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Bounds for test exponents

Holger Brenner

Abstract

Suppose that R is a two-dimensional normal standard-graded domain over a finite field.
We prove that there exists a uniform Frobenius test exponent b for the class of homo-
geneous ideals in R generated by at most n elements. This means that for every ideal I
in this class we have that fpb ∈ I [pb] if and only if f ∈ IF. This gives in particular a
finite test for the Frobenius closure. On the other hand we show that there is no uniform
bound for Frobenius test exponent for all homogeneous ideals independent of the number
of generators. Under similar assumptions we prove also the existence of a bound for tight
closure test ideal exponents for ideals generated by at most n elements.

Introduction

In this paper we deal with test exponents for Frobenius closure and for tight closure. In this intro-
duction we will concentrate on the Frobenius closure and we will come back to tight closure in § 6.
Suppose that R denotes a commutative noetherian ring containing a field of positive characteristic p,
and let I ⊆ R denote an ideal. The Frobenius closure, written IF, is the ideal

IF = {f ∈ R : ∃e ∈ N such that fpe ∈ I [pe]}.

Here the Frobenius power I [q] = (f q : f ∈ I) is the extended ideal of I under the eth iteration of
the Frobenius homomorphism R → R, f �→ f q, where q = pe. Since IF is an ideal in a noetherian
ring, there exists a number b such that fpb ∈ I [pb] for every f ∈ IF.

A problem of Katzman and Sharp [KS04, Introduction] asks in its strongest form: does there
exist a number b, depending only on the ring R, such that, for every ideal and for every f ∈ IF,
we have fpb ∈ I [pb]? A positive answer to this question, together with the actual knowledge of a
bound for b, would give an algorithm to compute the Frobenius closure IF. We call such a number b
a Frobenius test exponent for the ring R.

A weaker question is this: for a given ideal I, does there exist a Frobenius test exponent for
all Frobenius powers I [q]? The existence of such a weak Frobenius test exponent b means that
f ∈ (I [q])F holds if and only if fpb ∈ (I [q])[p

b]. Katzman and Sharp show that for an ideal generated
by a regular sequence there exists such a weak Frobenius test exponent.

An intermediate question is the following: does there exist a Frobenius test exponent for ideals
generated by at most a fixed number of elements? Since (f1, . . . , fn)[q] = (f q

1 , . . . , f q
n), the Frobenius

powers of an ideal generated by n elements do not need more generators than n; therefore a positive
answer to this question implies a positive answer to the weak question of Katzman and Sharp.
Moreover, a positive answer to this question has the same computational impact on the decision
whether f ∈ IF holds or not.
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In this paper we consider the case of homogeneous R+-primary ideals I in a geometrically normal
two-dimensional standard-graded domain R over a field F of positive characteristic. We obtain the
following results. If R is the homogeneous coordinate ring of an elliptic curve, then the answer to
the third question is affirmative. There is a Frobenius test exponent b for the class of homogeneous
R+-primary ideals generated by at most n elements, and in fact one can take b = n−1 (Theorem 1.1).
This is an application of the Atiyah classification of vector bundles over an elliptic curve.

In Theorem 2.4 we give a negative answer to the strong question of Katzman and Sharp. We show
that for a homogeneous coordinate ring R over an elliptic curve with Hasse-invariant 0 there does
not exist a uniform Frobenius test exponent valid for all homogeneous ideals in R. This relies on
results of Oda about properties of the Frobenius pull-backs of the bundles Fr on an elliptic curve,
where Fr denotes the unique indecomposable bundle of rank r and degree 0 with a non-trivial
section, and on realizing Fr as a syzygy bundle for some ideal generators.

For homogeneous normal coordinate rings of curves of higher genus, we obtain in Theorem 5.1 a
positive answer to the third question under the condition that the base field is finite. This is deduced
from the geometric interpretation of tight closure in terms of vector bundles on the corresponding
smooth projective curve and the boundedness of semistable bundles on the curve of given rank and
degree. The boundedness implies that there is a finite test for strong semistability if everything is
defined over a finite field (Lemma 3.1). From this we deduce using a recent result of Trivedi that
there is also a finite algorithm to find the strong Harder–Narasimhan filtration of a bundle of given
rank (Corollary 3.2).

These two results are important ingredients in an argument to show that a cohomology class
c ∈ H1(C,S) of a locally free sheaf of rank r on a smooth projective curve defined over a finite
field which is annihilated by some Frobenius power is in fact annihilated by a certain fixed power
which depends only on the rank and on the curve, but not on the sheaf itself (Theorem 4.2).
This yields eventually the Frobenius test exponent for ideals generated by at most n elements
(Theorem 5.1). However, this Frobenius test exponent is (even for ideals generated by three elements
in the coordinate ring over a curve of genus 2) hardly a basis for implementing an algorithm to
compute the Frobenius closure.

In the same spirit we prove in Theorem 6.4 the existence of a uniform test ideal exponent
for ideals generated by at most n elements, under the assumption that R is a two-dimensional
standard-graded geometrically normal Gorenstein domain over a finite field.

1. Frobenius test exponents over elliptic curves

The vector bundles (locally free sheaves) on an elliptic curve C over an algebraically closed field
are well understood due to the classification of Atiyah; see [Ati57]. We recall briefly some conse-
quences of this classification. If S is an indecomposable bundle, meaning that there is no non-trivial
decomposition S = F ⊕ G with vector bundles F and G of smaller ranks, then the following hold:
If deg(S) > 0, then H1(C,S) = 0. If deg(S) = 0, then either H0(C,S) = H1(C,S) = 0 or
S = Fr, the unique indecomposable sheaf of rank r and degree 0 with a non-trivial global section.
These sheaves have dim H0(C,Fr) = dim H1(C,Fr) = 1, they are self-dual and they are related by
the non-trivial extensions 0 → Fr−1 → Fr → OC → 0.

Theorem 1.1. Let R denote a normal standard-graded two-dimensional domain over a field F of
positive characteristic p and suppose that C = Proj R is an elliptic curve. Let I = (f1, . . . , fn)
denote an R+-primary ideal generated by n homogeneous elements. Suppose that the element f
belongs to the Frobenius closure of I. Then already f q ∈ I [q] holds for q = pn−1. Hence n − 1 is
a uniform Frobenius test exponent for all homogeneous R+-primary ideals generated by at most
n elements.
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Proof. We may assume that F is algebraically closed. Since I is homogeneous, all Frobenius
powers I [q] and the Frobenius closure IF are also homogeneous. Therefore we may assume that
f is homogeneous. A homogeneous element f of degree m yields via the short exact sequence

0 −→ Syz(f1, . . . , fn)(m) −→
n⊕

i=1

OC(m − di)
f1,...,fn−−−−−→ OC(m) −→ 0

of locally free sheaves on C the class δ(f) ∈ H1(C,Syz(f1, . . . , fn)(m)). The pull-back of this
sequence under the eth absolute Frobenius morphism Φe : C → C is (q = pe)

0 −→ Φe∗(Syz(f1, . . . , fn)(m)) −→
n⊕

i=1

OC(qm − qdi)
fq
1 ,...,fq

n−−−−−→ OC(qm) −→ 0,

therefore Syz(f q
1 , . . . , f q

n)(qm) = Φe∗(Syz(f1, . . . , fn)(m)). From this we see that f q ∈ I [q] =
(f q

1 , . . . , f q
n) if and only if the eth Frobenius pull-back of the class δ(f) is zero, that is Φe∗(δ(f)) = 0

in H1(C,Syz(f q
1 , . . . , f q

n)(qm)). The element f belongs to the Frobenius closure of I = (f1, . . . , fn)
if and only if some Frobenius power of this cohomology class vanishes.

Let Syz(f1, . . . , fn)(m) = S1 ⊕ · · · ⊕ Sk denote the decomposition of the syzygy bundle into
indecomposable bundles, and denote the components of the cohomology class c = δ(f) by cj ∈
H1(C,Sj). For the Sj of positive degree we have H1(C,Sj) = 0. If Sj has negative degree and cj �= 0,
then f does not belong to the tight closure of the ideal by [Bre05, Corollary 4.1] and so it does not
belong to the Frobenius closure. So these components are also zero. For an indecomposable sheaf
S of degree 0 we have two possibilities depending on whether S has no non-trivial global sections
or it has. In the first case we have again H1(C,S) = 0. In the second case we have S = Fr, the
unique indecomposable sheaf of rank r and degree 0 with a non-trivial global section. Furthermore
r � n − 1 = rk(Syz(f1, . . . , fn)(m)).

The indecomposable bundles Fr are related by short exact sequences

0 −→ Fr−1 −→ Fr −→ OC −→ 0,

where 1 ∈ F = Γ(C,OC ) maps to a non-trivial element in the one-dimensional space H1(C,Fr−1).
Suppose first that the Hasse-invariant of the elliptic curve is 0, so that the Frobenius morphism
Φ∗ : H1(C,OC ) → H1(C,OC) is the zero map. In this case we show by induction on r that
the (r − 1)th Frobenius pull-back trivializes Fr (meaning that Φ(r−1)∗(Fr) ∼= Or

C) and that the
rth Frobenius pull-back annihilates H1(C,Fr). For F1 = OC this follows from the assumption
that the Hasse-invariant is 0. Now suppose that r � 2. The (r − 2)th Frobenius pull-back of
0 → Fr−1 → Fr → OC → 0 yields an exact sequence

0 −→ Or−1
C −→ Φ(r−2)∗(Fr) −→ OC −→ 0.

This extension is given by a cohomology class in H1(C,Or−1
C ), and so application of the Frobenius

once more shows that the extension is trivial; hence Φ(r−1)∗(Fr) ∼= Or
C . Another application of the

Frobenius then annihilates the cohomology coming from Fr.
If the Hasse-invariant of C is 1, then the Frobenius acts bijectively on H1(C,OC ). The short exact

sequences relating Fr−1 and Fr induce isomorphisms H1(C,Fr) ∼= H1(C,OC ). Hence by induction
on r we get that Φ∗(Fr) ∼= Fr and that Φ∗ : H1(C,Fr) → H1(C,Φ∗(Fr)) is a bijection. Hence the
Frobenius does not annihilate anything.

Remark 1.2. Theorem 1.1 implies that the Frobenius closure of a homogeneous R+-primary ideal
in a normal homogeneous coordinate ring R of an elliptic curve can be computed by an easy
algorithm. The same argument shows (for Hasse-invariant 0 or 1) that an element f belongs to the
plus closure I+ (or to the tight closure) of I if and only if it belongs to the extended ideal under
the (n − 1)th iteration of the ring homomorphism ϕ : R → R which describes the p-multiplication
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of the elliptic curve. This shows that the tight closure of an R+-primary homogeneous ideal in R
is also algorithmically computable. Another easy algorithm for the computation of tight closure
in R = F[x, y, z]/(G), where G is a cubic polynomial, in terms of test ideal exponent is given in
Corollary 6.6 below.

2. Unboundedness of Frobenius test exponents

In this section we show that in a homogeneous coordinate ring R of an elliptic curve with Hasse-
invariant 0 there does not exist a bound for Frobenius test exponents which holds uniformly for all
homogeneous ideals.

We recall the following result of Oda about the Frobenius pull-backs of the bundles Fr on
an elliptic curve and how the Frobenius acts on the cohomology [Oda71, Proposition 2.10 and
Theorem 2.17].

Theorem 2.1. Let C denote an elliptic curve over a field F of positive characteristic p and let Fr

denote the unique indecomposable bundle on C of rank r and degree 0 with H0(C,Fr) = F �= 0.
Let Φ : C → C denote the Frobenius. Then the following hold.

(i) If the Hasse-invariant of C is non-zero, then Φ∗(Fr) ∼= Fr.

(ii) If the Hasse-invariant of C is zero, then

Φ∗(Fr) ∼= Or
C for r � p and Φ∗(Fr) ∼=

p⊕
i=1

F�(r−i)/p�+1 for r > p.

(iii) The map Φ∗ : H1(C,Fr) → H1(C,Φ∗(Fr)) is injective if and only if the Hasse-invariant is
non-zero or r � p (and for Hasse-invariant zero and r < p it is the zero map).

From this result of Oda we deduce the corollary that there does not exist a uniform bound for
Frobenius test exponents for all locally free sheaves on C independent of the rank.

Corollary 2.2. Let C denote an elliptic curve over a field F of positive characteristic p and suppose
that the Hasse-invariant is 0. Then for every number b ∈ N there exists a locally free sheaf S on C
and a cohomology class c ∈ H1(C,S) such that c is annihilated by some Frobenius power, but such
that Φb∗(c) �= 0.

Proof. We show that for 0 �= c ∈ H1(C,Fr), where r � pb+1, we have that Φb∗(c) ∈ H1(C,Φb∗(Fr))
is not zero, though it is annihilated by some Frobenius power, since the curve is assumed to have
Hasse-invariant 0 (see the proof of Theorem 1.1). We use induction on b, the case where b = 0 being
clear. So suppose that b � 1. By Theorem 2.1(ii) and (iii) we have the decomposition

Φ∗(Fr) ∼=
p⊕

i=1

F�(r−i)/p�+1

and we know that the mapping on the cohomology is injective. Hence at least one component of
Φ∗(c) is non-zero, say c′ = (Φ∗(c))i ∈ H1(C,F�(r−i)/p�+1). The rank of F�(r−i)/p�+1 is at least⌊

r − i

p

⌋
+ 1 �

⌊
r − p

p

⌋
+ 1 =

⌊
r

p

⌋
�

⌊
pb+1

p

⌋
= pb.

By the induction hypothesis we know that Φ(b−1)∗(c′) �= 0; hence Φb∗(c) = Φ(b−1)∗(Φ∗(c)) �= 0.

We are going to translate these results into results about the Frobenius closure of ideals. To do
so we have to realize the bundles Fr on an elliptic curve as a syzygy bundle for suitable ideal
generators. The following lemma is known.
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Lemma 2.3. Let C denote a smooth projective curve over an algebraically closed field, and let S
denote a locally free sheaf of rank r, which is globally generated by r + k global sections, k � 1.
Then it is also globally generated by r + 1 global sections.

Proof. The assumption means that we have a surjection

Or+k
C −→ S −→ 0.

Set V = Γ(C,Or+k
C ), and consider the family of subspaces U ⊂ V of codimension one, which form

an (r + k)-dimensional Grassmann variety G(r + k − 1, V ). Fix x ∈ C and consider the surjection

ϕx : V −→ W := S ⊗ κ(x).

Let K = Kx denote its kernel. The intersection of U with K has either dimension k − 1 or it
is K. In the first case U maps onto W , in the second case not. The subspaces U of dimension
r + k − 1 which contain K are given by the (r − 1)-dimensional subspaces of V/K, so they form an
r-dimensional subvariety Gx of G(r + k − 1, V ). Hence

⋃
x∈C Gx has dimension at most r + 1, and

so for k � 2 the generic hyperplane U ⊂ V also generates S globally. So inductively we can reduce
k until we have only r + 1 generators.

Theorem 2.4. Let R denote a normal homogeneous coordinate ring over an elliptic curve of positive
characteristic p and of Hasse-invariant 0. Then there does not exist a Frobenius test exponent valid
for all homogeneous R+-primary ideals I ⊆ R.

Proof. Let C = Proj R denote the corresponding elliptic curve and let OC(1) denote the ample
invertible sheaf on C. For some � > 0 the twisted bundle Fr(�) on C is globally generated. Owing to
Lemma 2.3 there exists a short exact sequence

0 −→ OC(−d) −→ Or+1
C −→ Fr(�) −→ 0 (d > 0).

Dualizing and tensoring with O(�) yields (since F∨
r = Fr)

0 −→ Fr −→ Or+1
C (�) −→ OC(d + �) −→ 0,

where the last mapping is given by some homogeneous elements f1, . . . , fr+1 of degree d, hence
Fr

∼= Syz(f1, . . . , fr+1)(d + �). Since � > 0, we have H1(C,O(�)) = 0 and therefore the non-trivial
class c ∈ H1(C,Fr) comes from an element f ∈ Γ(C,OC(d + �)) = Rd+�. By Corollary 2.2 and its
proof there exists for given b a number r such that 0 �= c ∈ H1(C,Fr) is not annihilated by the
bth Frobenius power, but it is annihilated by some Frobenius power. This means that f belongs to
the Frobenius closure of the ideal I = (f1, . . . , fr+1), but fpb �∈ I [pb].

3. Semistable sheaves on curves over a finite field

We look now at normal homogeneous coordinate rings over a smooth projective curve C of higher
genus. The theory of vector bundles on C is still the main ingredient in the following results, but
since this theory is more complicated than in the elliptic case we obtain our results only under the
condition that everything is defined over a finite field.

Recall some facts (see [HL97] or [Ses82] for details) about locally free sheaves on a smooth
projective curve C over a field F. The degree of a locally free sheaf S on C of rank r is defined by
deg(S) = deg

∧r(S); the degree is additive on short exact sequences. The slope of S, written µ(S),
is defined to be deg(S)/r. The slope has the property that µ(S ⊗ T ) = µ(S) + µ(T ).

A locally free sheaf S is called semistable (respectively stable) if µ(T ) � µ(S) (respectively
µ(T ) < µ(S)) for every locally free subsheaf T ⊂ S. Tensoring with an invertible sheaf does not
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affect this property. A non-zero morphism S → T between two semistable sheaves enforces
µ(T ) � µ(S). In particular, a semistable sheaf of negative degree does not have any non-trivial
global section.

For fixed rank r and degree d the set of semistable sheaves form a bounded family: see [HL97,
1.7] or [Ses82, III.A]. This is a basic result in the construction of the moduli space of (semi)stable
sheaves on a curve and on higher-dimensional varieties. This boundedness implies in particular that
there are only finitely many semistable sheaves of rank r and of degree d defined over a finite field.

In positive characteristic p, a locally free sheaf S is called strongly semistable if every Frobenius
pull-back Φe∗(S) under the eth absolute Frobenius Φ : C → C is again semistable. The following
lemma shows that, if everything is defined over a finite field, then we only have to look at certain
Frobenius powers to test for strong semistability.

Lemma 3.1. Let C denote a smooth projective curve defined over a finite field F, and let r ∈ N.
Then there exists a number m such that for every locally free sheaf S of rank r on C the following
holds: if Φm∗(S) is semistable, then S is strongly semistable.

Proof. By enlarging the ground field we may assume that there exists an F-rational point on C and
hence an invertible sheaf L of degree 1. Let S be given of rank r. There exists a � 0 and e > 0,
a + e � r, such that pa+e deg(S) = pa deg(S)mod r. Let T = Φa∗(S) ⊗ L�, where � is chosen such
that δ := deg(T ) = pa deg(S) + �r is in between 0 and r − 1. There exists k such that peδ − δ = kr.
Hence the assignment (and its iterations)

T �−→ Φe∗(T ) ⊗ L−k =: ϕ(T )

preserves the degree, since deg(Φe∗(T )⊗L−k) = pe deg(T )− kr. The number of semistable bundles
defined over F of fixed rank r and degree δ is finite, say bounded by n. Set m = r(n + 1).

If now Φm∗(S) is semistable, then all Φi∗(S) are semistable for i � m, but then of course
the ϕj(T ) are semistable for all j � n. Since they have the same degree δ, two of them must be
isomorphic. But then we must have a periodicity among the ϕj(T ) and so they are in fact semistable
for all j ∈ N. Hence S is strongly semistable (see also [LS77] for this argument).

Note that we have to deal only with the finitely many degrees between 0 and r−1, so that there
exists a bound which is independent of the degree of the bundles.

For every locally free sheaf S on C there exists the so-called Harder–Narasimhan filtration
0 ⊂ S1 ⊂ · · · ⊂ St = S, where the Sj are locally free subsheaves. This filtration is unique
and has the property that the quotients Sj/Sj−1 are semistable and µ(Sj/Sj−1) > µ(Sj+1/Sj)
for all j = 1, . . . , t − 1. In positive characteristic, a Harder–Narasimhan filtration is called strong if
all quotients Sj/Sj−1 are strongly semistable. For every locally free sheaf S there exists a pull-back
Φe∗(S) such that its Harder–Narasimhan filtration is strong [Lan04, Theorem 2.7]. An observation
of Trivedi combined with Lemma 3.1 allows us to give a bound for the Frobenius power such that the
Harder–Narasimhan filtration is strong.

Corollary 3.2. Let C denote a smooth projective curve of genus g defined over a finite field F,
and let r ∈ N. Suppose that char(F) = p > 4(g − 1)r3. Then there exists a number h such that for
every locally free sheaf S of rank r the Harder–Narasimhan filtration of Φh∗(S) is strong.

Proof. We use induction on r; for r = 1 there is nothing to show. Set h = (r − 1)m, where m is the
number for which the conclusion of Lemma 3.1 holds for all locally free sheaves of rank at most r.
Consider Φm∗(S). If this is semistable, then S is strongly semistable by Lemma 3.1 and we have
the desired result. So suppose that

0 ⊂ S1 ⊂ · · · ⊂ St−1 ⊂ St = Φm∗(S)
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is the Harder–Narasimhan filtration, with rk(Sj/Sj−1) < r. By the theorem of Trivedi [Tri04]
(here the condition about the prime characteristic is needed) the Harder–Narasimhan filtration of
a higher Frobenius pull-back is a refinement of the pull-back of this filtration. Hence we can apply
the induction hypothesis to the quotient sheaves Sj/Sj−1.

Remark 3.3. For r = 2 we do not need the condition about the prime characteristic, since then
Φm(S) is either semistable (m being the invariant from Lemma 3.1), and hence strongly semistable,
or it has an invertible subsheaf which contradicts semistability. In any case the Harder–Narasimhan
filtration of Φm(S) is strong.

4. Frobenius test exponents for curves of higher genus

Let C denote a smooth projective curve over a finite field and let S denote a locally free sheaf
on C. We say that a cohomology class c ∈ H1(C,S) is annihilated by some Frobenius if Φe∗(c) ∈
H1(C,Φe∗(S)) is zero for some e ∈ N. We want to show that this can be checked within a certain
number of steps, which is bounded by a number only depending on C and on the rank of S.
We restrict first to strongly semistable sheaves.

Lemma 4.1. Let C denote a smooth projective curve defined over a finite field F, and let r ∈ N.
Then there exists a number k such that for every strongly semistable locally free sheaf T on C
of rank r the Frobenius annihilation of a cohomology class c ∈ H1(C,T ) can be checked within k
steps.

