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The Richardson-scaling law states that the mean square separation of a fluid particle pair
grows according to t3 within the inertial range and at intermediate times. The theories
predicting this scaling regime assume that the pair separation is within the inertial range
and that the dispersion is local, which means that only eddies at the scale of the separation
contribute. These assumptions ignore the structural organization of the turbulent flow
into large-scale shear layers, where the intense small-scale motions are bounded by
the large-scale energetic motions. Therefore, the large scales contribute to the velocity
difference across the small-scale structures. It is shown that, indeed, the pair dispersion
inside these layers is highly non-local and approaches Taylor dispersion in a way that is
fundamentally different from the Richardson-scaling law. Also, the layer’s contribution to
the overall mean square separation remains significant as the Reynolds number increases.
This calls into question the validity of the theoretical assumptions. Moreover, a literature
survey reveals that, so far, t3 scaling is not observed for initial separations within the
inertial range. We propose that the intermediate pair dispersion regime is a transition
region that connects the initial Batchelor- with the final Taylor-dispersion regime. Such
a simple interpretation is shown to be consistent with observations and is able to explain
why t3 scaling is found only for one specific initial separation outside the inertial range.
Moreover, the model incorporates the observed non-local contribution to the dispersion,
because it requires only small-time-scale properties and large-scale properties.
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1. Introduction

The relative dispersion of two tracer particles in a turbulent flow has received considerable
interest because it is a tractable problem closely connected to turbulent mixing. More
specifically, the spatial correlations, including the variance, of a passive scalar are related
to the statistics of the relative pair separation (Batchelor 1952; Monin & Yaglom 1975).

If x1 and x2 are the Lagrangian trajectories of the two tracer particles, then their
relative dispersion is described by the relative separation vector, r(t) = x1(t) − x2(t). The
separation distance, given by r(t) = |r(t)|, is widely believed to scale as 〈r2〉 ∼ t3 in
the inertial range and for intermediate times, which is referred to as Richardson scaling.
Here, 〈. . .〉 indicates averaging over a large ensemble of pairs. Initially, Richardson (1926)
obtained the t3 scaling by proposing a diffusion equation for relative dispersion in isotropic
turbulence, where, based on his experimental observations, the diffusion coefficient, K,
was scale dependent according to K ∼ r4/3.

As Batchelor (1952) noted, the diffusion equation is not exact, but is based on some
intuitive or empirical evidence. Moreover, this equation conveniently reduces the full
complexity of the turbulent scalar transport to a diffusivity parameter. In Richardson
(1926), the diffusivity was a function of the pair separation distance, r, while Batchelor
(1952) argued it should be a function of time, t. Finally, in the Kraichnan (1966) model, the
diffusivity depended on both r and t. However, all three approaches resulted in a t3 scaling
of the mean square pair separation, 〈r2〉, in the inertial range. Nowadays, the diffusion
equation is considered unsuitable for modelling the dispersion by a turbulent flow, because
turbulence is time correlated and contains non-local effects (e.g. Falkovich, Gawȩdzki &
Vergassola 2001; Salazar & Collins 2009; Thalabard, Krstulovic & Bec 2014). However,
the t3-scaling law, originally obtained from the diffusion equation, has since been derived
by other means, as discussed in § 2, and is still considered valid.

In their review of pair dispersion, Salazar & Collins (2009) concluded that the
Richardson 〈r2〉 ∼ t3-scaling law remains unchallenged despite the fact that ‘there has
not been an experiment that has unequivocally confirmed Richardson scaling over a
broad-enough range of time and with sufficient accuracy.’ More than ten years later,
this is still the case, as shown in § 3. The lack of a clearly observable t3 scaling is
commonly attributed to too low Reynolds numbers, too short observation times, mean
shear or experimental error, but hardly ever to fundamental limitations in the theory. On
the contrary, the ability to predict t3 scaling is often a measure by which a new theory or
dispersion model is judged (some examples are given by Sawford 2001).

The present level of confidence in Richardson scaling is thus largely based on a firm
belief in the classical turbulence theory rather than being based on strong empirical
evidence. Notwithstanding shortcomings in the simulations and experiments, the lack of
convincing evidence calls for a critical reassessment of the underlying assumptions and
hypotheses, especially in light of recent advances in the understanding of the structure of
the turbulent velocity field.

Of particular relevance is that high-Reynolds-number turbulence is highly intermittent,
which means that the most intense small-scale motions are clustered in confined regions
of space. Intermittency has been related, at least in part, to the development of shear
layer structures, which combine small-scale and large-scale motions (figure 1a). Intense
small-scale flow structures, i.e. vortices and dissipation sheets, are found within these
shear layers, and they scale with the Kolmogorov length scale, η. The shear layer itself is
approximately 4λT thick on average, where λT is the Taylor length scale, and is bounded on
either side by large nearly uniform flow regions that scale with the integral length scale, L.
The velocity magnitude in the uniform flow regions is of the order of the root-mean-square
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Figure 1. (a) Tracer particle pair dispersion near a significant shear layer, which is characteristic of
intermittency at high Reynolds number. Pair A is initially located inside the layer and transported by the
small-scale structures within this large-scale layer structure. The small scales are indicated by red and green
blobs marking intense dissipation and swirl, respectively (see also Elsinga et al. 2017). As soon as the pair
leaves the layer, it disperses quickly owing to the large velocity difference across the layer. Pair B is located
within a large energetic flow region bounding the layer, which is associated with low-level velocity fluctuations
and slow relative dispersion. (b) Example of a tangential velocity, w, profile across a significant shear layer,
where x denotes the normal to the layer (data from Ishihara et al. 2013).

(r.m.s.) of a velocity component, U. These shear layers are important as they contain
significant dissipation (Ishihara, Kaneda & Hunt 2013; Elsinga, Ishihara & Hunt 2020) and
affect the average velocity distribution associated with strain (Elsinga et al. 2017). It is this
strain that is responsible for the relative dispersion/separation of particle pairs (see Goto
& Vassilicos 2004 for a two-dimensional (2-D) illustration). Because of their importance
and large size, Ishihara et al. (2013) have referred to these structures as significant shear
layers. Moreover, these layers are persistent and can affect the dispersion over a long
time. The lifetime of the significant shear layers is of the same order as that of the large
scales, i.e. L/U, because the layers are created by large-scale regions rubbing against each
other. However, the internal structures, such as the small-scale vortices, may have shorter
lifetimes.

The observation of significant shear layers challenges the classical understanding of
turbulence, which assumes that the small scales are largely independent of the largest
scales. However, these thin shear layers are bounded by large-scale energetic motions,
which determine the velocity difference across the layer and the intense small-scale
motions within the layer (figure 1b). Indeed, Ishihara et al. (2013) found that the
velocity difference associated with the intense small-scale structures is of the order of
U. Furthermore, significant energy transfer was found between the largest and smallest
scales, and vice versa, near the significant shear layer (Aoyama et al. 2005), which suggests
that the scales are strongly mutually dependent. Because these shear layers contribute
significantly to the turbulent strain and dissipation, as mentioned above, they are likely
to affect pair dispersion in non-classical ways. This is confirmed by new results for pair
dispersion inside a significant shear layer, which are presented in § 3.3.

The aim of the present paper is to open a discussion on the validity of the 〈r2〉 ∼ t3-
scaling law and, in particular, its underlying assumptions (§ 2). Furthermore, numerical
and experimental results reported in the literature since the 2009 review by Salazar &
Collins are examined for possible evidence of t3 scaling in the ranges predicted by the
theory (§ 3). An alternative model for pair dispersion at intermediate times is introduced
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in § 4. This model captures features of the mean square separation currently unexplained
by theory. The main findings and observations are summarized in § 5.

As a final introductory remark, we briefly comment on the other scaling regimes in pair
dispersion. The initial ballistic (or Batchelor) regime is kinematic in nature and assumes
that the particles maintain their initial velocity over short timescales. This approximation
is valid for any continuous velocity field in the limit of small t, and results in a 〈r2〉 ∼
t2-scaling law (Batchelor 1950). For long times, the pair separation distance increases
beyond the integral length scale, where the particles move independently leading to a
diffusive dispersion regime, which is known as the Taylor regime (Taylor 1922). Both
the initial short-time Batchelor and the long-time diffusive regime are well established
and are independent of the detailed structure of turbulence, which is not the case for the
intermediate-time Richardson-scaling regime considered here. We return to these other
regimes in § 4.

2. Derivations of t3 scaling

This section reviews a number of different theories, which predict a 〈r2〉 ∼ t3-scaling
regime (§§ 2.1–2.3). Particular emphasis will be on the ranges for which t3 scaling is
predicted. It is intended as an overview of the broad variety of approaches without
claiming to be complete. However, in the end, all these theoretical studies use quite similar
assumptions. Their validity is discussed in §§ 2.4 and 2.5.

2.1. Dimensional analysis
Batchelor (1950) obtained t3 scaling for initial separations, r0 = r(t = 0), in the inertial
range from dimensional arguments, which are similar to those originally presented by
Obukhov (1941). Within the inertial range, the relative motion (i.e. velocity) is said not
to be affected by viscosity. Furthermore, the dependence of the dispersion on the initial
separation, r0, and the energy containing motions is assumed negligible at intermediate
times (defined in § 3.1) when r2

0 � 〈r(t)2〉 � L2. In the spirit of K41 (Kolmogorov 1941),
the relative motion then depends only on the mean dissipation rate, ε, and time, t. From
dimensional consistency, it follows that (Batchelor 1950)

d〈r(t)2〉
dt

= Cεt2, (2.1)

where C is a dimensionless constant. Integration subsequently yields

〈r(t)2〉 − r2
0 = gεt3. (2.2)

Here g (= C/3) is the Richardson constant. In a later paper, Batchelor (1952) introduced
a time shift t1 allowing for some influence of the initial pair separation r0 on the effective
origin (t1, r2

1), which resulted in

〈r(t)2〉 − r2
1 = gε(t − t1)3. (2.3)

Other than that, the set of assumptions resulting in (2.3) remained the same as for (2.2).
Further justification for an effective origin is given by Ishihara & Kaneda (2002), which
is based on the observation of a linear region in the Lagrangian correlation of the velocity
difference.
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2.2. Mechanistic/stochastic approach
A physical mechanism leading to t3 scaling was proposed by Bourgoin (2015). In this
model, the mean square particle separation, 〈r(t)2〉, is described by a stepwise ballistic
growth. During each step k, the pair’s relative velocity squared is constant and given
by the second-order Eulerian structure function, S2, evaluated at the scale of the particle
separation distance, rk. This leads to ballistic dispersion, which is maintained for a time
period tk. Accordingly, the pair separation will have grown to rk+1 at the start of the next
step k + 1. The ballistic process repeats at the new scale, rk+1, with the associated S2(rk+1)
and time scale tk+1. Both the Eulerian structure function and the time scale are related to
the particle separation distance by imposing K41 scaling. Specifically, S2 ∼ (εr)2/3, which
applies in the inertial range. This implies that the theory is valid for rk (including r0) within
the inertial range. Furthermore, tk = αS2(rk)/2ε, where α is referred to as a persistence
parameter. The condition α = 1 corresponds to the eddy turnover time at scale rk. This
stepwise process leads to

〈r(t)2〉 = gε(t − t0)3, (2.4)

where the virtual time origin t0 depends on the initial separation. The model parameter α

can be tuned to yield a Richardson constant g = 0.55 consistent with reported values in the
literature.

It is important to note that the ballistic dispersion model is local in its original
implementation, that is, only the eddies of scale rk contribute to the relative velocity
and these eddies have inertial range scaling properties. Furthermore, the variations in the
square separation at t > 0 are not considered, i.e. the model only uses the mean.

The ballistic approach is general and can be adapted to turbulent shear flow (Polanco
et al. 2018). Moreover, the actual S2 (as opposed the inertial range model) may be inserted,
which yields deviations from (2.4) (Liot et al. 2019, see also § 4). However, we focus
on the case of homogeneous isotropic turbulence with inertial range and local dispersion
assumptions, because it yields the classical Richardson scaling, which is of interest here.

Another ballistic model was proposed by Thalabard et al. (2014), who considered the
pair dispersion as a continuous-time random walk process. The inertial range and local
dispersion assumptions are the same as in Bourgoin (2015), however, the stepwise ballistic
scenario is formulated in terms of increments in the pair separation distance, r (as opposed
to its square), and a different choice is made for the relative velocity between the particles
at a given scale. These choices also lead to a t3 scaling for 〈r(t)2〉 in the inertial range,
but the separation growth is governed at leading order by third-order velocity increments
as compared with the second-order increments in the Bourgoin (2015) model. Thus, the
resulting physics is different owing to different choices for the relative velocity between
the particles. Related continuous-time random walk descriptions of pair dispersion include
the so-called Lévy walks (e.g. Shlesinger, West & Klafter 1987), in which a probability
distribution is assumed for the steps in the pair separation distance and the associated time
steps.

In Lagrangian stochastic models (Thomson 1987; Wilson & Sawford 1996; Sawford
2001), the dispersion of particles is treated as a Markov process, where the changes in
a pair’s relative separation and relative velocity depend only the present separation and
relative velocity. Therefore, the process is memoryless and ignores any history effects.
Then, the relative velocity increment at each time step is described by a stochastic
differential equation containing a drift term and a diffusion term. The latter adds
a Gaussian white noise, whose amplitude scales with (ε dt)1/2 in the inertial range
according to K41. However, a dissipation range correction has been considered by
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Borgas & Yeung (2004). The drift term can be related to the Eulerian relative velocity
probability density function, pE (Thomson 1987). Assuming K41 inertial range properties
for pE, that is, the shape of pE is self-similar and its variance scales according to ∼(εr)2/3,
results in Richardson scaling, see Sawford (2001) for a review and Devenish & Thomson
(2019) for a recent example. Note, however, the large scatter in the Richardson constants
predicted by the different Lagrangian stochastic models (Sawford 2001). Clearly other
modelling aspects also play a critical role. The above assumes that r (while distributed)
remains within the inertial range, which is a local dispersion assumption in the sense that
the small dissipative scales and the large scales do not influence the dispersion. In an actual
turbulent flow, pE is not self-similar (Sawford & Yeung 2010), which leads to deviations
from the classical Richardson scaling, as discussed further in § 4.

2.3. Spectral approach
Malik (2018) related the slope of the kinetic energy spectrum, E(k), to the pair dispersion
power law. Note that there was no dissipative range in the assumed energy spectrum.
Consequently, the initial separation was always in the inertial range. For local dispersion,
i.e. dispersion by the turbulent scales equal to the pair separation, and a k−5/3 energy
spectrum, the Richardson t3-scaling law was obtained. However, including effects of
non-local scales, that is, inertial range scales larger than the separation distance, was
shown to enhance the dispersion and increase the power scaling (tγ with γ > 3). So, the
assumption of local dispersion seems important in obtaining t3 scaling.

2.4. Why Kolmogorov theory works for average energy related statistics only
The available approaches predicting t3 scaling (§§ 2.1–2.3) rely on the existence of an
inertial range, where all flow properties depend only on ε and the local scale (length scale r
or time scale t). This is referred to as Kolmogorov theory, or K41, and represents the classic
inertial range assumption. K41 predicts, among other things, that in the inertial range,
S2 ∼ (εr)2/3 and E ∼ k−5/3. These results were used in §§ 2.2 and 2.3, respectively. While
S2 ∼ (εr)2/3 and E ∼ k−5/3 appear to be accurate subject to minor corrections (e.g. Donzis
& Sreenivasan 2010), this does not imply that K41 can be extended to other turbulence
properties, including dispersion, without question. We explain our reservations below.

To better understand the successes and limitations of K41, it is useful to consider the
intermediate range as a matching or overlap region, which connects the small-r regime
to the large-r regime. The present matching argument developed for structure functions is
similar to that of Tennekes & Lumley (1972, p. 264) and George (2013) for the inertial
range in the energy spectrum. Consider the nth-order velocity structure function, Sn(r) =
〈|δu(r, 0)|n〉, where δu is the relative velocity between the particles at t = 0. Assume that
for small separation r, these structure functions scale with the Kolmogorov length and
velocity scales, η and uη, respectively, which is written as

Sn(r) = un
ηS+

n (r+), (2.5)

where r+ = r/η. At large r, integral scaling applies, which is written as

Sn(r) = UnS̃n(r̃), (2.6)

where r̃ = r/L. Furthermore, assume that there exists an overlap or matching region where
both scalings are valid. In that case, the derivatives dSn/dr from (2.5) and (2.6) can be
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equated, which results in

(r+)1−n/3 dS+
n

dr+ = D−n/3(r̃)1−n/3 dS̃n

dr̃
. (2.7)

In the above equation, both sides have been multiplied by r1−n/3 and the relation u3
η/η ≡

ε = DU3/L has been used, where the normalized dissipation rate, D, is a constant in (near)
equilibrium turbulence at sufficiently large Reynolds number (Reλ> 100, Sreenivasan
1998; Kaneda et al. 2003). The latter follows from the energy balance, where the average
dissipation rate must be equal to the average turbulent kinetic energy production rate when
turbulence is at equilibrium. Note that the energy balance ε = DU3/L does not require an
inertial range (see also Pope 2000). It only assumes that production occurs at large scales,
and hence the production rate scales with U3/L. In the limit of large Reynolds number,
and hence r+ → ∞ and r̃ → 0, the left- and right-handsides of (2.7) must be equal to the
same constant, which we define as (n/3)Cn. Subsequent integration yields

Sn(r) = Cn(εr)n/3 (2.8)

for the overlap region. Equation (2.8) presents the classical Kolmogorov relations. So, if
the assumption presented in (2.5) holds, we expect (2.8), and hence K41, to be valid for
the intermediate range in turbulence at sufficiently large Reynolds number. The validity of
(2.5) is easily verified.

For the special case of the second-order structure function (n = 2), Kolmogorov scaling
applies to a very good approximation at small r (figure 2a). Consequently, ε and r appear as
the only relevant parameters in the overlap region of S2 consistent with Kolmogorov theory
(2.8). However, the collapse of S2 with uη and η is to be expected owing to the ε-based
definitions of the Kolmogorov scales. Because ε ∼ ν〈(du/dr)2〉 = limr→0(νS2/r2) and
ε = ν(uη/η)2, it follows that S2 ∼ (uηr/η)2 at small r, which validates (2.5) for n = 2.

Generally, Kolmogorov scaling does not collapse the velocity structure functions at
small r. Reynolds number dependencies are clearly visible for n ≥ 6 (figure 2c,d), and may
already be noticed at n = 4 (figure 2b). This means that another, independent scale needs
to be combined with the Kolmogorov scales to collapse the data. The only remaining
independent turbulent scale (in the current understanding of turbulence) is the integral
scale. Therefore, the lack of a collapse in figure 2 suggests that large-scale influences
are present at small r. Indeed, the large scales influence the magnitude and the size of
the most intense dissipation and velocity gradients (Elsinga et al. 2020). Also, Yeung,
Brasseur & Wang (1995) found evidence of a strong and direct coupling between the large
and the small scales of motion in both physical and Fourier space, which resulted in a
quick response of the small scales to changes at the largest scale. These couplings may be
associated with large energy-containing motions bounding the small-scale motions within
the significant shear layer structures (Ishihara et al. 2013; Elsinga et al. 2017). Moreover,
a dependence on the larger scales may be inferred from the anisotropy of the small scales
(Shen & Warhaft 2000; La Porta et al. 2001; Fiscaletti et al. 2016). The above observations
are clearly inconsistent with the classical assumption that the small scales are independent
of the large scales apart from the mean energy transferred (Kolmogorov 1941). We should
mention that these large-scale influences at small r do not appear in S2 (figure 2a), because
of the way uη and η have been defined (see above). The lack of collapse at small r in
figure 2(c,d) causes (2.8) to fail in predicting the power-law exponent at intermediate r
when n > 5 (Benzi et al. 1993, their figure 2). Large-scale influences, i.e. a contribution
from U at small length scales, can explain the observed discrepancy in these power-law
exponents (She & Leveque 1994).
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Figure 2. Longitudinal velocity structure functions of order 2, 4, 6 and 8 (a–d, respectively) at r/η < 100,
which is the length scale for small-scale coherence (§ 3.1). The structure functions are normalized using the
Kolmogorov velocity and length scales. DNS results are presented for four different Reynolds numbers (see
legend inset in panel d). The DNS data sources are Ishihara et al. (2007) (Reλ= 268, 446 and 675, cases
1024-2, 2048-2 and 4096-2 in their paper) and Elsinga et al. (2020) (Reλ= 1114, case 8192-2 in their paper,
however, using a slightly different time instant).

In summary, Kolmogorov theory appears to be suitable for statistical averages closely
associated with energy (e.g. energy spectrum, S2, D and its Lagrangian equivalent DL),
because K41 is based on the energy balance (and equilibrium). However, Kolmogorov
theory is less suitable for flow properties other than energy, such as the higher-order
moments of velocity difference (n > 5 in particular), because, in those cases, the
large-scale influences at small r are not accurately accounted for. Note that the intermediate
region may still be considered as an overlap region, but velocity and length scales different
from uη and η are required to collapse Sn at small r and n >∼ 5. Different scales may also
improve the collapse for lower-order moments, n ∼ 4, but the gain will be less obvious,
because the observed deviations from K41 are quite small in those cases.

What are the implications for pair dispersion? For the initial Batchelor regime at small t,
the mean square separation depends on S2(r0) (Batchelor 1950, § 4) and hence collapses in
Kolmogorov scaling for a given r0 (e.g. Sawford, Yeung & Hackl 2008; Salazar & Collins
2009). So, the small-t regime depends on uη, η and r0. The additional r0 dependence
may carry over into the overlap region and affect the scaling exponent at intermediate
time (and indeed it does, §§ 3 and 4). This is similar to what has been observed for the
velocity structure functions, where the Kolmogorov scales fail to collapse the higher-order
structure functions at small r causing the breakdown of K41 in the intermediate range for
n >∼ 5. The additional r0 dependence may also introduce a Reynolds-number dependence
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in the scaling exponent. Such an r0 dependence at intermediate times can be viewed as
a non-local effect or a history effect, which is not included in the K41-based theories
predicting Richardson scaling (§§ 2.1–2.3). Moreover, r(t) is distributed at the end of
the Batchelor regime, and hence at the start of the intermediate regime, which further
complicates the analysis, as discussed in § 2.5. It is therefore not obvious that K41 should
apply to pair dispersion at intermediate times.

2.5. Non-local dispersion and turbulent structure
The approaches in §§ 2.2–2.3 include the idea that, at any given time, only the turbulent
eddies at the scale of the mean pair separation distance, 〈r(t)2〉1/2, contribute to the rate
of change of the separation distance. This is known as local dispersion, as opposed to
non-local dispersion, where the rate of change of the pair separation distance is affected
by turbulent eddies at scales other than 〈r(t)2〉1/2.

Dispersion, however, contains non-local contributions. For example, some particles,
initially at r0 within the inertial range, are brought closer together as time progresses with r
eventually entering into the small-scale range, while other pairs move far apart causing r to
be in the large-scale range. Consequently, the pair separation probability density function
(PDF) is very broad (e.g. Scatamacchia, Biferale & Toschi 2012; Bitane, Homann & Bec
2013), which means that the pair dispersion for r0 at later time is affected by energetic
scales and viscous scales simultaneously. Furthermore, the PDFs may depend on r0, which
could help to explain an r0 dependence at intermediate time. These issues are minor when
the Reynolds number is extremely large and it would take any pair very long to disperse
to scales well outside the inertial range. However, as argued in § 2.4, notable large-scale
influences persist down to small r. This makes predicting the tails of the PDF, and hence
the mean square separation, highly complex.

The complex relation between dispersion and turbulent scales is illustrated in figure 1.
A particle pair leaving a small-scale eddy inside the significant shear layer almost
immediately enters the neighbouring energetic scales (pair A in figure 1a). In that case,
the dispersion is always affected by the viscosity or the energy-containing eddies, and
there is no important contribution from inertial range eddies, even when r is in the
inertial range. Furthermore, the energetic large-scale motions bounding the significant
shear layer determine the velocity difference across the layer and thereby they control
the magnitude of the small-scale eddies and the small-scale dispersion inside the layer.
These are significant non-local effects, which are assessed in § 3.3.

Turbulent structure also contributes to the selective sampling of the flow. Pairs
that are randomly distributed initially (isotropy) align and cluster owing to the flow
structure. For example, pairs cluster onto sheets around a shear layer flow structure or
a node–saddle topology (e.g. Goudar & Elsinga 2018). All pairs then disperse along
the directions of the sheet, which roughly correspond to the directions of extensive
strain. The approximate alignment between the most extensive strain and the direction
of large elongation between particle pairs has also been noted by Devenish & Thomson
(2013). Consequently, the particles probe the turbulent flow along those specific directions,
which may have a different velocity distribution across the scales as compared with the
unconditional/isotropic energy distribution. For instance, the kinetic energy spectrum
along the most extensive straining direction of an average shear layer structure is
different (k−1) from the usual k−5/3, which is the average over all directions (Elsinga &
Marusic 2016). These effects are not well understood at present but may have important
implications. A related discussion for single particle statistics can be found in Lalescu &
Wilczek (2018).
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3. Observations

Now that the theory has been reviewed and the issues concerning the assumptions have
been discussed, we turn our attention to the evidence for Richardson scaling. Results from
direct numerical simulation (DNS; § 3.2), kinematic simulations (§ 3.4) and experiments
(§ 3.5) are considered. Furthermore, the contribution from the significant shear layers to
the overall pair dispersion statistics is examined in § 3.3. However, first, the requirements
are given for positively identifying a Richardson-scaling regime (§ 3.1).

3.1. Requirements for testing Richardson scaling
When testing for Richardson scaling, the initial separation r0 is required to be in the
inertial range consistent with the assumptions made when deriving the scaling law (§ 2).
Typically, this requirement is translated into η � r0 � L (e.g. Sawford 2001; Salazar
& Collins 2009), which is correct but imprecise. Often it is misinterpreted as r0 ∼ 10η

being sufficient, simply because it is an order of magnitude larger than the lower bound,
η (see §§ 3.2 and 3.5). Note that r0 ∼ 10η is still within the linear core of the vortices and
the dissipation sheets (Jiménez et al. 1993; Elsinga et al. 2017), which are small-scale
structures. The actual lower bound, however, is provided by the assumption that the
relative velocity at scale r0 is not affected by viscosity (see § 2), i.e. not affected by the
small dissipative scales. Though it is difficult to define the lower bound for the inertial
range exactly, we may specify that r0 should be larger than the characteristic size of the
dissipation structures, which has been determined at ∼60η (Elsinga et al. 2017). Moreover,
the dissipation spectrum drops quickly for dimensionless wavenumbers kη < 10−1 (e.g.
Pope 2000) corresponding to physical length scales larger than approximately 60η. A
more conservative criterion would be r0 >∼ 120η, which is based on the coherence length
of small-scale vorticity (Elsinga et al. 2017). This stricter criterion is consistent with
the second-order Eulerian structure function revealing a r2/3 inertial range scaling for
separation distances larger than 100η (e.g. Donzis & Sreenivasan 2010). At present,
there is limited data available for r0 > 60η, let alone r0 > 120η, which makes it difficult
to effectively assess the scaling law for the inertial range. The exception may be the
experiments discussed in § 3.5. Furthermore, t3 scaling should appear for a wide range
of initial separations, r0, within the inertial range.

Concerning the temporal range, the t3 scaling is predicted for intermediate times, after
which the initial condition is forgotten (§ 2.1) and r2

0 � 〈r(t)2〉 � L2. This intermediate
range is expected to lie somewhere between the Batchelor time scale, tB = r2/3

0 ε−1/3, and
the Lagrangian integral time scale TL (Batchelor 1950). Furthermore, the t3 scaling should
appear for a decade of t to be convincing, as explained below.

Alternatively, it has been suggested that Richardson scaling can also appear for
very small initial separations, r0 <∼ η, and intermediate times, t 
 τη, when η � r � L
(Batchelor 1952; Monin & Yaglom 1975). In that case, the effect of viscosity is lost and it
is hypothesized that the particle pairs ultimately forget their r0 before entering the Taylor
regime (Batchelor 1952). In this scenario, the bulk of the pairs need to reach the inertial
range (r >∼ 120η) first. During this time, the initial condition will not be forgotten owing to
the spatial coherence that exists up to 120η (Elsinga et al. 2017). Because the velocity of
the tracers and the fluid is the same, it is reasonable to assume that the pair travel time and
the turn-over time of the fluid structure (and hence its decorrelation time) are similar for a
given length. In that case, spatial coherence of a flow structure implies sufficient temporal
coherence. Once the pairs enter the inertial range, the r0 dependence may be gradually
lost in a similar process as for the pairs with r0 inside the inertial range. Because of the
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additional time needed to reach the inertial range when r0 <∼ η, we expect that Richardson
scaling appears first for η � r0 � L, which, moreover, is the common condition appearing
in reviews on the subject (Sawford 2001; Salazar & Collins 2009). In any case, if a true
Richardson-scaling regime exists for r0 <∼ η, then there is no reason why it should not
appear for η � r0 � L from the theoretical point of view (both conditions neglect the
effects of viscosity and r0 after some time when r is within the inertial range). So far,
ballistic and Lagrangian stochastic modelling frameworks (§ 2.2) have not been able to
confirm exact t3 scaling when r0 is within the dissipative range. This is discussed in
more detail in the last paragraph of § 4. Also, the spectral approach (§ 2.3) has not yet
included a dissipative range. Therefore, we focus on the condition for η � r0 � L, which
has received wider theoretical support until now (§ 2) and may reveal Richardson scaling
first. However, results for r0 <∼ η are commented on when relevant.

Finally, there is the issue of the functional form of the Richardson-scaling regime
((2.1)–(2.4) or the one that is often used in practice: 〈|r(t) − r(0)|2〉 = gεt3). For large
times, i.e. t 
 t0 and 〈r(t)2〉 
 r2

0, these relations are equivalent. However, the observation
time in the presently available simulations and experiments is limited owing to the limited
Reynolds numbers achieved. Therefore, we briefly comment on the issue. The most general
form is given by (2.3) and uses an effective, or virtual, origin (t1, r2

1). The other forms
can be obtained by introducing specific choices for t1 and r2

1. The use of a virtual origin
has received important criticism because it allows fitting any power law to the data (e.g.
Ouellette 2006; Salazar & Collins 2009). This is illustrated in figure 3. Here, the actual
mean square separation is taken to evolve according to 〈r(t)2〉/η2 = (t/τη)

2 (blue line),
where τη is the Kolmogorov time scale. However, by introducing a virtual origin when
plotting the exact same data, we can observe approximate t3 scaling over a short temporal
range, even if the actual dependence is t2. The plot also shows that for sufficiently long
times, the true t2 scaling is recovered for all cases ((t − t1) > 100τη in the example of
figure 3). In this way, a spurious t3-scaling range can be obtained for at most half a decade
(approximately 1/4 decade owing to a time shift and another 1/4 decade owing to an r2

1
shift). Hence, the issue of the virtual origin appears irrelevant if a t3-scaling range can
be observed for at least a full decade of time. In that case, we may admit the use of the
most general form with the virtual origin as a fit parameter (2.3). The requirements for
identifying Richardson scaling in a linear plot of 〈r(t)2〉1/3 versus time are similar, as
discussed in the Appendix.

3.2. Results from numerical simulations
At the time of the review of Salazar & Collins (2009), the DNS of particle pair dispersion
in homogeneous isotropic turbulence (HIT) was available for Reλ up to 650 (Sawford et al.
2008). These simulations have not confirmed Richardson scaling beyond any doubt, as also
mentioned in their review. Either approximate t3 scaling was obtained for a single initial
separation outside the inertial range (r0 < 60η) or observed only for very short times, much
less than a decade. However, the Reynolds number in numerical simulations has increased
thereby expanding the inertial range that can be probed.

Bitane et al. (2013) considered HIT at Reλ= 460 and 730, and presented mean square
separation, 〈r(t)2〉, data for r0 ≤ 24η (their figure 2). For r0 ≈ 4η and t > 10τη, a t3 regime
is observed for almost a decade before the separation reaches the integral scale, while the
exponent is larger and smaller for r0 < 4η and r0 > 4η, respectively. Similar results were
obtained by Bragg, Ireland & Collins (2016) at Reλ= 582. Assuming these results can
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Figure 3. The mean square separation versus time, where the input is an artificial dispersion that evolves
according to 〈r(t)2〉/η2 = (t/τη)

2 (blue line, t1 = 0, r1 = 0). The other lines show the exact same data but
plotted applying different virtual origins (t1, r2

1). This leads to a spurious t3 scaling range over half a decade of
time (marked by the thick lines). Dashed lines indicate t3 power laws for reference. Note that for all cases, the
correct t2 scaling is recovered at large times.

be extrapolated to the inertial range (i.e. r0 > 60η), the exponent is expected to further
decrease, away from the predicted value of 3.

In a related paper (Bitane, Homann & Bec 2012), a short-time t2 correction term to the
Richardson regime was proposed, which depended on r0. However, the data (especially for
large r0) did not extend up to times where the correction is negligible. Furthermore, the
correction term was found to be zero only for r0 ≈ 4η consistent with their 2013 results
discussed above. Hence, they refer to r0 ≈ 4η as the ‘optimal choice’ for observing t3
behaviour. As remarked before (§ 3.1), at this small initial separation, the pair is released
within the same small-scale flow structure and not within the inertial range. Moreover, true
Richardson dispersion applies to a range of initial separations, as opposed to one specific
value of r0.

Additionally, Bitane et al. (2012, 2013) define a new time scale, tt = S2(r0)/(2ε), for the
end of the initial ballistic t2 regime, after which a Richardson regime could appear. Here,
S2(r) = 〈|δu|2〉 is the second-order Eulerian structure function and δu is the longitudinal
velocity difference over a distance r. The time scale tt was shown to collapse the end of
the Batchelor regime for their data at Reλ= 460 and 730 (Bitane et al. 2013).

An even higher Reynolds number, Reλ= 1000, was achieved by Buaria, Sawford &
Yeung (2015). Moreover, they presented mean square separation data for the inertial range,
that is, r0 = 64η and 256η, which are reproduced in figure 4 (blue solid lines) along with
the results for the other initial separations (red dashed lines). Note that the t2-compensated
mean square separation is shown here, such that horizontal lines indicate Batchelor t2
scaling. A Richardson t3 power law is indicated by a dash-dotted line for reference.
Again, a t3 regime is observed only for r0 ≈ 4η, while the larger (up to 256η) and the
smaller initial separation results approach this line from above and below, respectively.
However, the results for these other r0 do not reveal an exact t3 scaling. Focussing on the
inertial range (blue curves), it is seen that after the initial Batchelor t2-scaling regime,
the compensated mean square separation first decreases (implying tβ scaling with β < 2)
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Figure 4. The mean square separation versus time at Reλ= 1000, data from Buaria et al. (2015), where
TL/τη ≈ 80. The thick dashed and solid lines are for different initial separations, r0/η = 1, 4, 16, 64, 256, 1024
and 4096 (increasing upwards), where the inertial range (r0/η = 64 and 256) is marked by the blue solid lines.
Note that the mean square separation is multiplied by t−2, such that a horizontal line corresponds to Batchelor
scaling, while the slope representing the Richardson t3 scaling is indicated by the dash-dotted line. The relevant
time scales for each initial separation are marked by symbols, where (+) indicates the Batchelor time scale tB
and (*) indicates tt. Important length scales are indicated by black dotted lines with symbols, where (circles)
mark the condition 〈|r(t) − r(0)|2〉 = (4λT )2 and (squares) mark 〈|r(t) − r(0)|2〉 = L2. The thin grey lines for
t/τη > 200 are extrapolations from the data suggesting a convergence towards a common point. Beyond this
point, the Taylor dispersion regime is anticipated (§ 4).

and reaches a minimum. The time scale associated with this decrease appears to be the
Batchelor time scale (marked + in the plot). Moreover, the mean square separation at
this point is of the order of 4λT (marked by the dotted line with circles in the plot),
which means that a significant number of pairs will have been separated by more than
the thickness of the significant shear layer. These pairs may already feel the effect of
the energetic large-scale motions (figure 1). Following the minimum, at around t = tt (*
in figure 4), the compensated mean square separation increases, but does not reach a t3
regime. Furthermore, the mean square separation quickly reaches integral length scales.
For r0 within the inertial range, there is half a decade, or less, between tt and the time
corresponding to the condition 〈|r(t) − r(0)|2〉 = L2 (indicated by the dotted line with
squares). When the mean square separation increases beyond L2, the curves for all initial
separations seem to converge to a common point (figure 4). From that common point,
the onset of a Taylor regime is anticipated, where the influence of the initial separation
is lost. The data show that the mean square separation remains dependent on r0 up to the
simulated time, while the extrapolated lines suggest that this dependence persists until the
Taylor regime is approached. The r0 dependence is a clear violation of the assumptions
leading to a Richardson-scaling regime for r0 within the inertial range, as well as for
r0 <∼ η (§ 3.1). In conclusion, at Reλ= 1000, there is still no sign of a true Richardson-
scaling regime for the inertial range and large-scale influences appear already at the end of
the Batchelor regime when the pair separation is of the order of the significant shear layer
thickness.
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Figure 5. Reynolds number dependencies in the mean square separation for (a) r0 = 4η, (b) r0 = 16η and
(c) r0 = 64η (data from Buaria et al. 2015). The curves present three different Reynolds numbers as indicated
in panel (c).

At Reλ= 1000, inertial range scaling is observed in the energy spectrum and the
second-order velocity structure function to a good approximation over 1–1.5 decades
(e.g. Donzis & Sreenivasan 2010; Ishihara et al. 2016, 2020). This is consistent with
defining an approximate inertial range as 60η < r < L (≈ 2100η at Reλ= 1000), see (§ 3.1).
However, inertial range scaling in these statistics does not imply inertial range scaling in
pair dispersion, i.e. Richardson scaling, as argued in § 2.4.

As mentioned, the DNS data reveal a Reynolds number dependence of the mean square
separation at intermediate times, which is most notable for r0 >∼ 16η. Figure 5 presents
results from Buaria et al. (2015) for r0 = 16η and 64η as an example. Furthermore, the
result for r0 = 4η is included as a reference. The initial deviation from the Batchelor regime
seems to collapse in Kolmogorov scaling. However, in the intermediate range beyond
t/τη ≈ 60, the slope, and hence the scaling exponent, is found to change with the Reynolds
number for r0 = 16η and 64η (figure 5b,c). Note that the intermediate range is relatively
short at these Reynolds numbers. If we strictly define the intermediate range for r0 = 4η as
the range where the t3-compensated mean square separation is nearly constant between the
values 0.55 and 0.57 (figure 5a), then the intermediate range for r0 = 4η starts at t/τη ≈ 60
for all Reynolds numbers and extends to t/τη ≈ 80, 100 and 180 for Reλ= 390, 650 and
1000, respectively. Here, it has been assumed that t3 scaling is attained for r0 = 4η, which
is in line with observations, as discussed above. Clearly, the intermediate ranges are very
short. The intermediate ranges for the other r0 are more difficult to infer, because their
scaling exponents depend on Reλ. However, at a given Reλ, the size of the intermediate
range is expected to decrease with increasing r0 because the Batchelor regime extends to
larger t/τη. Alternatively, the intermediate range can be more loosely defined as the full
range between the end of the Batchelor regime and the onset of the Taylor regime. The
latter definition is adopted when further quantifying the Reynolds number dependence of
the intermediate range in § 4.

Clear deviations from the inertial range dispersion model behaviour (non-Richardson
dispersion) have been reported for initial separations in the dissipative range, r0 < η

(Scatamacchia et al. 2012). However, some observations may still be of interest for the
inertial range, because they illustrate how large scales affect dispersion at smaller scales,
including the smallest scale. The reported deviations arose from extreme events of rapidly
separating pairs and pairs remaining close together for a long time (order integral time
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scale). The separating velocity associated with the former is of the order of the r.m.s.
velocity, U, which indicates a contribution from the large-scale energetic motions. So,
both extremes are (partially) linked to the large scales, either through the time scale or
the separation velocity. These large-scale influences at small r0 can be understood from
the shear layer structures that characterize the turbulent strain (Elsinga et al. 2017) and
hence the turbulent dispersion. The velocity difference across the most intense small-scale
straining structures within the shear layer is of order U (Ishihara et al. 2013; Elsinga et al.
2017) meaning that a pair with r0 <η centred on such a structure separates with U. The
pair then maintains that velocity difference for a significant amount of time (order integral
time scale) as each particle enters into a different integral-scale flow region on either side
of the shear layer (figure 1a pair A). This scenario is consistent with the extreme pair
separation observed by Scatamacchia et al. (2012). Extremely slow dispersion, however,
can be understood as pairs initially located within the same large-scale and nearly uniform
flow region bounding the shear layers (figure 1a pair B). Within these flow regions, the
velocity differences are relatively small, and because these regions are large, the particle
pairs remain within them for long times (order integral time) without separating much.
In these cases of extremely fast or extremely slow separation, the particles remember
their initial condition (velocity difference) for very long times violating t3-scaling-law
assumptions (§§ 2 and 3.1). Long-term memory effects have also been reported by Bitane
et al. (2013) for r0 ≤ 24η. Furthermore, the fact that the (initial) pair separation is small
does not imply that there must be a small-scale eddy structure between these particles. In
fact, if their relative velocity is small, it is more likely that they are in the same large-scale
uniform flow region. Note that in the kinetic energy spectrum, low velocity magnitude
is associated with small scales but for relative dispersion, the velocity difference, i.e. the
velocity gradient, matters, whose magnitude is low at large scales. The above structural
explanation for extreme dispersion highlights the important contributions of the large
scales to the dispersion at small r, which is inconsistent with assumptions underlying the
t3-scaling law (§ 2).

3.3. Non-classical pair dispersion in a significant shear layer
Here, we present new results showing extreme pair separation. They are obtained for
particles released inside the significant shear layer detected by Ishihara et al. (2013). The
present results are based on the DNS of homogeneous isotropic turbulence at Reλ= 1131,
where the full fluid velocity field has been advanced in time using the DNS code described
by Ishihara et al. (2007, 2016). At the initial time, which corresponds to the time instant
discussed by Ishihara et al. (2013), 719 fluid tracer particles are distributed randomly
within 11 connected subdomains coinciding with the core of the detected significant
shear layer. The subdomains are 96.4η × 96.4η × 96.4η in size and they contain the
highest box-average enstrophy levels within a slice through the significant shear layer.
The particles are tracked using the method described by Ishihara et al. (2018), who traced
fluid particles and inertial particles in a series of DNSs of turbulent flow using cubic
spline interpolation for the fluid velocity at the particle position and using a fourth-order
Runge–Kutta method for time integration. Here, we are concerned only with the fluid
particle traces.

The significant shear layer was observed to survive in visualizations of intense
vorticity until at least t/τη = 60, where t = 0 corresponds to the time when the particles
were released. During this time, the average strength of the vortices inside the layer
decreased slightly. After t/τη ≈ 60, layer deformations were observed. However, a
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Figure 6. The t2-compensated mean square separation for pairs released inside the significant shear layer
(green lines). Different lines correspond to initial separations r0/η = 64, 128 and 256 (increasing in the direction
of the arrow). The unconditional result for pairs released anywhere in the flow with r0/η = 64 (grey line) is
included for reference (from figure 4, data: Buaria et al. 2015). The thick dash-dotted line shows (3.1). Dashed
lines with symbols (circles) and (squares) mark the condition 〈|r(t) − r(0)|2〉 = (4λT )2 and 〈|r(t) − r(0)|2〉 =
L2, respectively.

layer-type structure appeared to be maintained between the same large-scale motions for
up to at least t/τη ≈ 100. At this point, it is hard to provide an exact number for the layer’s
lifetime. For the present purpose, it suffices that the layer survives until at least t/τη = 60,
because the particles leave the layer well before. This is confirmed by the results presented
below. As pointed out before, the lifetime of the individual small-scale vortices inside the
layer may be shorter.

From the particles released inside the significant shear layer, 1909, 2696 and 1920
particle pairs are obtained at r0 = 64η, 128η and 256η, respectively. These initial
separations are in the inertial range and smaller than the significant shear layer thickness,
i.e. 4λT = 264η at the present Reynolds number. While the pairs at r0 = 64η and 128η

are approximately randomly oriented, the pairs at r0 = 256η are predominantly aligned
with the significant shear layer because of confinement effects, which are caused by the
separation being very close to the layer thickness. Therefore, the results at r0 = 256η are
affected by orientation.

The mean square separation for the particle pairs released inside the significant shear
layer is shown in figure 6. As expected, the mean square separation initially follows
Batchelor scaling, which corresponds to a horizontal line in this t2-compensated plot.

The associated separation velocity is approximately
√

〈|r(t) − r(0)|2〉/t2 = 32uη, which
corresponds to 1.8U. The large, order U, separation velocity is consistent with the velocity
difference across the significant shear layer (see Ishihara et al. 2013 and § 1). Moreover,
the separation velocity in the Batchelor regime is relatively insensitive to r0 within the
considered range, which is clearly different from the unconditional result for pairs released
anywhere in the flow at the same r0 and similar Reλ (figure 4, blue lines). This also suggests
that U is the only relevant velocity scale for the dispersion inside the significant shear layer.

In the range 4 < t/τη < 20, the mean square separation follows a ∼t1.2 scaling for
r0 = 64η and 128η (figure 6), which is reminiscent of a t1 scaling associated with
Taylor dispersion. However, it concerns a Taylor-like dispersion at relatively small scales,
i.e. 〈|r(t) − r(0)|2〉 <∼ (4λT)2, in contrast to the genuine Taylor regime, which appears at
scales much larger than L. In Taylor dispersion, the particles move independently, which
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Figure 7. (a) Map of the Lagrangian correlation of the velocity difference, RL, for r0 = 64η normalized by its
value at t =
t = 0. The thick contour indicates 0.4. (b) Profiles of RL taken at t = 0 and t = 40τη.

is also the case inside the significant shear layer. This can be seen from the Lagrangian
correlation of the velocity difference RL(r0, t, 
t) ≡ 〈δu(r0, t) · δu(r0, t + 
t)〉, where δu
is the relative velocity between the particles with the initial separation r0. For r0 = 64η

and t/τη < 20, the normalized RL drops to small values (<0.4) within a time delay 
t
of 5τη (figure 7b), which means that the relative velocity decorrelates quickly and that
the particle motions are nearly independent after 5τη. This time scale is small, but
not negligible, on the temporal range 4 < t/τη < 20. Moreover, the particle separation is
still close to the small-scale coherence length and depends on r0. Additionally, Taylor
dispersion requires RL(r0,t,0) to be constant, which is approximately the case (figure 7).
Therefore, the dispersion is Taylor-like, but not exactly Taylor. The largely independent
motion of the particles is consistent with the structural description of the significant
shear layer, where intense small-scale structures are clustered inside a thin layer bounded
by large-scale motions (§ 1). In the layer, there are no intermediate scales contributing
importantly to the dispersion. The small-scale coherence length is between 60η and 120η

depending on the definition (Elsinga et al. 2017, see also § 3.1). Therefore, the Taylor-like
dispersion by uncorrelated small-scale structures appears for separations larger than 60η

and smaller than the layer thickness, 4λT . Beyond r ∼ 4λT , particles leave the layer and
the bounding large-scale motions also contribute to their dispersion, which is therefore no
longer Taylor-like. Consequently, the Taylor-like regime is present for r0 = 64η and 128η,
but is not as clearly seen for r0 = 256η = 3.9λT .

Furthermore, the present observation of a Taylor-like regime appears consistent with
the model analysis of Devenish & Thomson (2019). They showed that diffusion dominates
pair dispersion after the initial Batchelor regime in the case that (i) the constant of
proportionality in the second-order Lagrangian velocity structure function (and hence the
relative velocity) is very large and (ii) the relative velocity is short correlated in time, as
assumed in a Markov process description. As shown here, these conditions are satisfied
locally within the significant shear layer.

The Taylor-like dispersion at intermediate r0 can be quantified using the relation
〈|r(t) − r(0)|2〉 = 2

∫ t
0 ds

∫ 0
−s d
sRL(r0, s, 
s) (Ishihara & Kaneda 2002). In the

Taylor-like regime, RL drops to zero quickly, which justifies introducing the approximation∫ 0
−s d
sRL(r0, s, 
s) ≈ RL(r0, s, 0)τL, where τL is a Lagrangian correlation time scale

for the small-scale motions inside the layer. Furthermore, RL(r0, s, 0) is approximately
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constant in the Taylor-like regime. For r0 = 64η and 4 < t/τη < 20, our results suggest that
τL ≈ 4τη and RL ≈ 1.8U2, which yields

〈|r(t) − r(0)|2〉 ≈ 14U2τηt (3.1)

for the Taylor-like dispersion regime inside the significant shear layer. When compared
with the data, relation (3.1) is seen to capture the order of magnitude in the Taylor-like
dispersion range 4 < t/τη < 20 (figure 6).

For r0 = 64η and 128η, other regime changes are observed at t/τη ≈ 30 and 100
when 〈|r(t) − r(0)|2〉 is larger than (4λT)2 and is approaching L2, respectively (figure 6).
The former is associated with pairs leaving the significant shear layer and entering the
large-scale motions bounding the layer. The latter is close to the large-scale turnover
time, ∼130τη at the present Reynolds number, which is the order of magnitude for the
lifetime of the significant shear layers (§ 1). Therefore, the particles have left the shear
layer (t/τη ≈ 30) well before the expected lifetime of the shear layer (>60τη). Just before
the regime changes in figure 6, the peak of the Lagrangian correlation RL is observed to
broaden in the direction of 
t, which is evident from the thick contour line breaking away
from the vertical axis at t/τη ≈ 20 and 75 in figure 7(a). These rather sudden changes in
the peak width signify that distinctly different scales affect the dispersion, which is very
different from a gradual local dispersion process where the particles continuously probe
the scale given by their instantaneous separation r. Furthermore, a longer-time velocity
correlation appears for t/τη > 30, when RL increases with 
t, though eventually, RL is
expected to go to zero at very large 
t. This larger-scale influence in the correlation is
consistent with particles entering into the large scale, quasi-uniform flow regions bounding
the significant shear layer at t/τη ≈ 30. Beyond t/τη ≈ 100, the mean square separation
increases rapidly, but this result cannot be evidence for a Richardson scaling regime,
because the temporal range is too short and the average separation is partially outside
the inertial range (see criteria in § 3.1).

Based on these new results, it is concluded that pair dispersion inside the significant
shear layer is highly non-classical, because it is dominated by non-local dispersion.
This non-locality is evident from (i) the velocity scale governing the dispersion, which
is U even at relatively small spatial scales, and (ii) the Taylor-like dispersion driven
by small-scale motions, which appears for intermediate r0. The latter is very different
from the Batchelor and Richardson regimes commonly associated with small- and
intermediate-time dispersion. Furthermore, we speculate that the Taylor-like dispersion
inside the significant shear layers contributes to (or possibly causes) the dip in the
unconditional t2-compensated mean square separation (§ 3.2, figure 4), because they occur
over the same temporal range.

The question remains, how important is the significant shear layer dispersion to the
overall (unconditional) mean square separation? Its relative contribution is given by the
product of the relative magnitude of 〈|r(t) − r(0)|2〉 and the volume fraction occupied
by significant shear layers, assuming that the particle pairs are randomly distributed
over space. The volume fraction occupied by significant shear layers is estimated to be
∼10% at Reλ≈ 1000 (Elsinga et al. 2020). Initially, the mean square separation inside the
layer is almost an order of magnitude larger than the unconditional result for r0 = 64η

and Reλ≈ 1000 (see figure 6). At later times, the difference is still at least a factor of
2−3. Multiplying these factors by the 10% volume fraction reveals that the significant
shear layers’ relative contribution to the overall mean square separation is significant and
order one. Moreover, the significant shear layers will also contribute to the dispersion
of the particles initially outside the layer and later entering into the layer, which is not
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accounted for here. Therefore, the present estimate represents a lower bound for their
relative contribution.

The significant shear layer contribution remains significant as the Reynolds number
increases. The volume fraction of these layers decreases according to (λTL2/L3) ∼ Re−1

λ

(Elsinga et al. 2020), while the layer’s relative magnitude of 〈|r(t) − r(0)|2〉 scales
according to (U/uη)

2 ∼ Re1
λ, because the dispersion inside the layer and the overall

dispersion are governed by U and uη, respectively. Therefore, the product of these two
is independent of Reλ meaning that the layer’s relative contribution to the unconditional
mean square separation is order one at all Reynolds numbers.

3.4. Results from kinematic simulations
Richardson scaling has also been examined using kinematic simulations, where the
particles are tracked through random velocity fields with the spectral properties of a
turbulent flow. However, as argued by Thomson & Devenish (2005), any appearance of
a t3-scaling range is accidental and the Richardson constants thus obtained are generally
much smaller than those from experiments and numerical simulations of actual turbulence
(e.g. Ott & Mann 2000; Sawford et al. 2008). Their main explanation for the disparity
is that, in kinematic simulations, the small scales are not advected by the large scales
as in actual turbulence, which results in the particle motion being affected by the small
scales for too short times. However, Fung et al. (1992), in their kinematic simulations,
compensated for large-scale advection effects. Such compensation is non-trivial and
introduces assumptions. These assumptions are essentially the same as those used in the
theories discussed in § 2, that is, the large scales (larger than r) do not contribute and hence
the dispersion is governed by eddies at scales close to the particle separation, r. Moreover,
the phases of the different wavelengths are random in kinematic simulations, which is
similar to the theories in the sense that the scales are considered to be independent.
Therefore, it is not surprising that the kinematic simulations with large-scale advection
compensation yield the same t3-scaling law as the theories (e.g. Fung et al. 1992). It proves
that the theory is internally consistent, but it cannot validate the theory, because similar
simplifying assumptions are used. It is, in fact, these assumptions that are being challenged
by the lack of an observable Richardson scaling regime in the DNS data (§ 3.2) and by the
results in § 3.3 showing that the large scales are significantly contributing to the dispersion
at r � L.

As mentioned, the large- and small-scale modes are independent in kinematic
simulations by construction. This leads to a profoundly different turbulent flow structure,
which affects the particle dispersion. It was already observed by Fung et al. (1992) that
the length of the intense vorticity tubes was underestimated by their artificial velocity
fields. The same effect is visible in the visualizations of the intense vortices and the
large-scale uniform flow regions in Elsinga & Marusic (2010), their figures 14 and 15.
Not only are the vortices much shorter, but also the shape of the large-scale structure
and the spatial distribution of the small scales are different. In actual turbulence, the
large scales appear elongated and the intense small-scale vortices form clusters along their
edges. However, in the artificial field, the large scales are blob-like and the small scales
are distributed uniformly over the entire domain. The dispersion of particle pairs in these
different velocity fields is illustrated in figure 8. For the purpose of particle tracking, both
fields are treated as stationary. After the initial Batchelor regime (t/τη > 2), the scaling
exponents (i.e. the slopes in figure 8) are observed to differ, especially for the larger
initial separations r0/η = 65 and 130. The coherence of the velocity field in the actual
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Figure 8. Kinematic simulations of pair dispersion in a random and DNS velocity field with the same turbulent
kinetic energy spectrum (Reλ= 170). The evolution of the t2-compensated mean square separation is shown
for three initial separations, r0/η = 5, 65 and 130 (increasing upwards). The DNS field was provided by
Dr. A.A. Wray (CTR 2002, private communication). The random field was generated using the method of
Rogallo (1981).

DNS is found to slow down the pair dispersion as compared to the random field. Note that
this illustration concerns a low Reynolds number. When significant shear layers appear
(Reλ> 250), the spatial clustering of intense small-scale structures, i.e. intermittency, is
much more pronounced, which increases the differences with respect to a random velocity
field.

To summarize, kinematic simulations with large-scale advection compensation cannot
be used to validate the Richardson-scaling law. Moreover, the artificial velocity fields do
not accurately reflect the turbulent flow structure and the pair dispersion. Because of these
issues, we will not consider the kinematic simulations in further detail here.

3.5. Results from experiments
Unfortunately, laboratory experiments have advanced very little over the last decade as far
as pair dispersion is concerned. The measurements of Ouellette et al. (2006) and Bourgoin
et al. (2006) still represent the highest Reynolds numbers achieved in an experiment, i.e.
Reλ= 815. These flow conditions have since been surpassed by DNS reaching Reλ= 1000
(§ 3.2). However, the mentioned experimental studies presented data for a wide range of
initial separations within the inertial range up to approximately t = 50τη, after which the
scatter in the data increases. Only a Batchelor t2-scaling regime was observed, which has
later been attributed to the limited observation time (<tt, Bourgoin 2015). Also, it has
been suggested that the finite measurement volume may play a role in these experiments
(Salazar & Collins 2009). However, the experimental results appear generally consistent
with DNS, which also showed that for t < tt, the pair separation follows tβ scaling with
b ≤ 2 (§ 3.2).

For low Reynolds number, Reλ≈ 100, Ott & Mann (2000) showed a short t3-scaling
range when plotting their data using a virtual origin. This range extended over less
than half a decade in time, which is not yet convincing for reasons explained in § 3.1.
Moreover, a t3 scaling was observed over a temporal range that partially overlapped with
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Figure 9. (a) A model to illustrate the effect of the orientation of the separation velocity V relative to the
initial pair separation vector r0. The normal velocity V 1 and parallel velocity V 2 are taken with respect to the
velocity of the bottom particle. (b) The resulting mean square separation for the two cases shown in panel (a)
assuming constant velocity. The results have been averaged considering a small range of deviations in angles
from the mean directions indicated in panel (a) (<6 degrees). The dash-dotted lines and dashed line indicate t2

and t3 power laws, respectively.

the Batchelor scaling range, i.e. it extended below t = tB, which suggested that t2 and t3

scaling were valid simultaneously. Furthermore, their results were for an initial separation
outside inertial range, i.e. r0 ≈ 10η. The short t3-scaling range was also observed in the
results from a large-scale DNS at Reλ= 283 covering a wider range of initial separations
outside the inertial range, r0 ≤ 32η, but a virtual origin had to be used (Ishihara & Kaneda
2002).

Based on their experiments at Reλ≈ 180, Shnapp & Liberzon (2018) found that pairs
with low initial separation velocity magnitude, i.e. small dr/dt, separated according to a
t3 law, whereas pairs with high initial separation velocity separated following a t2 scaling.
However, these observations were made outside the inertial range, that is, r0 ≤ 15η and for
time scales smaller than the eddy turnover time at r0. Nevertheless, it reinforces the notion
that the mean square separation represents an average over widely different separation
behaviours.

The observation that a subset of pair dispersions follows a t3 law is interesting and
remains to be explained. We suggest that it might be related to the orientation of the
separation velocity vector relative to the initial separation vector r0. Hereto, consider two
tracer particles in a frame of reference attached to the bottom particle (figure 9a). In this
frame, the velocity of the other particle, V , corresponds to the separation velocity vector.
When V is assumed constant and normal to r0 (V 1 in figure 9a), then dr/dt is initially zero
or small when allowing for a slight deviation from the normal condition. The resulting
evolution of the mean square separation 〈(r(t) − r(0))2〉 is given in figure 9(b), where
r(t) = |r(t)|. The plot shows that after the initial Batchelor t2 regime, the separation is
accelerated as r tilts in the direction of V 1. During this stage, the dispersion closely
follows a t3-scaling law. At later times (beyond the scale of the plot), t2 scaling is
recovered when the tilting is complete and r approximately aligns with V 1. However, if
V and r0 align (V 2 in figure 9a), then the initial dr/dt is significant and a t2 scaling is
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found throughout (figure 9b). The present results are qualitatively consistent with those
of Shnapp & Liberzon (2018), which suggests that the initial orientation of the relative
velocity is important. We further comment that identical results are obtained for both
orientations of V when the vector form 〈|r(t) − r(0)|2〉 is used to quantify the mean square
separation, instead of the scalar form 〈(r(t) − r(0))2〉 (figure 9b and Shnapp & Liberzon
2018). Therefore, the metric used to quantify the mean square separation is also important.

Many of the more recent experiments have considered inertial particles and the effects
of walls or thermal convection, which is different from the present problem of fluid tracers
in homogeneous isotropic turbulence. However, also in these cases, Reλ is typically in the
range of 250–500 (e.g. Dou et al. 2018; Petersen, Baker & Coletti 2019), which is limiting
when looking for a Richardson scaling regime. There is some evidence to suggest that
in Rayleigh–Bénard convection, a t3-scaling range also appears for r0 ≈ 4η with other r0
approaching from above or below (Liot et al. 2019). Pair dispersion experiments at much
higher Reynolds numbers would be of considerable interest. New facilities can generate
grid turbulence at Reλ∼ 5000 (Küchler, Bewley & Bodenschatz 2019), albeit the grid
turbulence is decaying, but they have not yet been used to measure pair dispersion.

High Reynolds numbers are also achieved in environmental flows, but the experimental
conditions are typically poorly controlled and the flow is often inhomogeneous and
affected by buoyancy (Salazar & Collins 2009), which introduces considerable uncertainty.
Therefore, these experiments are not considered here.

3.6. Summary
At present, there is no clear and indisputable evidence for a Richardson t3-scaling regime
in the inertial range. Only for the case of r0 ≈ 4η did a t3-scaling range appear, which
could be coincidental. A genuine Richardson regime would have resulted in t3 scaling for
a range of initial separations within the inertial range (r0 > 60η), not just for one specific
case of r0 ≈ 4η outside this range. Other initial separations were found to approach the
r0 ≈ 4η result from above or below, but they never reached a true t3-scaling regime.

Despite a considerable increase in the Reynolds numbers achieved by DNS, the
separation of scales remains limited. At Reλ= 1000, the mean separation is of the order
of the significant shear layer thickness, i.e. 〈|r(t) − r(0)|2〉 ≈ (4λT)2, at the end of the
initial Batchelor regime. It means that some pairs are dispersed by large-scale motions
well before a Richardson regime might develop (e.g. figure 1a pair A).

New results for pairs released inside a significant shear layer confirmed this conjecture.
They revealed that the separation velocity is of the order of U, and that the dispersion is
Taylor-like for r0 > 60η and 4 < t/τη < 20. This suggests that the large scales contribute
to the dispersion through the velocity scale, while the independent small-scale motions
inside the layer govern the particle motions. There does not seem to be an important role
for intermediate scales, which strongly questions the validity of the assumptions leading
to the prediction of a Richardson scaling regime. Furthermore, scaling analysis showed
that the non-local contribution from the significant shear layers to the overall mean square
separation is significant at all Reynolds numbers.

Finally, the metric used to quantify the mean square separation can have important
consequences for the observed dispersion behaviour. For example, the introduction of
a virtual origin may introduce a spurious t3 scaling range over approximately half a
decade of time. Also, there can be profound differences between the vector and the
scalar definitions of the mean square separation. These issues sometimes complicate
a straightforward comparison of results. However, they do not explain the fact that a
Richardson scaling regime has not been observed in the studies discussed.
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4. The intermediate range as a transition region

Here, we propose an alternative view of pair dispersion in the intermediate range, which
is consistent with the available data. Starting from the well-established initial Batchelor
regime and the ultimate Taylor regime, the intermediate range is regarded simply as a
transition between these two regimes. This is similar to considering the intermediate range
in the velocity structure functions as a matching region (§ 2.4). Because we do not use
inertial range assumptions, the results of our model apply to a wide range of r0, not limited
to the inertial range. Also, the present model is consistent with non-local contributions to
the dispersion.

