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Introduction

This is a continuation of Part I, which appeared in this journal.
In the previous paper I we have defined the following notions: or-

thogonal Jordan triple system (OJTS), orthogonal symmetric graded Lie
algebra (OSGLA), orthogonal Jordan algebra (OJA), Hermitian symmetric
graded Lie algebra (HSGLA). And we have shown that equivalent classes
of OJTS naturally correspond to equivalent classes of OSGLA and through
this correspondence we have naturally constructed HSGLA's from the
OJTS's associated with OJA's with unity.

In the present paper we will give OJA's with unity and thus HSGLA's
associated with r-dimensional complete totally real parallel submanifolds
of an r-dimensional complex space form of nonzero constant holomorphic
sectional curvature. And we will show that rigid classes of these sub-
manifolds correspond to equivalent classes of the associated OJA's with
unity and thus the associated HSGLA's (Theorem 6.3).

Moreover, in the section 7, we will decompose these OJA's and
HSGLA's into indecomposable ones (Theorem 7.10). The indecomposable
OJA's and HSGLA's are devided into the following types: almost nilpotent
type or simple type. In the section 8 we will determine almost nilpotent
HSGLA's by using results of Cahen-Parker [2], and in the section 9 simple
HSGLA's by using results of Berger [1] and Kobayashi-Nagano [6].

We retain the definitions and notations in Part I.

§ 6. The OJA and HSGLA associated with a complete inverse

Let V be an ^-dimensional pseudo-Euclidean space and Nn an n~
dimensional connected parallel pseudo-riemannian submanifold of ZΛ De-
note by σ, A the second fundamental form, the shape operator of the
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inclusion N <=—> V respectively. The pseudo-riemannian metrics on L\

N will be denoted by the same notation < )L. Denote by R the cur-

vature tensor for the Levi-Civita connection V of N and by R1 the cur-

vature tensor for the normal connection D of the inclusion iVc=—>U

respectively. Then we have the following identities:

(6.1) R(X, Y)Z = ΆHY, Z)X- AHX, z) Y,

(6.2) R(X,Y)R = 0,

(6.3) B KX, Y)σ(Z, W) = a(R(X, Y)Z, W) + σ(Z, R(X, Y)W)

for vector fields X, Y, Z, W of N. In fact, the identity (6.1) is the result

of Gauss equation. The identities (6.2), (6.3) are attained from the paral-

lelity of R, σ respectively.

Fix a point peN and put V = TP(N). Define a V-valued trilinear

form { } on 7 by

for X, y, Ze V. Then the object (V, { }) is a JTS. In fact, the con-

dition (JT 1) is attained by (6.1) and the condition (JT 2) by (6.2), (6.3)

respectively (See Ferus [3], Lemma 2 for the detailed proof). Denote

also by < }L the restriction of < >L into V X V. Then we have

Y = -R(X, Y) + AHXtY) = R(Y, X) + AHY,X) = L(Y,X)

for X, Ye V. Hence the object (V, { }, < }L) is an OJTS. Note that

the tensor A5(* ,*)(*) on N is parallel. Then the OJTS is independent of

the choice of a point peN by the parallelity of R, ΆH*t*>(*).

Let Hn be a 2n-dimensional pseudo-Hermitian space with the complex

structure iH and the pseudo-riemannian metric <( >#, and Nn an ra-dimen-

sional totally real pseudo-riemannian submanifold of Hn. Then we have

the following identities:

(6.4) DxiHZ=iHVxZ and thus &(X, Y)iHZ = iHR(X, Y)Z,

(6.5) AtπZY= -iHσ(X9 Y),

(6.6) <σ(Z, Y), k Z ) * = <σ(Z, Z), i^Y>^

for vector fields X, Y, Zof iVw. In fact, the identities (6.4), (6.5) are at-

tained by Gauss-Weingarten formulas and the identity (6.6) is attained

by (6.5).
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Let Nn be an zi-dimensional connected totally real parallel pseudo-

riemannian submanifold of Hn. Fix a point p e Nn and define a product

on V= TP(N) by

X.Y=iffd(X,Y)

for X, Ye V. Denote by A this algebra (V, •)• Note that

(6.7) F(ίHσ) = 0 and thus R(X, Y)-(iHσ) = 0

for X, Ye V by the parallelity of σ and (6.4).

LEMMA 6.1. The object (A, < >H) is an OJA. Moreover the OJTS

associated with (A, < }H) is the object (V, { }, < }H).

