristics of datasets.

The mathematical construct of a hybrid tree-based method can be expressed in the following
functional form:

H (X,T (Θ), #sm ) =
M∑

m=1
Vfm︸︷︷︸

frequency

X #sm︸︷︷︸
severity

1Rm (X)︸  ︷︷  ︸
risk class

, (1)

where H represents the response of the hybrid tree-based method, given the set of explanatory variables
X, the tree structure T (Θ), and regression model coefficients #sm . From Eq. (1), we see that a hybrid
structure may also be viewed as piecewise regression models. The tree-based algorithms, T (Θ), divide
the dataset into M subsamples (or risk classes represented by 1Rm (X)) and then assign the expected
average number of claims Vfm , frequency information. Based on this division, regression models with
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coefficients #sm are applied to these subsamples. Each component is further described in the subsequent
subsections.

We can determine the type of classification trees that can be adapted in the frequency compo-
nent according to the information drawn from the dataset. If it records only whether claims were
reported or not, we construct a classification tree for a binary response variable. If it records addi-
tional information on the number of claims, we construct trees for a count response variable. For binary
classification, we can employ some of the most popular algorithms, to list a few: (a) the CART algo-
rithm, (b) efficient algorithm C4.5 [22], with a current updated version C5.0, (c) unbiased approaches
like Generalized, Unbiased, Interaction Detection, and Estimation (GUIDE) [17], or (d) Conditional
Inference Trees (CTREE) [12]. For the count response variable, we can apply, to list a few, (a) piece-
wise linear Poisson using the CART algorithm, (b) SUPPORT [2], (c) Poisson regression using GUIDE
[16], or (d) Model-Based recursive partitioning (MOB) [26].

After the completion of the classification tree structure, we employ a linear regression model to each
of the terminal nodes. The simplest model includes GLM [18] with different distribution models from
this family together with regularized regression, such as elastic net regularization [27] among others.

Hybrid tree-based methods build an ecosystem that utilizes modern techniques from both traditional
statistics and machine learning. In the following subsections, for illustration purposes, we only show
a simple hybrid tree-based method without exploring all possible combinations of the different algo-
rithms suitable at each stage of the procedure. To illustrate, we select the well-known CART algorithm
for binary classification of the claim frequency component and least squares regression with elastic net
regularization for the claim severity component. Elastic net regularization can perform variable selec-
tion and improve prediction accuracy compared to traditional linear regressions without regularization.
In order to be self-contained, we illustrate this simple hybrid tree-based method with enough details.
Additional details for the severity models are given in Appendix A; see also [13].

2.1. Claim frequency component

We denote the response variable as Y, the sample space as Y, and the number of observations as n.
The ith observation with p-dimensional explanatory variables is denoted as xi = (xi1, xi2, . . . , xip),
i = 1, . . . , n, which is sampled from the space X = X1 × · · · × Xp. We can separate each claim yi into
yif , the claim occurrence or the number of claims, and yis , the claim severity or the size of the claim.

In the CART algorithm, a binary classification tree, denoted by T (x,Θ), is produced by partition-
ing the space of the explanatory variables into M disjoint regions R1,R2, . . . ,RM and then assigning a
Boolean Vfm for each region Rm, for m = 1, 2, . . . ,M. Given a classification tree, each observation can
then be classified based on the expression

T (x,Θ) =
M∑

m=1
Vfm1Rm (x), (2)

where Θ = {Rm, Vfm }M
m=1 denotes the partition with the assigned Boolean. To be more specific, Boolean

Vfm = 1 when the majority of observations in region Rm have a claim; otherwise it is zero. For other
classification tree-based algorithms, especially for the count response variable, Vfm refers to the average
number of claims, which can be any integer in [0,∞), in the region Rm.

The traditional classification loss functions used for classification trees, in Eq. (2), are described as
follows:

• Misclassification error: Mis(p) = 1 −max(p, 1 − p),
• Gini index: Gini(p) = 2p(1 − p),
• Cross-entropy or deviance: Entropy(p) = −p log p − (1 − p) log(1 − p),
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where p is the proportion of observations in the one class in the node. The default CART algorithm uses
the Gini index as a loss function. For multiclass loss functions, see [9].

The regions in the classification tree are determined according to recursive binary splitting. The first
step in the splitting process is the discovery of one explanatory variable x·j, which best divides the data
into two subregions; for example, these regions are the left node RL(j, s) = {xi |x·j < s} and the right
nodeRR(j, s) = {xi |x·j ≥ s} in the case of a continuous explanatory variable. This division is determined
as the solution to

argmin
j,s

wL Gini(pL) + wR Gini(pR), for any j and s, (3)

where w. is the weight of the subregion determined by the number of observations split into the subre-
gion divided by the total number of observations before the split, and p. is the proportion of one class in
the subregion. Subsequently, the algorithm looks for the next explanatory variable with the best division
into two subregions, and this process is applied recursively until meeting some predefined threshold or
reaching a minimum size of observations at the terminal node.

To control for model complexity, we can use cost-complexity pruning to trim the fully grown tree
T0. We define the loss in region Rm by

Lm (T) = wm Mis(pm),

where Mis(pm) is the misclassification error. For any subtree T ⊂ T0, we denote the number of ter-
minal nodes in this subtree by |T |. To control the number of terminal nodes, we introduce the tuning
hyperparameter g ≥ 0 to the loss function by defining the new cost function as

Cg (T) =
|T |∑

m=1
Lm (T) + g |T |. (4)

Clearly, according to this cost function, the tuning hyperparameter penalizes a large number of terminal
nodes. The idea then is to find the subtrees Tg ⊂ T0 for each g and choose the subtree that minimizes
Cg (T) in Eq. (4). Furthermore, the tuning hyperparameter g governs the tradeoff between the size of
the tree (model complexity) and its goodness-of-fit to the data. Large values of g result in smaller trees
(simple model), and as the notation suggests, g = 0 leads to the fully grown tree T0. Additional hyperpa-
rameter tuning is performed to control the tree depth through maxdepth, which is the maximum depth
of any node in the final tree. Through cost-complexity pruning and controlling maxdepth, the size of
the classification tree is constrained, which guarantees a sufficient sample size for the terminal nodes to
build a linear model for the severity component. Furthermore, it is feasible to extend the hyperparameter
setting with an alternative choice of loss function described above.