The initial pair separation is ballistic meaning that the particles maintain their initial
velocity for sufficiently short time scales. This may be relaxed by assuming that the mean
square separation velocity, 〈|δu(r, t)|2〉, is constant, which is valid for longer times (e.g.
Goudar & Elsinga 2018) and leads to the so-called Batchelor-scaling regime (Batchelor
1950):

〈|r(t) − r(0)|2〉 = 〈|δu(r0, 0)|2〉t2 = S2(r0)t2, (4.1)

where δu is the relative velocity between the particles. To compute the three-dimensional
second-order structure function, S2, we use the functional form given in Donzis &
Sreenivasan (2010), which is given by

S2(r) = 3f (r) + r
df (r)

dr
, (4.2a)

with

f (r) = 1
15

u2
η

(
r
η

)2

[
1 +

(
cB

r
η

)2
]2/3 , (4.2b)

where cB = 0.076. The Batchelor regime extends up to t = 3tB in our model. Note that the
Batchelor regime is Reynolds number independent in Kolmogorov scaling. Therefore, it
seems reasonable to assume that the end of this regime scales accordingly, and hence is
proportional to tB independent of the Reynolds number. The pre-factor is empirical and
estimated from figure 4, where we have included the part revealing a slight dip into the
Batchelor regime. Moreover, 3tB is a close approximation of the time scale tt proposed by
Bitane et al. (2013) for the end of the Batchelor regime, when r0 > 60η and using (4.2).

At large time, the pair separation is of order L or larger, which implies that the motions of
the particles are uncorrelated and independent of the initial separation r0. This is known
as the Taylor regime, in which the mean square separation grows as (Taylor 1922; Pope
2000; Buaria et al. 2015)

〈|r(t) − r(0)|2〉 = 12U2TLt. (4.3)

Define the onset of the Taylor regime at t = cTL, where c ≈ 8 is a constant independent of
r0 and the Reynolds number. Here, the simplifying assumption is that the Taylor regime
starts at the same value of the mean square separation, and hence time, for all r0. This
seems reasonable given the convergence observed in figure 4 (and also in figure 11b).
Furthermore, the onset of the Taylor regime is assumed to collapse when using integral
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scales, which is consistent with the general scaling in this regime. The value of c was
estimated from the intersection point when extrapolating the data for different r0 (see
figure 4). Furthermore, using TL = 2U2/(DLε) (Tennekes 1979; Pope 2000; Sawford et al.
2008), we obtain for the onset of the Taylor regime:

〈|r(cTL) − r(0)|2〉
η2 = 6cDLεTL

3

η2 = 6cDL

(
TL

τη

)3

. (4.4)

The expression used for TL can be understood from the energy balance, where the average
production rate scales with large-scale quantities (i.e. U2/TL) apart from a constant and
is equal to the average dissipation rate ε (see also § 2.4). Lacking a better estimate, the
value of DL has been determined from the inertial range of the second-order Lagrangian
structure function as DL ≈ C0, where C0 = 6.0 is the Lagrangian Kolmogorov constant
(Lien & D’Asaro 2002; Sawford et al. 2008; Sawford & Yeung 2011). However, this
inertial range approach is considered reasonable for second-order moments of velocity,
as explained in § 2.4. Rewriting (4.4) in a time compensated form gives

〈|r(cTL) − r(0)|2〉
η2

(
τη

cTL

)3

= 6DL

c2 = g′, (4.5)

which yields a constant g′ ≈ 0.56 independent of r0 and the Reynolds number. This means
that the point marking the onset of the Taylor regime shifts along the time axis according
to cTL/τη when changing the Reynolds number, but remains constant in terms of the
t3-compensated mean square separation.

Finally, the intermediate regime is coarsely approximated by a basic tβ power law
connecting the end point of the Batchelor regime with the starting point of the Taylor
regime (figure 10). In the logarithmic plot, this results in a straight-line connection, where
the slope determines the exponent β. It represents a strong simplification, because the
actual Batchelor-to-intermediate and intermediate-to-Taylor regime transitions are smooth.
Nevertheless, the simple model allows to predict the exponent of the intermediate power
law as a function of the Reynolds number and the initial separation, which can be
compared to actual data.

The present model (figure 10) illustrates how the mean square separation slowly
approaches t3 scaling in the limit of Reλ → ∞, but never reaches it in any real flow. Note
that t3 scaling corresponds to a horizontal line in this t3-compensated plot. Furthermore,
it is worth pointing out that the high-Reynolds-number case shown in figure 10 is
representative of atmospheric conditions with Reλ∼ 104, where the onset of the Taylor
regime is anticipated at cTL/τη ∼ 104. So, even in these highly turbulent flows, Richardson
scaling is not returned by the model. There is, however, one exception. For r0/η ≈ 4, the
end of the Batchelor regime and the start of the Taylor regime are on the same vertical
coordinate, which results in t3 scaling. This is consistent with DNS revealing t3 scaling
only for r0/η ≈ 4 (Bitane et al. 2013; Buaria et al. 2015; Bragg et al. 2016, see also § 3.2).
Moreover, as noted by Sawford et al. (2008), the compensated relative dispersion will
approach the t3 scaling from below for r0/η <∼ 4 and from above for r0/η >∼ 4, which is
reproduced by the model.

The rate at which t3 scaling is approached is presented in figure 11(a) for different r0.
The plot shows the power-law exponent β versus the time corresponding to the onset
of the Taylor regime, cTL/τη, which varies linearly with Reλ. The results in figure 11(a)
confirm our discussion of figure 10 by showing that β = 3 for r0/η ≈ 4, while at finite Reλ,
larger and smaller r0 yield β < 3 and β > 3, respectively. Only in the limit of Reλ → ∞
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end time of this regime is 3tB (circles). The final Taylor regime ((4.3), red lines) is shown for two different
Reynolds numbers. The onset of the Taylor regime (squares) is at t = cTL along the horizontal axis, while it
is constant along the vertical axis owing to the chosen normalization, see text, and independent of r0. In this
model, the intermediate range is represented by a power scaling, which connects the endpoint of the Batchelor
regime with the starting point of the Taylor regime (black and grey lines corresponding to different Reynolds
numbers). The latter is a simplification, because, in reality, the regime changes are smooth.
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Figure 11. (a) The tβ power-law exponent for the intermediate regime versus cTL/τη, which scales linearly
with Reλ. Solid lines show the model prediction for different initial separations, r0, where β has been
determined from the power law connecting the Batchelor and Taylor regimes (black and grey lines in figure 10).
Circles present results from power-law fits to DNS pair dispersion data at Reλ= 140, 240, 390, 650 and 1000
(data sources: Sawford et al. 2008 and Buaria et al. 2015), as illustrated in panel (b). The error bars indicate the
estimated accuracy of the fit. (b) Power-law fits (dashed lines) to the intermediate regime of the mean square
separation for the case Reλ= 650 (solid lines, source: Buaria et al. 2015).

is β = 3 independent of r0. Furthermore, figure 11(a) compares the model predictions
(lines) with power-law fits to actual DNS data (circles). These fits were obtained in the
middle of the intermediate regime (3tB < t < cTL), where the slope of the mean square
separation was approximately constant in the logarithmic plot. These fits are illustrated
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in figure 11(b) for the case of Reλ= 650. Apart from the lowest Reynolds number, the
model agrees with the actual DNS data to within the accuracy of the fit. The deviations
at Reλ= 140 (cTL/τη = 110) may be understood from the fact that the straining motions
are underdeveloped for Reλ< 250 (Elsinga et al. 2017), which affects the dispersion. At
Reλ= 240 (cTL/τη = 180), r0/η = 256 corresponds to r0 ≈ L, which means that r0 is not
in the intermediate-r range. In that case, it is possible that there is no intermediate regime
and the Taylor regime directly follows the Batchelor regime. This explains the deviation of
this data point from the model prediction. All remaining data points, and especially those
within the intermediate-r range (r0/η = 64), seem consistent with the model.

While the model results slowly approach t3 scaling with increasing Reynolds number
(figure 11a), there is an important fundamental difference between the present model
and the theories leading to the Richardson-scaling law (§ 2). The theories assume local
dispersion and invoke inertial range assumptions, where the dispersion is independent of
the large (energetic) scales as well as the dissipative scales. By contrast, the present model
uses the properties of the large scales, i.e. U and L, (4.3) and the small time scales, i.e. uη, η
and r0, (4.1) and assumes a transition region. This introduces an r0 and Reynolds number
dependence in the scaling exponent for the intermediate range. These dependencies are
observed in the DNS data (§ 3.2) but are not retained in K41-based theory, as discussed in
§ 2.4. Basically, the present model yields an overlap region for each r0 separately. Further,
note that the classical results for S2 and C0 used here can also be obtained without inertial
range assumptions (see § 2.4). The present model explains why t3 scaling is found for just
one specific initial condition outside the inertial range (i.e. r0/η ≈ 4 independent of Reλ),
and also captures the departures for r0/η <∼ 4 and r0/η >∼ 4, which the inertial theories
(§ 2) do not. Furthermore, the ‘Richardson constant’ is g′ ≈ 0.56 for r0/η ≈ 4 (4.5), which
is consistent with the reported values in the literature (g = 0.55–0.57, Sawford et al. 2008).
We should point out that the value of r0 for exact t3 scaling and the value of g’ are not
predicted from first principles. They partially depend on observations related to the starting
point and the end point of the intermediate range. Therefore, consistency between the
resulting g’ and the reported g is expected, even if it is not enforced. Furthermore, g’, and
to a lesser extent r0 for which t3 scaling is obtained, is sensitive to the uncertainties in C0
(Lien & D’Asaro 2002) and c, see (4.5). Nevertheless, the present estimate for the onset
of the Taylor regime, i.e. c ≈ 8, seems to return a reasonable value for g′.

The model introduces two empirical coefficients, i.e. c and the pre-factor associated
with tB, which means that, at most, two of the model outcomes can be fixed by these
coefficients. For the sake of argument, let’s say the fixed outcomes are the value of g′ and
the value of r0 for exact t3 scaling. The former depends on the coefficient c and the latter
depends on both coefficients. Once the coefficients are set, the exponents for the other
r0 and their Reynolds number dependencies (figure 11) follow directly from the model
and cannot be adjusted. Therefore, the most significant results from the model are (i) the
Reynolds number dependence of the intermediate range for different r0 and (ii) the finding
that there is only a single r0 for which exact t3 scaling is obtained.

Only in the limit of L/r0 → ∞ and L/η → ∞ (at Reλ → ∞) can a r0 dependence
be neglected in the present model, because r0 and η become indistinct. In that case, a
Kolmogorov scaling regime at small t, independent of r0, is matched to an integral scaling
regime at large t, which yields the Richardson scaling consistent with K41, but without
having to assume local dispersion within an inertial range where all flow properties depend
only on ε and r.

Presently, a power law has been assumed for the intermediate range, and details, such
as the dip in the t2-compensated mean square separation (figure 4) and the smooth
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connections to the Batchelor and Taylor regimes, are ignored. A possible alternative to
the power-law assumption could be a (slightly) curved line connecting the Batchelor and
Taylor regimes in figure 10. Further work characterizing the shape of the connection is
clearly warranted. However, including this kind of detail does not fundamentally alter the
physical picture presented here, where the intermediate range is a transition region. It will
yield a similar slow r0-dependent approach of t3 scaling when it is being stretched owing
to an increasing Reynolds number, i.e. increasing separation between the Batchelor and
Taylor regimes.

As commented before, dispersion at intermediate times is highly complex because r is
widely distributed. Therefore, the pair dispersion is affected by many scales, or perhaps
even the full range of scales, at any one time. The present model for the mean square
separation incorporates some of these effects by considering the intermediate range as
a transition region, where the balance gradually shifts from a state governed by r0 and
Kolmogorov scaling (i.e. Batchelor regime) to a state fully described by the large, energetic
scales (i.e. Taylor regime). This transition scenario is consistent with the existence of
significant shear layer structures, where only small and large scales contribute to the
dispersion (figure 1a and § 3.3). At intermediate times, we expect that a blend of these
two contributions will determine the statistics.

Recently, Liot et al. (2019) have shown that the ballistic approach of Bourgoin (2015)
(§ 2.2) can yield a r0-dependent intermediate range consistent with observations and the
present model. A t3 scaling was obtained for r0/η ≈ 4, while other initial separations
approached t3 scaling from above or below. This was achieved by replacing the inertial
range model S2 ∼ (εr)2/3 with an actual S2, which included large- and small-scale ranges.
It seems to confirm that all scales play a role in the intermediate range. Their results are for
a single Reynolds number, Reλ≈ 75, and r0/η ≤ 10. It would be of interest to extend them
to larger r0 and to higher Reynolds numbers. The Lagrangian Stochastic Models of Borgas
& Yeung (2004) and Devenish & Thomson (2019) also yield a t3 scaling for r0/η ≈ 4,
with larger r0 approaching from above, when using the actual probability distribution of
the separation velocity instead of an inertial range model. This distribution was obtained
directly from DNS at Reλ= 390 (Devenish & Thomson 2019) or modelled after DNS
results at Reλ= 90–230 (Borgas & Yeung 2004) and included dissipation range effects and
longer tails. The latter are associated with extreme separation velocities (intermittency)
and non-local effects. However, model parameters had to be adjusted for each Reynolds
number to obtain a good match between the model and the DNS in terms of the mean
square separation and the value of g at r0/η ≈ 4 (Borgas & Yeung 2004). This appears
consistent with Sawford & Yeung (2010) showing that g strongly increases with Reλ
when using constant model parameters. The Reynolds number dependence of the model
parameters remains to be explained. Therefore, the ballistic and Lagrangian stochastic
modelling frameworks can give a realistic r0 dependence in the intermediate range if
non-inertial range behaviour is included. It supports our assertion that the dispersion in
the intermediate range should not be understood as inertial and local. The intermediate
range is perhaps best seen as a transition region where non-local dispersion is important.
A significant example of such non-local dispersion is given by the large-scale shear layers
(§ 3.3).

5. Conclusions

The Richardson-scaling law for the mean square separation of a tracer pair has been
critically assessed. The common theories predicting this t3-scaling regime assume that
only the eddies at the scale of the (mean) pair separation contribute to the dispersion.
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This is referred to as local dispersion. Moreover, it is assumed that the pair separation is
within an inertial range, where the pair separation is not affected by the small dissipative
scales and the large energetic scales. It is believed that the increasing scale separation
with increasing Reynolds number allows for such an inertial range to eventually develop.
However, the assumption ignores any phase dependence between the scales, that is,
any structural organization of the turbulent flow. Particularly relevant in this context
are the significant shear layers, which develop at high Reynolds numbers. As shown
in § 3.3, particle pairs within these layers are initially transported by the small scales,
but when their separation increases over time, they leave the small-scale structures and
almost immediately enter into the large energetic flow regions bounding the layer (as
illustrated, for example, by pair A in figure 1a). An inertial range contribution is, therefore,
absent around the significant shear layer. This results in a Taylor-like dispersion inside
these layers, which is very different from the classical dispersion regimes. Importantly,
these layers provide a significant, and non-local, contribution to the overall mean square
separation at all Reynolds numbers, because the particle separation velocity is of the
order of U inside the layer. Additionally, results reported in the literature show that
the separation, r, is broadly distributed at intermediate times when the Richardson-
scaling law is expected to apply. It implies that some pairs have entered the small or
the large scales (outside the inertial range). Consequently, all scales contribute to the
dispersion at intermediate times, not just the intermediate/inertial scales. Furthermore,
there is increasing evidence to suggest that even the dissipative scales contain important
large-scale influences (§ 2.4), which would mean that the fluid motions, and hence tracer
motions, are affected by the large energetic scales at all separations. These observations
raise doubt on whether the assumption of local dispersion within an inertial range is
justified.

Cases where a t3 scaling has been observed do not support the theory for two main
reasons. First, the t3 scaling was observed over too short temporal ranges (less than
a decade), which leaves open the possibility that the scaling is artificially introduced
by the use of a virtual origin. Second, t3 scaling was found exclusively for an initial
separation r0/η ≈ 4, which is inconsistent with the theory. Specifically, the theory applies
to r (including r0) in the inertial range and it predicts t3 scaling for a range of r0, as opposed
to a single (‘lucky’) value for r0 outside the inertial range. Extensions of the theory to
r0 <∼ η have been suggested in the literature, but this does not explain the available data
either. Therefore, it is concluded that the classical theory relies on debatable assumptions
and, so far, lacks evidence.

As an alternative to the current theories, we proposed in § 4 that the intermediate regime
is simply the transition region from the initial Batchelor regime to the ultimate Taylor
regime. This is consistent with the observed non-local contribution to the dispersion,
because the inputs contain only small-time-scale and large-scale turbulence properties.
The simple transition model explains why there is only a single r0 ≈ 4η for which there
is a true t3 scaling and why smaller/larger r0 approaches t3 scaling from below/above, as
observed in actual data. The inertial range and local dispersion theories discussed in § 2
do not explain this behaviour. The ‘Richardson constant’ returned by the transition model
is 0.56 for this t3 regime at r0 ≈ 4η, which is consistent with the observed value in DNS.
Furthermore, the model prediction of the power-law exponent for the intermediate regime
is consistent with the presently available dispersion data from DNS at finite Reynolds
number. Only in the limit of infinite Reynolds number does the model yield a t3 scaling
regime for r0 � L. In that case, the t3 regime is an asymptotic state, which does allow for
significant non-local contributions to the dispersion.
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The intermediate range is relatively short within the presently available data
(Reλ <∼ 1000), which introduces some uncertainty when extrapolating the results to higher
Reynolds numbers. Accurate data at Reλ∼ 105 seems desirable to probe the intermediate
range in Lagrangian statistics (e.g. Lien & D’Asaro 2002; Sawford & Yeung 2011).
However, applications of turbulent dispersion are often found at lower Reλ, which makes
finite Reynolds number theories of important interest, in addition to the infinite Reynolds
number limit.

Acknowledgement. We thank the referees for their comments, which helped to improve the manuscript.
This work used computational resources of the K computer/the supercomputer Fugaku provided by RIKEN
and the Oakforest-PACS in the Information Technology Center, The University of Tokyo, through the HPCI
System Research Project (Projects ID: hp200124 and hp210164). This work also used computational resources
provided by the Information Technology Center, Nagoya University, and Research Institute for Information
Technology, Kyushu University, through the HPCI Research Project (Projects ID: hp190084 and hp200042)
and the JHPCN Joint Research Project.

Funding. T.I. was supported in part by JSPS KAKENHI Grant Number 20H01948 and MEXT as ‘Program
for Promoting Researches on the Supercomputer Fugaku’ (Toward a unified view of the universe: from large
scale structures to planets). We thank Dhawal Buaria and P.K. Yeung for providing their data at Reλ= 390, 650
and 1000, which was generated under NSF Grant No. CBET-1235906.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
G.E. Elsinga http://orcid.org/0000-0001-6717-5284;
T. Ishihara http://orcid.org/0000-0002-4520-6964.

Appendix. Richardson scaling in linear plots

Here, we briefly discuss the linear plot of 〈r2〉1/3 versus time, where a Richardson scaling
regime appears as a straight line. Such plots have been used in the past, for example by Ott
& Mann (2000) and Ishihara & Kaneda (2002). It is shown that the condition for positively
identifying a Richardson scaling regime is similar to that for the logarithmic plot.

Bitane et al. (2013) provided 〈r2〉 at Reλ= 730. Figure 12 shows their result for r0 = 24η,
which is the largest initial separation available, and hence closest to the inertial range.
In the conventional logarithmic plot (figure 12a), the data approaches t3 scaling from
above (see also § 3.2). In the range t/τη > 30, a fit yields 〈r2〉 ∼ t2.6, which, furthermore,
is consistent with our model at the same Reynolds number (figure 11a). This implies
〈r2〉1/3 ∼ t0.87.

In figure 12(b), the same data are shown in a linear plot of 〈r2〉1/3 versus time (black
line). Furthermore, the blue and red curves show power laws with exponents 1 and 0.9,
respectively. The latter is a better fit to the data in the range 30 < t/τη < 130. This temporal
range covers almost an order of magnitude, as is suggested for a reliable power law estimate
in § 3.1. Note that t/τη < 20 = tB/τη is associated with the Batchelor-scaling range for
r0 = 24η, so we do not expect a good fit there. The range 70 < t/τη < 130 is too short
to make a distinction between the two power laws. Any smooth curve is piecewise linear
over a short range, but that does not mean that the true exponent is equal to 1. Importantly,
the exponent 0.9 is consistent with the result from the logarithmic plot, i.e.〈 r2〉1/3 ∼ t0.87.

Therefore, power laws should be fitted over sufficiently large ranges in a logarithmic plot
(as discussed in § 3.1) or a linear plot. When this condition is satisfied, the results from the
different plots are consistent.
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Figure 12. (a) The logarithmic plot of 〈r2〉 versus time for r0 = 24η and Reλ= 730 (black line, data source:
Bitane et al. 2013). The red dashed line and the grey dash-dotted line indicate t2.6 and t3 scaling, respectively.
(b) The linear plot of the same data (black line) compared with power laws with exponents 1 (blue) and 0.9
(red).
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