ON COMPACT PERTURBATIONS OF OPERATORS

JOEL ANDERSON

Recently R. G. Douglas showed [4] that if V is a nonunitary isometry and U is a unitary operator (both acting on a complex, separable, infinite dimensional Hilbert space \mathscr{H}), then $V-K$ is unitarily equivalent to $V \oplus U$ (acting on $\mathscr{H} \oplus \mathscr{H}$) where K is a compact operator of arbitrarily small norm. In this note we shall prove a much more general theorem which seems to indicate "why" Douglas' theorem holds (and which yields Douglas' theorem as a corollary). Our theorem is based on the Calkin algebra analogue of the following well-known fact: If λ is an eigenvalue for the operator T which lies in the boundary of the numerical range of T, then the eigenspace determined by λ reduces T.

If T and S are operators acting on Hilbert spaces \mathscr{H}_{1} and \mathscr{H}_{2} respectively, we shall write $T \approx S$ if for each $\epsilon>0$ there is a compact operator K such that $T-K$ is unitarily equivalent to S, and the norm of K is $<\epsilon$. We shall show that a large class of operators have the property that $T=T \oplus N$ where N is any normal operator such that $\sigma(N)$ the spectrum of N lies in a certain set (determined by T). In particular, if T_{φ} is a Toeplitz operator and N is a normal operator such that $\sigma(N)$ lies in the set of extreme points of the convex hull of $\sigma\left(T_{\varphi}\right)$ then $T_{\varphi}=T_{\varphi} \oplus N$.

In what follows $\mathscr{B}(\mathscr{H})$ will denote the algebra of bounded linear operators (henceforth, simply "operators") acting on a fixed complex, separable, infinite dimensional Hilbert space \mathscr{H}. The Calkin algebra \mathscr{C} is the C^{*}-algebra which results from forming the quotient space: $\mathscr{B}(\mathscr{H})$ modulo the ideal of compact operators. For an operator T we shall let T_{e} denote the coset in \mathscr{C} which contains T. Recall that the spectrum of T is by definition the set $\sigma(T)=$ $\{\lambda: T-\lambda I$ is not invertible $\}$ and the numerical range of T is by definition the set $W(T)=\{(T f, f): f$ is a unit vector in $\mathscr{H}\}$. The analogous objects for \mathscr{C} are the essential spectrum $\sigma_{e}(T)=\left\{\lambda: T_{e}-\lambda I_{e}\right.$ is not invertible in $\left.\mathscr{C}\right\}$ and the essential numerical range $W_{e}(T)=\left\{p_{e}\left(T_{e}\right): p_{e}\right.$ is a state on the Calkin algebra\}. It is well-known that $W(T)$ is convex, bounded and that $W(T)^{-}$ contains $\sigma(T)$. Similarly $W_{e}(T)$ is convex, compact, and $W_{e}(T)$ contains $\sigma_{e}(T)$. Further, it is clear from the definitions that $W_{e}(T+K)=W_{e}(T)$ and $\sigma_{e}(T+K)=\sigma_{e}(T)$ for all compact operators K. (The reader is referred to $[5 ; \mathbf{1 0}]$ for proofs of these and other basic facts concerning $W_{e}(T)$ and $\sigma_{e}(T)$.)

The main theorem. We begin with the Calkin algebra analogue of the result mentioned in the introduction.

Received September 19, 1972.

Lemma 1. Let T be an operator and suppose that there is a complex number λ in $\partial W_{e}(T)\left(\partial W_{e}(T)\right.$ denotes the boundary of $\left.W_{e}(T)\right)$ and an infinite rank projection P such that $T P-\lambda P$ is a compact operator. Then $P T-\lambda P$ is also a compact operator.

Proof. By translating and rotating we may assume that $\lambda=0$ and that $W_{e}(T)$ lies in the closed right half plane. Let $T=A+i B$ where A and B are the real and imaginary parts of T. Then $P A P=\frac{1}{2}\left(P T P+P T^{*} P\right)$ is compact. Further, since $W_{e}(T)$ is contained in the closed right half plane A_{e} is a positive element of \mathscr{C}. Let C_{e} be the positive square root of A_{e} in \mathscr{C}. Then for any state p_{e} on \mathscr{C}

$$
\left|p_{e}\left(A_{e} P_{e}\right)\right|^{2} \leqq p_{e}\left(C_{e}^{2}\right) p_{e}\left(P_{e} A_{e} P_{e}\right)=0
$$

and it follows that $A P$ is compact. Hence, $i B P=T P-A P$ is compact and, therefore, $P T$ is compact. (This argument is a slight generalization of a proof due to Stampfli [9].)