2.2. Claim severity component

After building the classification tree structure, we next apply a linear model to the terminal nodes for
the claim severity component. When controlling for model complexity, we include a threshold as an
additional hyperparameter to determine if we should build a linear model or directly assign zero to
the terminal node. For example, if zeroThreshold is 80%, then we should directly assign zero to the
terminal nodes that contain more than 80% of zero claims. Furthermore, if the terminal node contains
less than a certain number of observations, say 40, which can also be determined by hyperparameter
tuning, we can directly use the average as the prediction, which is similar to regression trees. Otherwise,
we need to build a linear model to the terminal nodes. While any member of the GLM exponential
family is applicable for continuous claims, we find that the special case of GLM with the Gaussian
family, or just ordinary linear regression, is sufficiently suitable for our purposes. In Section 5, we will
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empirically discuss the rationality of using the Gaussian family, even in insurance losses that typically
exhibit skewness.

At each terminal node Rm, the linear coefficient #sm = (Vsm0, Vsm1, . . . , Vsmp)T can be determined
based on elastic net regularization:

̂#sm = argmin
#sm

1
nm

nm∑
i=1

ℓ
©­«yi, Vsm0 +

p∑
j=1

xijVsmj
ª®¬ + _

(1 − U) 1
2

p∑
j=1

V2smj + U

p∑
j=1

|Vsmj |
 , (5)

where nm is the number of sample in the terminal node, U controls the elastic net penalty and bridges
the gap between Least Absolute Shrinkage and Selection Operator (LASSO) (when U = 1) and ridge
regression (when U = 0). Zou & Hastie [27] pointed out that LASSO has few drawbacks. For example,
when the number of explanatory variables p is larger than the number of observations n, LASSO selects
at most n explanatory variables. Additionally, if there is a group of pairwise correlated explanatory
variables, LASSO randomly selects only one explanatory variable from this group and ignores the
rest. Zou & Hastie [27] also empirically showed that LASSO has a subprime prediction performance
compared to ridge regression. Therefore, elastic net regularization is proposed, which uses a convex
combination of ridge and LASSO regression. Elastic net regularization is able to better handle correlated
explanatory variables and perform variable selection and coefficient shrinkage.

If explanatory variables are correlated in groups, an U around 0.5 tends to select the groups in or out
altogether. For regularized least squares with the elastic net penalty, this reduces to

̂#sm = argmin
#sm

1
2nm

nm∑
i=1

©­«yi − Vsm0 −
p∑

j=1
xijVsmj

ª®¬
2

+ _

(1 − U) 1
2

p∑
j=1

V2smj + U

p∑
j=1

|Vsmj |
 .

This problem can also be solved using the coordinate descent algorithm. We omit the detailed solu-
tion, which is a similar process to solve LASSO using the coordinate descent algorithm described in
Appendix A. However, it is worth mentioning that the expression for V̂smk can be numerically estimated
as follows:

V̂smk =
1

1 + _(1 − U)

(∑nm
i=1 |ỹixik |∑nm

i=1 x2ik
− _U

1
nm

∑nm
i=1 x2ik

)+
sgn

( nm∑
i=1

ỹixik

)
.

Themathematical foundation for elastic net regularization can be found in [3]. It should also be noted
that all the regularization schemes mentioned previously have simple Bayesian interpretations; see [9]
and [13]. A review paper for statistical learning applications in general insurance can be found in [19].

Based on hyperparameters _ and U, the linear structure varies among ordinary linear regression
(when _ = 0), ridge regression, LASSO, and elastic net regularization. In addition, hybrid tree-based
methods perform automatic variable selections for claim severity, which is distinctively different from
MT mentioned in Section 1. MT consider only explanatory variables that are not used in the splitting
process involved in the tree structure as candidates when it builds models to the terminal nodes. The
reason for elastic net is to amplify the information remaining after the classification step. This is partly
because some explanatory variables may be significant for the claim frequency component but not for
the severity component. For this reason, the practice of choosing the correct set of explanatory variables
is important, and thereby, we employ elastic net. In the extreme case where, for example, gender is an
explanatory variable, only observations of one particular gender may remain in the terminal node, then
it becomes redundant to consider gender as an explanatory variable.

Previously, we described hybrid tree-based methods as a two-step algorithm that appears to be very
similar to a traditional two-part framework. However, there is a significant difference between them.
In the traditional two-part framework, we build the best model based only on information from claim
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frequency at the beginning, and this claim frequency model will be static in the following process. In
fact, there are two optimization processes, one for claim frequency and the other for claim severity.
On the other hand, hybrid tree-based methods have only a single optimization process. Based on the
hyperparameter settings, the structure of the classification tree, or themodel of the claim frequency com-
ponent, can be very flexible. In this sense, hybrid tree-based methods are more similar to the Tweedie
GLM. This is why it is most suitable to compare our hybrid tree-based methods with the Tweedie GLM
in the subsequent discussions.

Algorithm 1 summarizes the details of implementing hybrid tree-based methods based on the rpart
and glmnetUtils packages in R. Although the details have been necessarily omitted, we note that all
model hyperparameters considered in the rest of the paper have been properly tuned based on grid
search.

Figure 1 provides a simplified illustration of the underlying procedure in a hybrid tree-based method.
In particular, it assumes two tree depths and observes that during the splitting process, the combination
of zeros and nonzeros can vary at different nodes. When all remaining observations in the final node are
zeros, the predicted value is zero. When there is a more balanced combination of zeros and nonzeros,
elastic net regularized models are fitted. In the case where there are not enough observations, the rea-
sonable prediction is the average of all the response values of the observations in the final node. In the
implementation of hybrid tree-based methods, the maximum tree depth, cost-complexity parameter, the
thresholds for the proportion of zeros in the node, and minimum observations for building regression
are hyperparameters to be tuned.

3. Simulation study

In this section, we conduct a simulation study to assess the performance of a simple hybrid tree-based
method proposed in this paper relative to that of the Tweedie GLM. The synthetic dataset has been
optimally created to replicate a real dataset. This synthetic dataset contains continuous explanatory
variables and categorical explanatory variables with a continuous response variable sampled from a
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Figure 1. A simplified illustration of hybrid tree-based methods.

Tweedie-like distribution. In some sense, the observed values of the response variable behave like a
Tweedie, but some noise was introduced to the data for a fair comparison.

We begin with the continuous explanatory variables by generating sample observations from the
multivariate normal with covariance structure

x ∼ Np(0,Σ),

where Cov(x)ij = (0.5)i−j. It is possible to increase the correlation to a value much higher than 0.5;
however, it would cause too much unnecessary noise and therefore leads to an unfair comparison.
Indeed, we tested different values such as 0.8 and it favored the hybrid structure. Continuous explana-
tory variables close to each other has higher correlations, and the correlation effect diminishes with
increasing distance between two explanatory variables. In real datasets, we can easily observe corre-
lated explanatory variables among hundreds of possible features. It is also very challenging to detect the
correlation between explanatory variables when an insurance companymerges with third-party datasets.
Multicollinearity reduces the precision of the estimated coefficients of correlated explanatory variables.
It can be problematic to use GLM without handling multicollinearity in the real dataset.

Categorical explanatory variables are generated by random sampling from the set of integers
(−3,−2, 1, 4) with equal probabilities. Categorical explanatory variables do not have any correlation
structure among them.

We create 10, 000 observations (with 94.31% zero claims) with 60 explanatory variables, includ-
ing 10 continuous explanatory variables with relatively larger coefficients, 10 continuous explanatory
variables with relatively smaller coefficients, 10 continuous explanatory variables with coefficients of
0, which means no relevance, 10 categorical explanatory variables with relatively larger coefficients,
10 categorical explanatory variables with relatively smaller coefficients, and 10 categorical explanatory
variables with the coefficient 0, which similarly implies no relevance. In effect, there are three groups
of explanatory variables according to the size of the linear coefficients. In other words, there are strong
signal explanatory variables, weak signal explanatory variables, and noise explanatory variables. Here
are the true linear coefficients #Poisson and #Gamma used:

#Poisson = (−0.1, 0.5, . . . , 0.5︸        ︷︷        ︸
10 continuous

, 0.1, . . . , 0.1︸        ︷︷        ︸
10 continuous

, 0, . . . , 0︸   ︷︷   ︸
10 continuous

,−0.5, . . . ,−0.5︸            ︷︷            ︸
10 categorical

, 0.1, . . . , 0.1︸        ︷︷        ︸
10 categorical

, 0, . . . , 0︸   ︷︷   ︸
10 categorical

)T,

#Gamma = (6, 0.5, . . . , 0.5︸        ︷︷        ︸
10 continuous

,−0.1, . . . ,−0.1︸            ︷︷            ︸
10 continuous

, 0, . . . , 0︸   ︷︷   ︸
10 continuous

, 0.5, . . . , 0.5︸        ︷︷        ︸
10 categorical

,−0.1, . . . ,−0.1︸            ︷︷            ︸
10 categorical

, 0, . . . , 0︸   ︷︷   ︸
10 categorical

)T.
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The first coefficients refer to the intercepts. Because of the equivalence of the compound
Poisson–gamma with the Tweedie distributions, we generated samples drawn from a Poisson distri-
bution for the claim frequency and a gamma distribution for the claim severity.

To illustrate possible drawbacks of using a Tweedie GLM, we use different linear coefficients for
the frequency part and the severity part. The absolute value of the linear coefficients is the same
but with a different sign. In real life, there is no guarantee that the explanatory variables have equal
coefficients in both frequency and severity parts. The response variable generated by the compound
Poisson–gamma distribution framework using the modified rtweedie function in the tweedie R
package with frequency and severity as components is presented as follows:
Frequency part: Poisson distribution with a log link function:

Ni ∼ Poisson(_) with _ = _i for given xi,

where _i =
exp(xi#Poisson)2−power

q × (2 − power) , with power = 1.5 and q = 2.

Severity part: Gamma distribution with a log link function:

Yj ∼ Gamma(U, V) with U =
2 − power
power − 1

and V = Vi for given xi,

where Vi =
exp(xi#Gamma)1−power

q × (power − 1) .

Response variable:

Y r
i =

Ni∑
j=1

Yj for given xi,

where the superscript r has been used to distinguish the response and the gamma variables.
We introduce a variety of noise to the true Tweedie model in the following ways: possible

multicollinearity (weak correlations) among continuous variables, zero coefficients for nonrelevant
explanatory variables, different coefficients (same size but different sign) for frequency and severity
components, and additional white noise to positive claims. These common noises are what make the
real-life data deviate from the true model in practice. It makes for an impartial dataset that can provide
for a fair comparison.