Proof. We examine three cases depending on whether deg(T ) is positive, zero or negative. In each
case we will find a bound k.
Case 1. Suppose first that deg(T ) > 0. Let k be such that pk > r deg(ωC), where ωC denotes the
dualizing sheaf on C; thus deg(ωC) = 2g − 2, where g is the genus of the curve. Then Φk∗(c) ∈
H1(C,Φk∗(T )) and the degree of this bundle is

deg(Φk∗(T )) = pk deg(T ) � pk.

Therefore µ(Φk∗(T )) � pk/r > deg(ωC). Hence there exists no non-trivial homomorphism
Φk∗(T ) → ωC (due to strong semistability) and therefore H1(C,Φk∗(T )) = 0 by Serre duality.
So the kth Frobenius annihilates these classes.
Case 2. Suppose now that deg(T ) = 0. The curve and T are defined over the finite field F.
The pull-back of T is again semistable of degree 0 and defined over F. The number of semistable
bundles of rank r and degree 0 defined over a finite field is however finite. Call this number n, as
in Lemma 3.1. Hence there must be a repetition, say Φt∗(T ) ∼= Φt′∗(T ), where 0 � t < t′ � n.
Set t′ − t =: v and define F := Φt∗(T ).

Let θ : Φv∗(F) → F be a fixed isomorphism. This induces isomorphisms Φ(k−1)v∗(θ) : Φkv∗(F) →
Φ(k−1)v∗(F) and the composition of these yields isomorphisms θk : Φkv∗(F) → F . Set ϕ = θ ◦ Φv∗ :
F → F . The diagram

Φv∗(F) Φv∗
��

θ

��

Φv∗(Φv∗(F))

Φv∗(θ)
��

F Φv∗
�� Φv∗(F)

commutes by the functoriality of Φ∗. Therefore θk ◦ Φkv∗ = ϕk. Since the θk are isomorphisms,
they induce isomorphisms on the cohomology groups, and so a cohomology class c ∈ H1(C,F) is
annihilated by Φkv∗ if and only if it is annihilated by ϕk.
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So we are considering the group homomorphism ϕ : H1(C,F) → H1(C,F) and its iterations.
Note that ϕ is pv-linear, meaning that ϕ(λc) = λpv

ϕ(c). In this situation we have an F-vector
space decomposition H1(C,F) = Vs ⊕ Vn such that the action of ϕ on Vs is bijective and on Vn is
nilpotent [Mum70, 14, last corollary]. Now a cohomology class c ∈ H1(C,T ) is annihilated by some
Frobenius power if and only if the image of c under projs ◦Φt∗ : H1(C,T ) → H1(C,F) → Vs is zero.
The dimension of H1(C,F) is bounded by an invariant dependent only on r and C, which follows
from [Ses82, Lemme 20]. Every application of ϕ annihilates at least one dimension of Vn, so there
is a certain power of ϕ which annihilates Vn.
Case 3. Now suppose that deg(T ) < 0. Even in this case it might happen that some Frobenius power
of a non-zero element c ∈ H1(C,T ) is zero, but this is rather an exception. First note that the dual
sheaf T ∨ has positive degree and is therefore ample, since it is strongly semistable. Consider the
extension 0 → T → T ′ → OC → 0 defined by c ∈ H1(C,T ) and consider the dual sequence
0 → OC → (T ′)∨ → T ∨ → 0 and its Frobenius pull-backs

0 −→ OC −→ Φt∗(T ′)∨ −→ Φt∗(T ∨) −→ 0.

Now let k be such that

deg(Φk∗(T ′)∨) = deg(Φk∗(T )∨) = pk deg(T ∨) > rk(T )(rk(T ) + 1)g

(note that this is satisfied if pk > rk(T )(rk(T ) + 1)g). Then either Φk∗(c) = 0 and c is annihilated
by this Frobenius power, or Φk∗(c) �= 0, the extension remains non-trivial and Φk∗(T ′)∨ is ample.
This follows from [Gie71, Lemma 2.2] and an argument similar to [Gie71, Proposition 2.2]; see
[Bre06, Lemma 5.19]. But then the torsor defined by c, that is P((T ′)∨)−P(T ∨), is an affine variety.
Therefore c cannot be annihilated by any Frobenius power, because otherwise the pull-back of this
torsor would admit a section, contrary to affineness.

Theorem 4.2. Let C denote a smooth projective curve of genus g defined over a finite field F.
Fix r ∈ N and suppose that char(F) = p > 4(g − 1)r3. Then there exists a number b such that for
every locally free sheaf S of rank r on C the following holds: if a cohomology class c ∈ H1(C,S) is
annihilated by some Frobenius power, then already Φb∗(c) = 0 holds in H1(C,Φb∗(S)).

Proof. By Corollary 3.2 there exists a Frobenius power Φh such that the Harder–Narasimhan filtra-
tion of Φh∗(S) is strong, say 0 ⊂ S1 ⊂ · · · ⊂ St = Φh∗(S). Let T = Sj/Sj−1 be one of the strongly
semistable quotient sheaves in this filtration, so that rk(T ) � r. By Lemma 4.1 we know that for
all these bundles there exists a checking bound for Frobenius annihilation. Let k be such a common
bound and set b = h + rk.

Now let c ∈ H1(C,S) denote a cohomology class and suppose that it is annihilated by some
Frobenius power. We want to show that already the bth Frobenius power annihilates this class.
Let ct = Φh∗(c) ∈ H1(C,Φh∗(S)) be the pull-back and consider what happens to it under the short
exact sequence

0 −→ St−1 −→ Φh∗(S) −→ Φh∗(S)/St−1 −→ 0.

Since some Frobenius power of ct is zero, this is also true for its image c′t ∈ H1(C,Φh∗(S)/St−1).
But then Φk∗(c′t) = 0 in H1(C,Φk∗(Φh∗(S)/St−1)) by Lemma 4.1. Therefore Φk∗(ct) is the image of
a cohomology class ct−1 ∈ H1(C,Φk∗(St−1)).

If St/St−1 has negative degree, then H0(C,St/St−1) = 0 by semistability and H1(C,St−1) →
H1(C,St) is injective, and this holds for all Frobenius powers. Hence also ct−1 is annihilated by
some Frobenius power. If however deg(St/St−1) � 0, then µmin(St−1) = µ(St−1/St−2) > 0 and
every cohomology class in it is annihilated by some Frobenius power. Application of the induction
hypothesis to St−1 gives the result.
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Remark 4.3. The bound obtained in Theorem 4.2 is hardly suitable for computations. The main
problem here is the number n from Lemma 3.1, which bounds the number of semistable sheaves
of given rank and degree on a curve over a finite field (this number enters also in the second case
in the proof of Lemma 4.1). The dimension of the moduli space of semistable sheaves of rank r
and degree d is r2(g − 1) + 1 (see [Ses82, after théorème 18] or [HL97, Corollary 4.5.5]; note that
Huybrechts and Lehn give the dimension for a fixed determinant, and this explains the difference
of g).

5. Frobenius test exponents for ideals in two-dimensional rings

We now come back to Frobenius test exponents for ideals in two-dimensional rings.

Theorem 5.1. Let F denote a finite field and let R denote a geometrically normal two-dimensional
standard-graded domain over F. Fix n ∈ N and suppose that char(F) = p � 4(g − 1)(n− 1)3, where
g denotes the genus of the smooth projective curve C = Proj R. Then there exists a Frobenius test
exponent for the class of homogeneous ideals generated by at most n homogeneous elements.

Proof. Suppose first that I is an R+-primary ideal. Let I = (f1, . . . , fn) and suppose as in the proof
of Theorem 1.1 that f ∈ IF is homogeneous of degree m. Let δ(f) ∈ H1(C,Syz(f1, . . . , fn)(m)).
Then fpe ∈ I [pe] if and only if δ(f) is annihilated by the eth Frobenius power. By Theorem 4.2, we
know that δ(f) is annihilated already by the bth Frobenius power, where b is the test bound for
locally free sheaves of rank r = (n − 1).

Suppose now that I is a homogeneous ideal, but not necessarily R+-primary, say I = (h1, . . . , hk).
Suppose that f is a homogeneous element of degree m. Let x, y denote homogeneous parameters
in R of degree greater than m. If now f ∈ IF, then also f ∈ (I + (x, y))F (which is the Frobenius
closure of an R+-primary ideal generated by k +2 elements), and hence fpb ∈ (hpb

1 , . . . , hpb

k , xpb
, ypb

)
(where b is now the bound for sheaves of rank k + 1). If we write this as a homogeneous equation
fpb

= g1h
pb

1 + · · · + gkh
pb

k + gk+1x
pb

+ gk+2y
pb

we see that already fpb ∈ I [pb].

Remark 5.2. If we delete the condition on the prime number in Theorem 5.1, we still get a positive
answer to the weak question of Katzman and Sharp for primary ideals in a two-dimensional geometri-
cally normal standard-graded domain over a finite field. If I = (f1, . . . , fn) is the primary ideal, then
its syzygy bundle has a strong Harder–Narasimhan filtration on a certain Frobenius pull-back: let us
say that the Harder–Narasimhan filtration of the hth pull-back is strong. Now the syzygy bundle of
I [q] = (f q

1 , . . . , f q
n), where q = pe, that is Syz(f q

1 , . . . , f q
n), is just the eth pull-back of Syz(f1, . . . , fn),

and therefore the hth pull-back of Syz(f q
1 , . . . , f q

n) has also a strong Harder–Narasimhan filtration.
This replaces Corollary 3.2.

6. Tight closure test ideal exponents

We recall briefly the notions of tight closure, test ideals and test exponent for tight closure, referring
to [Hun98] and [HH00] for details. Let R denote a noetherian commutative ring of positive prime
characteristic p, and let R◦ denote the complement of the union of the minimal prime ideals.
Then the tight closure of an ideal I is defined as the ideal

I∗ = {f ∈ R : ∃z ∈ R◦ such that zf q ∈ I [q] for all q � 0}.

An element z ∈ R◦ is called a test element if for all ideals I and all f ∈ I∗ we have zf q ∈ I [q]

for all powers q = pe. The test ideal, denoted τ , is the ideal generated by all test elements. It is
a non-trivial fact that test elements exist [Hun98, Theorem 3.2] under certain conditions. The sit-
uation for Gorenstein local or graded rings is even better: in this case for an arbitrary system of
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parameters we have (x1, . . . , xd) : τ = (x1, . . . , xd)∗ and τ = (x1, . . . , xd) : (x1, . . . , xd)∗; see [Hun98,
Corollaries 4.2 and 4.3]. More specifically, for a noetherian non-negatively graded Gorenstein ring
and p � 0 we have that τ = R�a+1, where a is the a-invariant of R. This is the maximal degree δ
such that (Hd

R+
(R))δ �= 0; equivalently, OC(a) is the dualizing sheaf on C = Proj R (see [BH98,

Proposition 3.6.11]).
Fix a test element z ∈ R, and let I ⊆ R be an ideal. A test exponent for z and I is a prime power

pb (or rather its exponent) such that zfpb ∈ I [pb] ensures that f ∈ I∗ (see [HH00, Definition 2.2],
where the definition is given for R-modules N ⊆ M).