Theorem 2. Let T be an operator and let λ belong to $\sigma_{e}(T) \cap \partial W_{e}(T)$. Then $T=T_{1} \oplus \lambda I$, where the I is infinite dimensional, $W_{e}\left(T_{1}\right)=W_{e}(T)$, and $\sigma_{e}\left(T_{1}\right)=\sigma_{e}(T)$.

Proof. Since λ is in $\sigma_{e}(T)$ by a theorem of Fillmore, Stampfli and Williams [5] there is an infinite rank projection P such that either $T P-\lambda P$ or $P T-$ λP is compact. Taking adjoints if necessary, we may assume that $T P-\lambda P$ is compact. Hence, by Lemma $1, P T-\lambda P$ is compact. Now, given $\epsilon>0$ we may replace P by a smaller infinite rank projection so that $P T-\lambda P$ and $T P-\lambda P$ both have norm less than $\epsilon / 3$ and so that the operator $T_{1}=(I-P) T(I-P)$ restricted to $(I-P) \mathscr{H}$ has the same essential spectrum and essential numerical range as T. Letting $K=T P+P T(I-P)-\lambda P$, it is easy to check that the norm of K is less than ϵ and that $T-K$ has the desired form.

Corollary 3. Let T be an operator and suppose $\left\{\lambda_{n}\right\}$ is a sequence of complex numbers which belongs to $\sigma_{e}(T) \cap \partial W_{e}(T)$. Then $T \approx T^{\prime} \oplus D$, where T^{\prime} is an operator and D is the diagonal operator $\sum \lambda_{n} P_{n}$ determined by an orthogonal family of infinite rank projections $\left\{P_{n}\right\}$.

Proof. By Theorem 2, there is a compact operator K_{1} of norm less than $\epsilon / 2$ such that $T-K_{1}$ is unitarily equivalent to $T_{1} \oplus \lambda_{1} I$, and T_{1} has the same essential spectrum and essential numerical range as T. Thus, applying Theorem 2 to T_{1} we may find a compact operator K_{2} of norm less than $\epsilon / 4$ and such that $T_{1}-K_{2}$ is unitarily equivalent to $T_{2} \oplus \lambda_{2} I$ where T_{2} again preserves the essential spectrum and the essential numerical range. Clearly we may now proceed inductively to obtain the desired infinite sequence.

Lemma 4. Let N be a normal operator and suppose D is a diagonal operator such that $N-D$ is a compact operator of norm less than ϵ. Then there exists a diagonal operator D_{1} such that $N-D_{1}$ is a compact operator of norm less than 2ϵ and such that $\sigma\left(D_{1}\right)$ is contained in $\sigma(N)$.

Proof. Let $\left\{\lambda_{n}\right\}$ be the sequence of eigenvalues associated with D. Let $E_{k}=$ $\left\{n: \operatorname{dist}\left(\lambda_{n}, \sigma(N)\right) \geqq 1 / k\right\}$. If any E_{k} were infinite then $N-D$ would not be compact. Now let D_{1} be a diagonal operator obtained by shifting each λ_{n} by the smallest length needed to move it into $\sigma(N)$. Clearly $D-D_{1}$ is a compact operator of norm less than ϵ and the result follows.

Theorem 5. Let T be an operator. If N is a normal operator such that $\sigma(N)$ is contained in $\sigma_{e}(T) \cap \partial W_{e}(T)$, then $T \approx T \oplus N$.

Proof. By a theorem of I. D. Berg [2], $N \approx D$ where D is a diagonal operator. Hence, by the lemma, $N \approx D_{1}$ where $\sigma\left(D_{1}\right)$ is contained in $\sigma(N)$. Thus, it suffices to show $T \approx T \oplus D$ where D is a diagonal operator whose spectrum is contained in $\sigma_{e}(T) \cap \partial W_{e}(T)$. Now by Corollary 3

$$
T \approx T^{\prime} \oplus D \oplus D \oplus \cdots=D \oplus T^{\prime} \oplus D \oplus D \oplus \cdots=D \oplus T=T \oplus D
$$

Applications. Recall that a convexoid operator is by definition an operator such that conv $\sigma(T)=W(T)^{-}$. In what follows we shall use the fact (due to Putnam [8]) that the set $\pi_{\infty}(T) \cup \sigma_{e}(T)$ contains $\partial \sigma(T)$ for each operator T, where $\pi_{\infty}(T)$ denotes the set of isolated eigenvalues of finite multiplicity in $\sigma(T)$.