Once we have produced the simulated (or synthetic) dataset, we apply both the Tweedie GLM and
hybrid tree-based methods to predict values of the response variables, given the available set of explana-
tory variables. The prediction performance between the two models is then compared using several
validation measures as summarized in Table 1. In Appendix B, Table A1 describes details for validation
measures. In many cases, machine learning models often outperform traditional statistical techniques
regarding a single validation measure. This is especially true when machine learning models are opti-
mized regarding that validation measure. To avoid choosing only the most beneficial results, we include
more validation measures in the following study in order to draw a stronger and more comprehensive
conclusion.

From Table 1, we find that the Tweedie GLM’s fitting performance is worse even under the true
model assumption, albeit in the presence of noise. As we described in Section 2, after hyperparameter
tuning, hybrid tree-based methods with elastic net regression are able to automatically perform coef-
ficient shrinkage via the L2 norm and variable selection based on the tree-structure algorithm and L1
norm. In a simulation setting that mimics real life, hybrid tree-based methods provide more promising
prediction results than the widely accepted Tweedie GLM.
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Table 1. Model performance on the simulation dataset.
Validation measure Gini R2 CCC RMSE MAE

Tweedie GLM 0.95 −1.56 0.49 1.55 0.07
Hybrid tree-based method 0.84 0.15 0.27 0.89 0.06

CCC, concordance correlation coefficient.

Table 2. Model performance on the simulation dataset without nonrelevant explanatory variables.
Validation measure Gini R2 CCC RMSE MAE

Tweedie GLM 0.94 −2.71 0.28 2.07 0.15
Hybrid tree-based method 0.86 0.13 0.23 1.00 0.09

CCC, concordance correlation coefficient.

To rule out unfairness caused by improper variable selection, we reconstruct the simulation dataset
without the nonrelevant explanatory variables. Therefore, the only difference from the previous sim-
ulated dataset is that we have 40 explanatory variables instead of 60. Using the same procedure, we
obtain the model performance shown in Table 2. We can observe consistent results. Three out of five
validation measures show that hybrid tree-based methods outperform the Tweedie GLM. However, the
two weaker results are comparable.

In summary, we used a Poisson–gamma distribution within a two-part framework, adding some noise
that mimics real-life situations to create the simulated datasets. Then, we compared the model accuracy
between the Tweedie GLM and hybrid tree-based methods. We conclude that even under the linear
assumption, hybrid tree-based methods can perform better than the Tweedie GLM.

4. Empirical application

We compare the Tweedie GLM with hybrid tree-based methods using one coverage group from the
Wisconsin Local Government Property Insurance Fund (LGPIF) data. This dataset comes from a project
at the University of Wisconsin’s actuarial research group, and further details about this dataset can be
found on their website.1 The coverage group is called Building and Contents (BC), which provides
insurance for buildings and properties of local government entities including counties, cities, towns,
villages, school districts, and other miscellaneous entities. We draw observations from the years 2006
to 2010 as the training dataset and the year 2011 as the test dataset. Tables 3 and 4 summarize the
training dataset and the test dataset, respectively.

4.1. Conventional techniques

To examine and compare model performance, we include three conventional techniques in our analysis.
We replicate the Tweedie GLM as noted in [6]. The linear coefficients for the Tweedie GLM have

been provided in Table A11 in [6]. It was pointed out that the Tweedie GLM may not be ideal for the
dataset after visualizing the cumulative density function plot of jittered aggregate losses, as depicted
in Figure A6 of [6]. Despite its shortcomings, the Tweedie GLM is used primarily for comparison
purposes.

In addition, to compare the difference between hybrid and traditional tree-based methods, we apply
the CART algorithm, the regression tree, to LGPIF data. We perform a grid search on the training
dataset with 10-fold cross-validation. The final model has hyperparameters set with a minimum of

1https://sites.google.com/a/wisc.edu/jed-frees/
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Table 3. Summary statistics of the training dataset, 2006–2010.
Response
variables Description Minimum 1st Q Mean Median 3rd Q Maximum

ClaimBC BC claim amount in million 0 0 0.02 0 0 12.92
Continuous
variables
CoverageBC Log of BC coverage amount −7.95 0.78 2.12 2.42 3.6 7.8
lnDeductBC Log of BC deductible level 6.21 6.21 7.15 6.91 7.82 11.51
Categorical
variables

Proportions

NoClaimCreditBC Indicator for no BC claims in previous year 32.93%
TypeCity EntityType: City 14.03%
TypeCounty EntityType: County 5.80%
TypeMisc EntityType: Miscellaneous 10.81%
TypeSchool EntityType: School 28.25%
TypeTown EntityType: Town 17.33%
TypeVillage EntityType: Village 23.78%

Table 4. Summary statistics of the test dataset, 2011.
Response
variables Description Minimum 1st Q Mean Median 3rd Q Maximum

ClaimBC BC claim amount in million 0 0 0.02 0 0 2.75
Continuous
variables
CoverageBC Log of BC coverage amount −7.84 0.91 2.27 2.56 3.74 7.78
lnDeductBC Log of BC deductible level 6.21 6.21 7.24 6.91 7.82 11.51
Categorical
variables

Proportions

NoClaimCreditBC Indicator for no BC claims in previous year 50.87%
TypeCity EntityType: City 14.06%
TypeCounty EntityType: County 6.48%
TypeMisc EntityType: Miscellaneous 11.42%
TypeSchool EntityType: School 27.67%
TypeTown EntityType: Town 16.53%
TypeVillage EntityType: Village 23.84%

eight observations in a region to attempt the recursive binary split, and the cost-complexity pruning
parameter (cp) is 0.05. It is worth mentioning that the regression tree uses the simple average at the
terminal nodes as the prediction.