Test exponents are important for two reasons. On the one hand, the existence of test exponents
is equivalent to the localization of tight closure; see [HH00, Theorem 2.4] for the precise statement.
On the other hand, a test exponent gives at once a finite algorithm for the computation of tight
closure. Note that, contrary to the case of Frobenius test exponents, already the existence of a test
exponent for a single ideal is a problem, not to mention the existence of a uniform bound for
test exponents for a reasonable class of ideals [HH00, Discussion 5.3].

Here we will however focus on the following variant of test exponent, which is easier to handle.

Definition 6.1. Let R denote a noetherian ring of positive characteristic p and let τ denote the
test ideal. A test ideal exponent for tight closure (for a certain class of ideals in R) is a number b
such that the following holds: if zfpe ∈ I [pe] holds for every e � b and for every z ∈ τ , then f ∈ I∗.

The existence of a test ideal exponent has the same computational impact on tight closure as
the existence of a test exponent for a certain test element. Moreover, its existence implies also that
tight closure commutes with localization, at least if all the test elements are locally stable (look at
the proof of [HH00, Proposition 2.3]).

We restrict now to the situation of a two-dimensional standard-graded normal Gorenstein
domain R. We will show that in this case a uniform tight closure test ideal exponent exists for
the ideals generated by n homogeneous elements. For a homogeneous element f of degree m and a
homogeneous element z the condition that zf q ∈ (f1, . . . , fn)[q] holds translates into zΦe∗(δ(f)) = 0
in H1(C,OC (deg(z))⊗Φe∗(S)), where S = Syz(f1, . . . , fn)(m), δ(f) ∈ H1(C,S) and q = pe. We will
need the following lemma.

Lemma 6.2. Let C denote a smooth projective curve of genus g over a field F. Fix a very ample
invertible sheaf OC(1) and set deg(C) = deg(OC(1)). Let u be a number such that udeg(C) >
2g − 2 = deg(ωC), where ωC denotes the dualizing sheaf on C. Then for every semistable sheaf T
on C of rank r and of degree deg(T ) < −r(1 + (u + 1) deg(C)) and for every cohomology class
0 �= c ∈ H1(C,T ) there exists a sheaf homomorphism ϕ : T → OC(−u)⊗ ωC such that ϕ(c) �= 0 in
H1(C,OC (−u) ⊗ ωC).

Proof. Suppose that T satisfies the stated degree condition. Then

deg(T ∨ ⊗ ωC ⊗OC(−u − 1)) = −deg(T ) + r(2g − 2) − r(u + 1) deg(Y ) > r(2g − 1).

By [Ses82, Lemme 20] the sheaf T ∨ ⊗ωC ⊗OC(−u− 1) is therefore generated by its global sections
and H1(C,T ∨ ⊗ ωC ⊗ OC(−u − 1)) = 0. This last property means that T ∨ ⊗ ωC ⊗ OC(−u) is
0-regular in the sense of Castelnuovo and Mumford [HL97, Definition 1.7.1]. Therefore by [HL97,
Lemma 1.7.2] we have a surjective map

H0(C,T ∨ ⊗ ωC ⊗OC(−u)) ⊗ H0(C,OC (n)) −→ H0(C,T ∨ ⊗ ωC ⊗OC(n − u))

for every n � 0. Taking n = u we get a surjective mapping ϕ :
⊕

OC(u) → T ∨ ⊗ ωC which is also
globally surjective. Consider the exact sequence

0 −→ K −→
⊕

OC(u)
ϕ−→ T ∨ ⊗ ωC −→ 0.
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This induces the exact sequence⊕
H0(C,OC (u))

ϕ−→ H0(C,T ∨ ⊗ ωC) −→ H1(C,K) −→
⊕

H1(C,OC(u)).

Since H1(C,OC (u)) = H0(C,OC (−u) ⊗ ωC)∨ = 0 in view of the assumption on u, and since ϕ is
surjective on the global sections by construction, we get H1(C,K) = 0. Now tensor the short exact
sequence with ω−1

C and consider the dual sequence

0 −→ T −→
⊕

O(−u) ⊗ ωC −→ K∨ ⊗ ωC −→ 0.

Since H0(C,K∨ ⊗ ωC) = H1(C,K)∨ = 0, we see that the induced map

H1(C,T ) −→
⊕

H1(C,OC (−u) ⊗ ωC)

is injective. Hence for a class 0 �= c ∈ H1(C,T ) at least one component in H1(C,OC (−u) ⊗ ωC) is
non-zero.

Lemma 6.3. Let R denote a standard-graded two-dimensional geometrically normal Gorenstein
domain over a field F of positive characteristic p. Let C = Proj R denote the smooth projective
curve of genus g determined by R. Set deg(C) = deg(OC(1)) and let ωC = OC(a) be the dualizing
sheaf. Let τ denote the test ideal of R. Fix r ∈ N. Let k be such that 2k > r(1+(a+ g +2) deg(C)).
Then k has the property that for every strongly semistable sheaf T of rank r and of negative degree
the following holds: if for c ∈ H1(C,T ) we have that zΦk∗(c) = 0 for all homogeneous z ∈ τ , then
already Φk∗(c) = 0.

Proof. Since T has negative degree, the degree of the kth Frobenius pull-back Φk∗(T ) is

deg(Φk∗(T )) = pk deg(T ) � −2k < −r(1 + (a + g + 1) deg(C)).

We want to apply Lemma 6.2 with u = a + g + 1; note that (a + g + 1) deg(C) > degOC(a) =
2g − 2. Suppose that Φk∗(c) �= 0. Then there exists by Lemma 6.2 a sheaf homomorphism ϕ :
Φk∗(T ) → OC(a − u) = OC(−g − 1) such that 0 �= c′ = ϕ(Φk∗(c)) ∈ H1(C,OC (−g − 1)).
Since zΦk∗(c) = 0 for all z ∈ τ , this holds also for c′. This means that we have a cohomology class c′ ∈
H1(C,O(−g − 1)) ∼= (H2

R+
(R))−g−1 of negative degree −g − 1 which is annihilated by the test

ideal. By [Hun98, Corollary 4.2(1)] we have that 0∗ = {c ∈ H2
R+

(R) : τc = 0} and hence c′ ∈ 0∗.
This means that the torsor defined by c′ is not affine, but since deg(OC(−g−1)) = −(g+1) deg(C) <
−2g, results of Gieseker [Gie71, Lemma 2.2 and Proposition 2.2] imply that c′ = 0, a contradic-
tion.