In what follows the convex hull of a set and the extreme points of a set shall be denoted by conv(\cdot) and ext (\cdot) respectively.

Corollary 6. Let T be a convexoid operator and let δ denote the set $\operatorname{ext}(\operatorname{conv} \sigma(T)) \backslash \pi_{\infty}(T)$. If N is a normal operator such that $\sigma(N)$ is contained in δ then $T \approx T \oplus N$.

Proof. If λ is in δ then λ is in $\partial \sigma(T)$ and, hence, by Putnam's theorem λ is in $\sigma_{e}(T)$. Thus, λ is in $W_{e}(T)$. But since T is convexoid λ is in $\partial W(T)^{-}$and, hence, λ is in $\partial W_{e}(T)$.

Note that if δ contained only a finite number of points, it would follow that $\sigma_{e}(T)$ contained only a finite number of points. Thus, if $\sigma_{e}(T)$ is infinite we are assured that δ is an infinite set.

Let L^{∞} and L^{2} denote the sets of all (equivalence classes) of essentially bounded functions and square integrable functions on the unit circle respectively and let H^{2} denote the Hardy space of functions analytic in the unit disk with square integrable boundary values. Then H^{2} may be viewed as being contained in L^{2} so we may let P denote the projection from L^{2} to H^{2}. If φ is an element of L^{∞} the Toeplitz operator induced by φ is the operator acting on H^{2} determined by the equation $T_{\varphi} g=P(\varphi g)$. We shall use the following facts about Toeplitz operators:
(i) T_{φ} is convexoid [3, p. 99].
(ii) $\pi_{\infty}\left(T_{\varphi}\right) \cap \partial \operatorname{conv} \sigma\left(T_{\varphi}\right)=\emptyset[3$, Theorem 10].
(iii) $\operatorname{conv} \sigma\left(T_{\varphi}\right)=\operatorname{conv} R(\varphi)$ where $R(\varphi)$ is the essential range of $\varphi[\mathbf{3} ; \mathbf{6}]$.

Corollary 7. Let T_{φ} be a Toeplitz operator and let $\operatorname{ext}\left(T_{\varphi}\right)$ be the set of
extreme points of conv $\sigma\left(T_{\varphi}\right)(=$ the set of extreme points of $\operatorname{conv} R(\varphi))$. If N is a normal operator such that $\sigma(N)$ is contained in $\operatorname{ext}\left(T_{\varphi}\right)$, then $T \approx T \oplus N$.

Proof. This follows from Corollary 6 and (i), (ii) and (iii) above.
Corollary 8 [4]. Let T_{z} denote the (simple) unilateral shift. Then $T_{z} \approx T_{z} \oplus U$ for all unitary operators U.

Proof. The extreme points of conv $\sigma\left(T_{z}\right)$ are the points on the unit circle. The corollary now follows from the fact that a normal operator is unitary if and only if its spectrum is contained in the unit circle.

In closing we remark that Pearcy and Salinas [7] have (independently) obtained results similar to those given here for a different class of operators.

References

1. J. H. Anderson, Commutators and the essential numerical range (to appear).
2. I. D. Berg, An extension of the Weyl-von Neumann theorem, Trans. Amer. Math. Soc. 160 (1971), 365-371.
3. A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89-102.
4. R. G. Douglas, Banach algebra techniques in the theory of Toeplitz operators, Notes for lectures given at CMBS Regional Conference at the University of Georgia, June, 1972.
5. P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos (to appear in Acta. Sci. Math. (Szeged)).
6. P. Hartman and A. Wintner, On the spectra of Toeplitz's matrices, Amer. J. Math. 72 (1950), 359-366.
7. C. Pearcy and N. Salinas, Compact perturbations of seminormal operators, Indiana Univ. Math. J. (to appear).
8. C. R. Putnam, Eigenvalues and boundary spectra, Illinois J. Math. 12 (1968), 278-282.
9. J. G. Stampfli, Extreme points of the numerical range of a hyponormal operator, Michigan Math. J. 18 (1966), 87-89.
10. J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20 (1968), 417-424.

California Institute of Technology, Pasadena, California