We also employ the deep neural network (DNN)model to compare prediction performance. Bayesian
optimization is employed for hyperparameter tuning and neural network architecture calibration. The
final neural network model consists of three hidden layers, which have 284, 156, and 352 nodes and
dropout rates of 0.44, 0.49, and 0.11, respectively, each followed by the LeakyReLu activation function.
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4.2. Calibration results of hybrid tree-based methods

We employ two hybrid tree-based methods for this empirical application. For binary classification, we
use the CART algorithm, and at the terminal node, we use either GLM with the Gaussian family or
elastic net regression with the Gaussian family. Let us denote these two types of hybrid tree-based
methods, respectively, as HTGlm and HTGlmnet.

For the model calibration, we perform a grid search on the training dataset with 10-fold cross-
validation to find the optimal set of hyperparameter values. HTGlm has been built based on the following
hyperparameter set: eight minimum number of observations in a region to attempt the recursive binary
split, the cost-complexity pruning parameter (cp) is 0.0001, maximum depth of the tree (maxdepth)
is 8, and the threshold for the percentage of zeros in the node to determine whether to build the linear
model or assign zero as the prediction (zeroThreshold) is 0.25. At first glance, the tuned hyperparameter
setting indicates that a fairly deep tree comes with a low zeroThreshold, which is somewhat surprising.
However, this is a purely data-driven result of optimizing the root mean square error (RMSE) objective
loss function. The other hybrid tree-based method, HTGlmnet, has the following hyperparameter set-
tings: minimum observations in a region for splitting is 8, cp is 0.0002, maxdepth is 10, zeroThreshold
is 0.23, the balance between L1 norm and L2 norm (glmWhich) is 1, and the size of the regularization
parameter by the best cross-validation result (glmLambda) is lambda.min.

In regard to the calibration of hybrid tree-based methods, it might be helpful to point out a few
observations. The size of tree-based models is controlled by maxdepth and cp, which constrain the
growing tree and prune it when it has grown too large. Apparently, growing a large tree with a small
dataset is not ideal. At the terminal node, zeroThreshold has another function that guards against mis-
takes caused by the frequency part. Put another way, if we do not feel comfortable with some positive
claims allocated with a certain degree of the proportion of zeros by the tree structure, we can increase the
zeroThreshold and create more linear models at the terminal nodes instead of assigning the zero directly.
However, this results in higher computation costs. Furthermore, we find that there could be multiple
hyperparameter settings that lead to the optimal solution. Obviously, there are many other options to
implement the optimization process. For example, use the mean absolute error (MAE) as a validation
metric, and employ Bayesian optimization instead of the grid search when we have limited computation
resources.

4.3. Model performance

We use several validation measures to examine the performance of different models, similar to what
was done in the simulation. To make for an easier comparison, we added the heat map in addition to
the prediction accuracy table based on various validation measures. We present results separately for
training and test datasets. A rescaled value of 100 (colored blue) indicates that it is the best model among
the comparisons; on the other hand, a rescaled value of 0 (colored red) indicates that it is the worst. For
further details on this heat map for validation, see [20].

From Figure 2(a), we find that the Tweedie GLM has the worst performance of model fit in gen-
eral and the CART algorithm and HTGlm have better performance in model fitting. From Figure 2(b),
we find that HTGlm has the best performance in the test dataset. It also shows that hybrid tree-based
methods prevent overfitting compared to traditional regression trees using the CART algorithm. One
possible reason is that the hybrid structure extrapolates the prediction range by using regression models
at the terminal node. In general, hybrid tree-based methods perform consistently well for both training
and test datasets. Because hybrid tree-based methods are considered piecewise linear models, the model
generalization is inherited from the linear model. We can also note that HTGlmnet has a poorer perfor-
mance compared to HTGlm, for both training and test datasets. The advantage of regularization does not
demonstrate significant effects on the LGPIF dataset because of the limited number of explanatory vari-
ables. Furthermore, we observe a similar phenomenon as the CART algorithm also performs quite well
compared to HTGlmnet, which is also likely a reflection of the fact that there are very few explanatory
variables. However, in the simulation study, we showed the advantage of regularization because the data
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Figure 2. Heat maps of model comparison based on various validation measures. (a) Model perfor-
mance based on training dataset. (b) Model performance based on test dataset.

has a more significant number of explanatory variables. The simulated data may be a better replication
of real-life insurance loss compared to LGPIF data with limited explanatory variables. It is also worth
mentioning the discrepancy in the model performance regarding the Gini Index. Based on the definition
of the Gini Index, the calculation involves ranking the predicted value. The Tweedie GLM and DNN
predictions do not include a large number of zeros; however, in the hybrid structure, we assign zero
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Figure 3. Tree paths with highlighted nodes.

prediction to a certain terminal node with a high percentage of zero claims. Consequently, the hybrid
structure has an inferior performance regarding the Gini Index due to the uncertainty of ranking zero
predictions. The DNN provides one aspect of the black-box model’s prediction performance. LGPIF
dataset is not large enough for the DNN to observe the deep double descent phenomenon. In summary,
hybrid tree-based methods outperform the Tweedie GLM based on various validation measures.

5. Visualization and interpretation

The frequency component of hybrid tree-based methods can clearly be visualized as a tree structure
like a simple CART algorithm. Here, we use HTGlm to illustrate the visualization and interpretation
of hybrid tree-based methods. In Appendix C, Figure A1 shows the classification tree model for the
frequency. We can follow the tree path and construct the density plot for the response variable for each
node. This process will show a straightforward visualization of how the sample changes with every split.
Figure 3 shows the classification tree, and we highlighted (blue) nodes two depths away from the root.
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Figure 4. Classification tree for the frequency.

Consequently, we have seven nodes including the root nodes. Here we denote the node with numbers
for the purpose of identification. Among the highlighted nodes, node four (4), on the left, is the terminal
node and the others are intermediate nodes. Figure 4 shows the density of the response variable for the
seven nodes mentioned in Figure 3. For better visualization, Figure 4 presents the logarithm of one plus
the claim amounts instead of the actual claim amounts. The root node has zero point mass, as expected,
and the black dashed line is the mean of the response variable at the node. After the first split using
CoverageBC, the mean shifted toward a different direction, and the percentage of the point mass at zero
also changed in a different direction. At the fourth terminal node, we can barely see any positive claims
with the mean shifting toward zero, and this terminal node ultimately assigns zero as the prediction.
We can see that the classification tree algorithm, done by recursive binary splitting, divides the dataset
into subspaces that contain more similar observations. The same phenomenon can also be observed
in the CART algorithm, which uses a tree structure to separate similar data to the same group in the
terminal node and then uses mean or mode as the predicted value. For the same reason, the proposed
simple hybrid tree-based method applies linear models with the Gaussian family in the terminal node
without setting the choice of distribution as a tuning parameter. After dividing the space of explanatory
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Figure 5. Variable importance for the claim frequency.

variables into subspaces, it may be more appropriate to make distribution assumptions and apply the
linear model to the subsamples. In a sense, hybrid tree-based methods employ a “divide and conquer”
algorithm, which may be a promising solution for imbalanced datasets.

Figure 3 shows the path to terminal nodes, and we can see a zero or a one, where a linear model
is then fitted, for each terminal node. The structure and path of the tree can provide an indication of
the risk factors based on the split of the explanatory variables. Figure 5 shows the variable importance
calculated from the classification tree model for the frequency part. Coverage and deductible informa-
tion are much more important than location and previous claim history to identify whether the claim
occurred or not. It is not surprising that the deductible has an important impact on claim frequency, as
a claim occurrence will occur only if the amount exceeds the deductible. At each terminal node, we can
also extract the regression coefficients and interpret the estimated linear regression model. Table 5 pro-
vides the regression coefficients at each of the nonzero terminal nodes. The node number has the same
label as in Figure 3. For example, the terminal node 245 can be reached as follows: CoverageBC ≥ 2,
TypeCounty, Coverage ≥ 3.5, lnDeductBC ≥ 7.4, CoverageBC ≥ 3.8, lnDeductBC < 10, and lnDe-
ductBC < 9.9, and we estimated the linear model with regression coefficients: Intercept = −172, 854,
CoverageBC = 15, 251, lnDeductBC = 16, 777, and NoClaimCreditBC = −16, 254. Similarly, Eq. (1)
can be specified based on the tree structure and regression coefficients. Hence, we are able to write out
the hybrid tree-based method in the piecewise linear form.

At the terminal node, the linear model is built that is based on the regularized algorithm and is based
solely on the accuracy of the prediction from cross-validation. It does not rely on statistical inference,
and indeed, some regression coefficients are not statistically significant. However, we can tune hybrid
tree-based methods by balancing prediction accuracy and statistical inference. For example, when we
try to measure the impact of a specific explanatory variable on the claim severity, the coefficient should
be statistically significant. To find the reliable coefficient, we might attempt to merge some child nodes
or split the dataset further and then build another regression model. It is possible that these attempts
may not yield optimal prediction performance due to the fact that statistical inference is prioritized over
prediction accuracy.

The primary advantage of hybrid tree-based methods is its intuitive interpretability. It is possible
to extend our approach that considers ensemble techniques such as boosting or bagging using hybrid
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Table 5. Regression coefficients at the terminal nodes.
Estimates

Terminal node 245 31 123 27 203 103 187

(Intercept) −172,854 24,263 7,922,014 150,264 −1,907,177 155,878 −303,658
TypeCity 17,218
TypeCounty
TypeMisc 62,714
TypeSchool
TypeTown
CoverageBC 15,251 26,601 1,102,629 9,454 447,654 2,772 287,021
lnDeductBC 16,777 −15,412 −1,232,514 −25,246 −70,542 −1,526
NoClaimCreditBC −16,254 −34,160 −21,825 −67,030 −13,229 −13,632

tree-based methods as base learners. Such extensions can significantly improve prediction accuracy,
however, sacrificing model interpretability.

Furthermore, hybrid tree-based methods may capture the dependence between frequency and sever-
ity. Based on the hybrid structure, the severity model is conditionally built on tree-based partitions
created using frequency information. Hence, it inherently allows for a certain dependence between
frequency and severity. We observe this phenomenon in Table 5. Most regression coefficients at the
terminal nodes do not include location information, which might already be incorporated into the tree-
based model. With this in mind, the proposed hybrid tree-based method has an added advantage over
the traditional Tweedie GLM, which assumes that frequency and severity are independent under the
compound Poisson–gamma framework.

6. Conclusions

With the development of data science and increased computational capacity, insurance companies
can benefit from existing large datasets collected over a stretched period of time. On the other hand,
it is also challenging to build a model on “big data.” It is especially true for modeling claims of
short-term insurance contracts since the dataset presents many unique characteristics. For example,
claim datasets typically have a large proportion of zero claims that lead to imbalances in classifi-
cation problems, a large number of explanatory variables with high correlations among continuous
variables, and many missing values in the datasets. It can be problematic if we directly use traditional
approaches such as the Tweedie GLM without additional modifications to these characteristics. Hence,
it is often not surprising to find a less desirable prediction accuracy of conventional methods for real-life
datasets.