Proof. We show that A is a JA. The condition (J 1) is obvious.

Now we have

X2 (X Y) - X-(X2-Y)

- ίHσ(ίHσ(X, X), ίHσ(X, Y)) - iHσ(X, ίHσ(iHσ(X, X), Y))

— Ad(Xtχ)AίHXY -\- AίHXA3(Xix) Y = [Aiffχ, Aδ(Xtχ)\(Y)

for X, Ye V by (6.5), and moreover

(\AtRX, ΛHX,X)](Y), Z)B = (&(Y, Z)iHX, σ(X, X))H

= -(ίHR(Y, Z)X, σ(X, X))H = (R(Y, Z)X, isσ(X, X))H

= (l/3){-<Z, R(Y, Z)ίHσ(X, X)}H + 2(X, iHσ(R(Y, Z)X, X)}H}

= -0-I3KX, {R(Y, Z).(iπσ)}(X, X))H = 0

for ZeVhy Ricci equation and (6.6), (6.7). This implies the condition

(J2). Hence the algebra A is a JA. Since

yπ = <x Y, zyH = (iHσ(x, Y), zyH = <ίHσ(x, z), γyH

for X, Y, Ze A by (6.6), endomorphisms Tx, XeA, are symmetric for < yH.

Hence the object (A, < >;,) is an OJA.

Let (VA, { }A, < yB) be the OJTS associated with (A, < >/f). Then

we have

{X,Y,Z}A = (X-Y)-Z+ X-(Y-Z) - Y.(X-Z)

= iMσ(iHσ(X, Y), Z) + ίHσ(X, iHσ(Y, Z)) - iHσ(Y, i.Hσ(X, Z))

— Aδ(χfY)Z + Ad(γfZ)X Aδ(X>z)Y

= ΆHX,Y)Z + R(X, Y)Z = {X, Y, Z}
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for X, Y, Ze A by (6.1), (6.5), and thus (VA, { }Λ9 < >*) = (V, { }, < >*).

q.e.d.

Note that the OJA (A, < }H) is independent of the choice oΐ peNn

by the parallelity of iHσ.

Let M r be an r-dimensional connected complete totally real parallel

submanifold of Mr(c), c Φ 0. The complete inverse Mr+1 of Mr is a con-

nected complete totally real parallel submanifold of Er+ί by Proposition

4.1, Lemma 1.1, (3), (4.5). Then we have the following

LEMMA 6.2. Let (A, < }E) be the OJA constructed as above from the

complete inverse Mr+1 <=—>Er+\ Then (A, < }E) has the unity E and

satisfies that

(Ec 1) the signature of < >̂  is (1, r), (0, r + 1) according as c < 0,

c > 0 respectively,

(EC2) (E,E)E = 4lc.

Proof. Note that

(6.8) Λ = -(VM/2) id^

by (4.1), (4.6). This implies that

(6.9) iσ(w,X)= -(V|c|/2)X

for Z e A by (6.5). Put E = -(2/V]c|)iv. Then £ is the unity of A.

The properties (Ec 1), (Ec 2) are obvious. q.e.d

This object (A, < > )̂ (resp. {%A = Σ (gj,, ̂ , J^, < >PΛ) coming from

(̂ > < }E)) is called the OJA (resp. HSGLA) associated with SL complete

inverse Mr+ί and will be denoted by st'& (resp. ^ ) .

Fix a real number c Φ 0. Let J / = (A, < )) be an OJA with unity

E satisfying (Ec 1), (Ec 2) and 9 = (g^ = Σ (sX PA, J*A, < > J the HSGLA

coming from ja/. Denote by E^1 the pseudo-Hermitian space (p^, JPA,

< > J . Put N2r\φ) = {XepA; <X, X>P4 = c/4} and denote by M;(c) the

complex space form of constant holomorphic sectional curvature c, defined

by the set of orbits in iV|r+1(c/4) by the S'-action: θ->expθJPA. Then

K{v) is an (r + l)-dimensional connected complete totally real parallel

submanifold of El+ι and is left invariant by the S^action (Theorem 5.7).

Since K acts isometrically on 2sJ+1 and <y, v}PΛ = 4/c, the submanifold

K{v) is contained in iV|r+1(c/4). Denote by π^ the projection of Nlr+ί(c/4)
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onto Ml(c). Then Mr

9 = π^{K(v)) is an r-dimensional connected complete

totally real parallel submanifold of Ml(c) and the complete inverse Ml+1

of Ml is the submanifold K(v) (Lemma 1.1, (3), