ON COMPACT PERTURBATIONS OF OPERATORS

JOEL ANDERSON

Recently R. G. Douglas showed [4] that if V is a nonunitary isometry and U is a unitary operator (both acting on a complex, separable, infinite dimensional Hilbert space \mathscr{H}), then V - K is unitarily equivalent to $V \oplus U$ (acting on $\mathscr{H} \oplus \mathscr{H}$) where K is a compact operator of arbitrarily small norm. In this note we shall prove a much more general theorem which seems to indicate "why" Douglas' theorem holds (and which yields Douglas' theorem as a corollary). Our theorem is based on the Calkin algebra analogue of the following well-known fact: If λ is an eigenvalue for the operator T which lies in the boundary of the numerical range of T, then the eigenspace determined by λ reduces T.

If T and S are operators acting on Hilbert spaces \mathscr{H}_1 and \mathscr{H}_2 respectively, we shall write $T \approx S$ if for each $\epsilon > 0$ there is a compact operator K such that T - K is unitarily equivalent to S, and the norm of K is $<\epsilon$. We shall show that a large class of operators have the property that $T \approx T \oplus N$ where N is any normal operator such that $\sigma(N)$ the spectrum of N lies in a certain set (determined by T). In particular, if T_{φ} is a Toeplitz operator and N is a normal operator such that $\sigma(N)$ lies in the set of extreme points of the convex hull of $\sigma(T_{\varphi})$ then $T_{\varphi} \approx T_{\varphi} \oplus N$.

In what follows $\mathscr{B}(\mathscr{H})$ will denote the algebra of bounded linear operators (henceforth, simply "operators") acting on a fixed complex, separable, infinite dimensional Hilbert space \mathscr{H} . The Calkin algebra \mathscr{C} is the C^* -algebra which results from forming the quotient space: $\mathscr{B}(\mathscr{H})$ modulo the ideal of compact operators. For an operator T we shall let T_e denote the coset in \mathscr{C} which contains T. Recall that the spectrum of T is by definition the set $\sigma(T) =$ $\{\lambda: T - \lambda I$ is not invertible} and the numerical range of T is by definition the set $W(T) = \{(Tf, f): f \text{ is a unit vector in } \mathscr{H}\}$. The analogous objects for \mathscr{C} are the essential spectrum $\sigma_e(T) = \{\lambda: T_e - \lambda I_e \text{ is not invertible in } \mathscr{C}\}$ and the essential numerical range $W_e(T) = \{p_e(T_e): p_e \text{ is a state on the Calkin$ $algebra}. It is well-known that <math>W(T)$ is convex, bounded and that $W(T)^$ contains $\sigma(T)$. Similarly $W_e(T)$ is convex, compact, and $W_e(T)$ contains $\sigma_e(T + K) = \sigma_e(T)$ for all compact operators K. (The reader is referred to [5; 10] for proofs of these and other basic facts concerning $W_e(T)$ and $\sigma_e(T)$.)

The main theorem. We begin with the Calkin algebra analogue of the result mentioned in the introduction.

Received September 19, 1972.

JOEL ANDERSON

LEMMA 1. Let T be an operator and suppose that there is a complex number λ in $\partial W_e(T)$ ($\partial W_e(T)$ denotes the boundary of $W_e(T)$) and an infinite rank projection P such that $TP - \lambda P$ is a compact operator. Then $PT - \lambda P$ is also a compact operator.

Proof. By translating and rotating we may assume that $\lambda = 0$ and that $W_e(T)$ lies in the closed right half plane. Let T = A + iB where A and B are the real and imaginary parts of T. Then $PAP = \frac{1}{2}(PTP + PT^*P)$ is compact. Further, since $W_e(T)$ is contained in the closed right half plane A_e is a positive element of \mathscr{C} . Let C_e be the positive square root of A_e in \mathscr{C} . Then for any state p_e on \mathscr{C}

$$|p_e(A_eP_e)|^2 \leq p_e(C_e^2)p_e(P_eA_eP_e) = 0$$

and it follows that AP is compact. Hence, iBP = TP - AP is compact and, therefore, PT is compact. (This argument is a slight generalization of a proof due to Stampfli [9].)

THEOREM 2. Let T be an operator and let λ belong to $\sigma_e(T) \cap \partial W_e(T)$. Then $T \approx T_1 \bigoplus \lambda I$, where the I is infinite dimensional, $W_e(T_1) = W_e(T)$, and $\sigma_e(T_1) = \sigma_e(T)$.

Proof. Since λ is in $\sigma_{\epsilon}(T)$ by a theorem of Fillmore, Stampfli and Williams [5] there is an infinite rank projection P such that either $TP - \lambda P$ or $PT - \lambda P$ is compact. Taking adjoints if necessary, we may assume that $TP - \lambda P$ is compact. Hence, by Lemma 1, $PT - \lambda P$ is compact. Now, given $\epsilon > 0$ we may replace P by a smaller infinite rank projection so that $PT - \lambda P$ and $TP - \lambda P$ both have norm less than $\epsilon/3$ and so that the operator $T_1 = (I - P)T(I - P)$ restricted to $(I - P)\mathcal{H}$ has the same essential spectrum and essential numerical range as T. Letting $K = TP + PT(I - P) - \lambda P$, it is easy to check that the norm of K is less than ϵ and that T - K has the desired form.

COROLLARY 3. Let T be an operator and suppose $\{\lambda_n\}$ is a sequence of complex numbers which belongs to $\sigma_e(T) \cap \partial W_e(T)$. Then $T \approx T' \oplus D$, where T' is an operator and D is the diagonal operator $\sum \lambda_n P_n$ determined by an orthogonal family of infinite rank projections $\{P_n\}$.

Proof. By Theorem 2, there is a compact operator K_1 of norm less than $\epsilon/2$ such that $T - K_1$ is unitarily equivalent to $T_1 \oplus \lambda_1 I$, and T_1 has the same essential spectrum and essential numerical range as T. Thus, applying Theorem 2 to T_1 we may find a compact operator K_2 of norm less than $\epsilon/4$ and such that $T_1 - K_2$ is unitarily equivalent to $T_2 \oplus \lambda_2 I$ where T_2 again preserves the essential spectrum and the essential numerical range. Clearly we may now proceed inductively to obtain the desired infinite sequence.

LEMMA 4. Let N be a normal operator and suppose D is a diagonal operator such that N - D is a compact operator of norm less than ϵ . Then there exists a diagonal operator D_1 such that $N - D_1$ is a compact operator of norm less than 2ϵ and such that $\sigma(D_1)$ is contained in $\sigma(N)$. *Proof.* Let $\{\lambda_n\}$ be the sequence of eigenvalues associated with D. Let $E_k = \{n: \operatorname{dist}(\lambda_n, \sigma(N)) \ge 1/k\}$. If any E_k were infinite then N - D would not be compact. Now let D_1 be a diagonal operator obtained by shifting each λ_n by the smallest length needed to move it into $\sigma(N)$. Clearly $D - D_1$ is a compact operator of norm less than ϵ and the result follows.

THEOREM 5. Let T be an operator. If N is a normal operator such that $\sigma(N)$ is contained in $\sigma_e(T) \cap \partial W_e(T)$, then $T \approx T \oplus N$.

Proof. By a theorem of I. D. Berg [2], $N \approx D$ where D is a diagonal operator. Hence, by the lemma, $N \approx D_1$ where $\sigma(D_1)$ is contained in $\sigma(N)$. Thus, it suffices to show $T \approx T \oplus D$ where D is a diagonal operator whose spectrum is contained in $\sigma_e(T) \cap \partial W_e(T)$. Now by Corollary 3

 $T \approx T' \oplus D \oplus D \oplus \cdots = D \oplus T' \oplus D \oplus D \oplus \cdots \approx D \oplus T = T \oplus D.$

Applications. Recall that a *convexoid* operator is by definition an operator such that conv $\sigma(T) = W(T)^-$. In what follows we shall use the fact (due to Putnam [8]) that the set $\pi_{\infty}(T) \cup \sigma_e(T)$ contains $\partial \sigma(T)$ for each operator T, where $\pi_{\infty}(T)$ denotes the set of isolated eigenvalues of finite multiplicity in $\sigma(T)$.

In what follows the convex hull of a set and the extreme points of a set shall be denoted by $conv(\cdot)$ and $ext(\cdot)$ respectively.

COROLLARY 6. Let T be a convexoid operator and let δ denote the set $\exp(\operatorname{conv} \sigma(T)) \setminus \pi_{\infty}(T)$. If N is a normal operator such that $\sigma(N)$ is contained in δ then $T \approx T \oplus N$.

Proof. If λ is in δ then λ is in $\partial \sigma(T)$ and, hence, by Putnam's theorem λ is in $\sigma_e(T)$. Thus, λ is in $W_e(T)$. But since T is convexoid λ is in $\partial W(T)^-$ and, hence, λ is in $\partial W_e(T)$.

Note that if δ contained only a finite number of points, it would follow that $\sigma_e(T)$ contained only a finite number of points. Thus, if $\sigma_e(T)$ is infinite we are assured that δ is an infinite set.

Let L^{∞} and L^2 denote the sets of all (equivalence classes) of essentially bounded functions and square integrable functions on the unit circle respectively and let H^2 denote the Hardy space of functions analytic in the unit disk with square integrable boundary values. Then H^2 may be viewed as being contained in L^2 so we may let P denote the projection from L^2 to H^2 . If φ is an element of L^{∞} the Toeplitz operator induced by φ is the operator acting on H^2 determined by the equation $T_{\varphi g} = P(\varphi g)$. We shall use the following facts about Toeplitz operators:

(i) T_{φ} is convexoid [3, p. 99].

(ii) $\pi_{\infty}(T_{\varphi}) \cap \partial \operatorname{conv} \sigma(T_{\varphi}) = \emptyset$ [3, Theorem 10].

(iii) conv $\sigma(T_{\varphi}) = \operatorname{conv} R(\varphi)$ where $R(\varphi)$ is the essential range of φ [3; 6].

COROLLARY 7. Let T_{φ} be a Toeplitz operator and let $ext(T_{\varphi})$ be the set of

JOEL ANDERSON

extreme points of conv $\sigma(T_{\varphi})$ (= the set of extreme points of conv $R(\varphi)$). If N is a normal operator such that $\sigma(N)$ is contained in $ext(T_{\varphi})$, then $T \approx T \oplus N$.

Proof. This follows from Corollary 6 and (i), (ii) and (iii) above.

COROLLARY 8 [4]. Let T_z denote the (simple) unilateral shift. Then $T_z \approx T_z \oplus U$ for all unitary operators U.

Proof. The extreme points of conv $\sigma(T_z)$ are the points on the unit circle. The corollary now follows from the fact that a normal operator is unitary if and only if its spectrum is contained in the unit circle.

In closing we remark that Pearcy and Salinas [7] have (independently) obtained results similar to those given here for a different class of operators.

References

- 1. J. H. Anderson, Commutators and the essential numerical range (to appear).
- I. D. Berg, An extension of the Weyl-von Neumann theorem, Trans. Amer. Math. Soc. 160 (1971), 365–371.
- 3. A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89-102.
- R. G. Douglas, Banach algebra techniques in the theory of Toeplitz operators, Notes for lectures given at CMBS Regional Conference at the University of Georgia, June, 1972.
- 5. P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos (to appear in Acta. Sci. Math. (Szeged)).
- P. Hartman and A. Wintner, On the spectra of Toeplitz's matrices, Amer. J. Math. 72 (1950), 359–366.
- 7. C. Pearcy and N. Salinas, Compact perturbations of seminormal operators, Indiana Univ. Math. J. (to appear).
- 8. C. R. Putnam, Eigenvalues and boundary spectra, Illinois J. Math. 12 (1968), 278-282.
- 9. J. G. Stampfli, Extreme points of the numerical range of a hyponormal operator, Michigan Math. J. 13 (1966), 87-89.
- 10. J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20 (1968), 417-424.

California Institute of Technology, Pasadena, California