In this paper, to fully capture the information available in large insurance datasets, we propose the use
of hybrid tree-based methods as learning machinery and an expansion to the available set of actuarial
toolkits for claim prediction.We have reiterated the many benefits that can be derived from such a hybrid
structure. The use of classification trees to model the frequency component has the advantages of being
able to handle imbalanced classes and to naturally subdivide portfolios into risk classes, as well as the
many benefits of tree-based models; see also [10, 20]. The use of a regression model for the severity
component provides the flexibility of identifying factors that are important predictors for accuracy and
interpretation. Finally, the hybrid specification captures the benefits of tuning hyperparameters at each
step of the algorithm. The tuning parameters can be adjusted not only for prediction accuracy but also for
possibly incorporating specific business objectives in the decision-making process. The transparency
and interpretability of the models are advantages to convince interested parties, such as investors and
regulators, that hybrid tree-based methods are much more than just a black box.
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We examine the prediction performance of our proposed models using datasets produced from a sim-
ulation study and a real-life insurance portfolio. We focus on comparison to the Tweedie GLM since this
has become widespread for modeling claims arising from short-term insurance policies. Broadly speak-
ing, hybrid-tree models can outperform the Tweedie GLM without loss of interpretability. However,
there are opportunities to improve and to widen the scope of this hybrid structure that can be explored
for further research. When yif is a count rather than binary, yis can be the total claim amount, the average
claim amount, or even the vector of individual claim amounts. It depends on what kind of hybrid struc-
ture we choose to deploy. For example, we can use multivariate (or multi-response) regression models
at the terminal nodes when we have detailed severity information regarding individual claim amounts
and frequency information recording the number of claims. In addition, it is possible to improve hybrid
tree-based methods by considering (1) models to accommodate the highly imbalanced nature of the
claim frequency component; (2) additional hierarchical models for comparative purposes; (3) models
to accommodate non-Gaussian structures for the claim severity component; and (4) other loss functions
to optimize that justify the hybrid structure.
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Appendix A. Further details for claim severity models

The following content provides details on the various forms of linear models for the claim severity.
After the construction of the claim frequency tree-based model, at each terminal node Rm, the linear

coefficient #sm = (Vsm0, Vsm1, . . . , Vsmp)T can be determined by

̂#sm = argmin
#sm

1
nm

nm∑
i=1

ℓ
©­«yi, Vsm0 +

p∑
j=1

xijVsmj
ª®¬ , (A.1)

where ℓ(yi, Vsm0+
∑p

j=1 xijVsmj) is the negative log-likelihood for sample i and nm is the number of obser-
vations in the terminal node. For the Gaussian family, denoting the design matrix as X, the estimator
for the coefficient is well known as

̂#sm =

(
XTX

)−1
XTY.

Ridge regression [11] achieves better prediction accuracy compared to ordinary least squares because
of the bias-variance trade-off. In other words, the reduction in the variance term of the coefficient is
larger than the increase in its squared bias. It performs coefficient shrinkage and forces its correlated
explanatory variables to have similar coefficients. In ridge regression, at each terminal node Rm, the
linear coefficient #sm can be determined by

̂#sm = argmin
#sm

1
nm

nm∑
i=1

ℓ
©­«yi, Vsm0 +

p∑
j=1

xijVsmj
ª®¬ + _

p∑
j=1

V2smj, (A.2)

where _ is a tuning hyperparameter that controls shrinkage, and thus the number of selected explanatory
variables. For the following discussion, we assume that the values of xij are standardized so that

1
nm

nm∑
i=1

xij = 0 and
nm∑
i=1

x2ij = 1.

If the explanatory variables do not have the same scale, the shrinkage may not be fair. In the case of
ridge regression within the Gaussian family, the coefficient in Eq. (A.2) can be shown to have the explicit
form

̂#sm =

(
XTX + _I

)−1
XTY,

where I is the identity matrix of appropriate dimension.
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Ridge regression does not automatically select the important explanatory variables. However,
LASSO regression [24] has the effect of sparsity, which forces the coefficients of the least important
explanatory variable to have a zero coefficient, therefore making the regression model more parsimo-
nious. In addition, LASSO performs coefficient shrinkage and selects only one explanatory variable
from the group of correlated explanatory variables. In LASSO, at each terminal node Rm, the linear
coefficient #sm can be determined by

̂#sm = argmin
#sm

1
nm

nm∑
i=1

ℓ
©­«yi, Vsm0 +

p∑
j=1

xijVsmj
ª®¬ + _

p∑
j=1

|Vsmj |, (A.3)

where _ is a tuning hyperparameter that controls shrinkage. For regularized least squares with LASSO
penalty, Eq. (A.3) leads to the following quadratic programming problem

̂#sm = argmin
#sm

1
2nm

nm∑
i=1

©­«yi − Vsm0 −
p∑

j=1
xijVsmj

ª®¬
2

+ _

p∑
j=1

|Vsmj |.

Originally, [24] used the combined quadratic programming method to numerically solve for ̂#sm . In
a later development, [8] proposed the shooting method and [7] redefined shooting as the coordinate
descent algorithm, which is a popular algorithm used in optimization.

To illustrate the coordinate descent algorithm, we start with ̂#sm = 0. Given Vsmj, j ≠ k, the optimal
Vsmk can be found by

V̂smk = argmin
Vsmk

1
2nm

nm∑
i=1

©­«yi − Vsm0 −
∑
j≠k

xijVsmj − xikVsmk
ª®¬
2

+ _
∑
j≠k

|Vsmj | + _ |Vsmk |,

where _
∑

j≠k |Vsmj | is constant and can be dropped. We denote ỹi = yi − Vsm0 −
∑

j≠k xijVsmj. It follows
that

V̂smk = argmin
Vsmk

1
2nm

nm∑
i=1

(ỹi − xikVsmk)2 + _ |Vsmk |

= argmin
Vsmk

1
2nm

( nm∑
i=1

ỹi
2 + V2smk

nm∑
i=1

x2ik − 2Vsmk

nm∑
i=1

ỹixik

)
+ _ |Vsmk |

= argmin
Vsmk

1
2nm

( nm∑
i=1

x2ik

) (
Vsmk −

∑nm
i=1 ỹixik∑nm
i=1 x2ik

)2
+ _ |Vsmk | + constant

= argmin
Vsmk

(
Vsmk −

∑nm
i=1 ỹixik∑nm
i=1 x2ik

)2
+ _

1
2nm

∑nm
i=1 x2ik

|Vsmk |.

This can be solved by the soft-thresholding Lemma discussed in [4].

Lemma A.1. (Soft-thresholding Lemma). The following optimization problem

V̂(t,_) = argmin
V

(V − t)2 + _ |V |
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has the solution of

V̂(t,_) = ( |t | − _/2)+sgn(t)

=


t − _

2 , if t > 0 and _
2 < |t |,

t + _
2 , if t < 0 and _

2 < |t |,
0, _

2 ≥ |t |.

Therefore, V̂smk can be expressed as

V̂smk =

(∑nm
i=1 |ỹixik |∑nm

i=1 x2ik
− _

1
nm

∑nm
i=1 x2ik

)+
sgn

( nm∑
i=1

ỹixik

)
For j = 1, . . . , p, update V̂smk by soft-thresholding when Vsmj, j ≠ k takes the previously estimated value.
Repeat loop until convergence.

Appendix B. Performance validation measures

The following table provides details of the various validation measures that were used throughout this
paper to compare different predictive models.

Table A1. Performance validation measures.
Validation measures Definition Interpretation

Gini Index Gini = 1 − 2
N − 1

(
N −

∑N
i=1 iỹi∑N
i=1 ỹi

)
Higher Gini is better.

where ỹ corresponds to y after
ranking the corresponding predicted values ŷ.

Coefficient of determination R2 = 1 −
∑N

i=1 (̂yi − yi)2∑N
i=1

(
yi −

1
n

∑n
i=1 yi

)2 Higher R2 is better.

where ŷ is predicted values.

Concordance correlation CCC =
2df̂yifyi

f2
ŷi
+ f2

yi + (`ŷi − `yi )2
Higher CCC is better.

coefficient where `ŷi and `yi are the means
f2

ŷi
and f2

yi are the variances

d is the correlation coefficient

Root mean squared error RMSE =

√
1
N

∑N
i=1 (̂yi − yi)2 Lower RMSE is better

Mean absolute error MAE =
1
N

∑N
i=1 |̂yi − yi | Lower MAE is better.

Mean absolute percentage error MAPE =
1
N

∑N
i=1

���� ŷi − yi
yi

���� Lower MAPE is better.

Mean percentage error MPE =
1
N

∑N
i=1

ŷi − yi
yi

Lower |MPE| is better.

617

https://doi.org/10.1017/S0269964823000074 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000074


Z. Quan et al.

Appendix C. Classification tree for the claim frequency

Figure A1. Classification tree for the claim frequency.
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Appendix D. R code for simulation study

GenerateData = function (nSample, nRealCatX, nFakeCatX,
nRealConX, nFakeConX, pho) {

set.seed(777)

n <- nSample
p <- nRealCatX + nFakeCatX + nRealConX + nFakeConX

p1 <- nRealConX + nFakeConX
Cov <- outer(1:p1, 1:p1, function(x,y) {pho^abs(x-y)})
xCon <- MASS::mvrnorm(n, rep(0, p1), Cov)

p2 <- nRealCatX + nFakeCatX
xCat <- NULL
for(i in 1:p2){
xCat <- cbind(xCat, sample(c(-3,-2,1,4), size = n, replace = T,

prob = c(0.25,0.25,0.25,0.25)))
}

muPoi <- exp(
-0.1 +
0.5 * apply(as.matrix(xCon[, 1:round(nRealConX/2)]),

1, sum) +
0.1 * apply(as.matrix(xCon[, (round(nRealConX/2) + 1):nRealConX]),

1, sum) +
-0.5 * apply(as.matrix(xCat[, 1:round(nRealCatX/2)]),

1, sum) +
0.1 * apply(as.matrix(xCat[, (round(nRealCatX/2) + 1):nRealCatX]),

1, sum)
)

muTruePoi <- 1*muPoi/mean(muPoi)

muGamma <- exp(
6 +
0.5 * apply(as.matrix(xCon[, 1:round(nRealConX/2)]),

1, sum) +
-0.1 * apply(as.matrix(xCon[, (round(nRealConX/2) + 1):nRealConX]),

1, sum) +
0.5 * apply(as.matrix(xCat[, 1:round(nRealCatX/2)]),

1, sum) +
-0.1 * apply(as.matrix(xCat[, (round(nRealCatX/2) + 1):nRealCatX]),

1, sum)
)

muTrueGamma <- 10,000 * muGamma/mean(muGamma)

power = 1.5
phi = 2
lambda <- muTruePoi^(2 - power)/(phi * (2 - power))
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alpha <- (2 - power)/(1 - power)
gam <- phi * (power - 1) * muTrueGamma^(power - 1)

yPoi <- rpois(n, lambda = lambda)
y <- array(dim = n, NA)

for (i in (1:n)) {
y[i] <- rgamma(1, shape = -yPoi[i] * alpha, scale = gam[i])
if (y[i] > 0) {y[i] = y[i] * (1 + 0.25 * abs((rnorm(1))))}

}

dataTweedie = as.data.frame(cbind(xCat,xCon,y))
dataTweedie[,1:p2] = lapply(dataTweedie[,1:p2], factor)

return(dataTweedie)
}

SMdata <- GenerateData(10,000,20,10,20,10,0.5)

Cite this article: Quan Z., Wang Z., Gan G. and Valdez EA. (2023). On hybrid tree-based methods for short-term insurance claims. Probability in
the Engineering and Informational Sciences 37, 597–620. https://doi.org/10.1017/S0269964823000074
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