Theorem 6.4. Let R denote a standard-graded two-dimensional geometrically normal Gorenstein
domain over a finite field F of positive characteristic p. Fix n∈ N and suppose that p � 4(g−1)(n−1)3 ,
where g denotes the genus of C = Proj R. Then there exists a test ideal exponent for the class of
homogeneous ideals generated by at most n elements.

Proof. We have to show that there exists a b such that for every homogeneous ideal I = (f1, . . . , fn)
the following holds: if for an element f ∈ R we have zf q ∈ I [q] for all z ∈ τ and all q = pe, e � b,
then already f ∈ I∗.

Again we may reduce to the primary case as in the proof of Theorem 5.1. Set b = h + (n − 1)k,
where h is the bound from Corollary 3.2 for locally free sheaves of rank n− 1 on C and where k is a
common bound from Lemma 6.3 for the strongly semistable sheaves of ranks r � n−1. We can also
reduce to the homogeneous case, so let f denote a homogeneous element of degree m. Suppose that
zf q ∈ I [q] for all z ∈ τ and all q = pe, e � b; we have to show that this is then true for every power
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of p (and at least for one element z ∈ R◦). Let S = Syz(f1, . . . , fn)(m) denote the syzygy bundle of
rank n−1 on the smooth projective curve C = Proj R and let c = δ(f) ∈ H1(C,Syz(f1, . . . , fn)(m)).

Using Corollary 3.2 we get the strong Harder–Narasimhan filtration S0 ⊂ · · · ⊂ St = Φh∗(S);
consider ct = Φh∗(c) ∈ H1(C,Φh∗(S)). Then we consider the image c′t of ct in H1(C,St/St−1).
If T = St/St−1 has negative degree, then by Lemma 6.3 we have that Φk∗(c′t) = 0, since it is
annihilated by the test ideal. In this case Φk∗(ct) is the image of a class ct−1 ∈ H1(C,Φk∗(St−1)).
Since H0(C,Φe∗(T )) = 0, we have H1(C,Φe∗(St−1)) ⊆ H1(C,Φe∗(St)) for all e and it follows from
our assumption that zΦe∗(ct−1) = 0 for e � (n − 2)k and all z ∈ τ . If however T has non-negative
degree, then the minimal slope of St = Φh∗(S) is non-negative and then zΦe∗(c) = 0 for z ∈ R�a+1

and all e anyway (even in small characteristics, where τ may be different from R�a+1). In this way
we use induction along the strong Harder–Narasimhan filtration.

Remark 6.5. The problem with test exponents for a given fixed test element z is that even in the
case of a parameter ideal (which corresponds to a cohomology class in an invertible sheaf) it is not
clear how to bound the test exponent [HH00, Discussion 5.1].

Corollary 6.6. Let F denote a field of positive characteristic p and let G ∈ F[x, y, z] denote a
cubic polynomial such that C = Proj R, where R = F[x, y, z]/(G), is an elliptic curve. Let e be such
that pe > 7(n−1). Then e is a test ideal exponent for the set of all homogeneous R+-primary ideals
generated by n homogeneous elements.

Proof. Since g(C) = 1, deg(C) = 3 and ωC = OC , Lemma 6.2 applied with u = 1 shows that
for every semistable sheaf T on C of rank r and of degree deg(T ) < −7r and a cohomology
class c ∈ H1(C,T ) there exists a sheaf homomorphism ϕ : T → OC(−1) such that ϕ(c) �= 0 in
H1(C,OC (−1)).

Let q = pe > 7(n − 1). Let I = (f1, . . . , fn) denote an R+-primary ideal generated by n
homogeneous elements and let f ∈ R denote an element of degree m. The test ideal of R is the
maximal ideal τ = (x, y, z). So suppose that wf q ∈ (f q

1 , . . . , f q
n) = I [q] for w = x, y, z. We have to

show that f ∈ I∗. Let Syz(f1, . . . , fn)(m) ∼= S1 ⊕ · · · ⊕ Sk denote the decomposition of the syzygy
bundle on C into indecomposable sheaves and let

δ(f) = c = (c1, . . . , ck) ∈ H1(C,Syz(f1, . . . , fn)(m)) =
k⊕

j=1

H1(C,Sj)

denote the components of the cohomology class. Assume that f �∈ I∗. By [Bre05, Corollary 4.1] there
exists j, 1 � j � k, such that Sj has negative degree and cj �= 0. Consider Φe∗(c) ∈ H1(C,Φe∗(Sj)).
Recall that indecomposable sheaves on an elliptic curve are strongly semistable. Furthermore note
that Φe∗(c) �= 0, otherwise f would belong to the tight closure. Since deg(Φe∗(Sj)) � pe < −7(n−1)
� −7 rk(Sj), there exists a morphism ϕ : Φe∗(Sj) → OC(−1) such that 0 �= c′ = ϕ(Φe∗(cj)) ∈
H1(C,OC (−1)). By assumption the class Φe∗(cj) is annihilated by (x, y, z), and this property passes
over to c′. But for 0 �= c′ ∈ H1(C,OC (−1)) there exists, by Serre duality, a homomorphism θ :
OC(−1) → OC = ωC such that θ(c′) �= 0. However, θ is given by a linear form, and so we have a
contradiction.
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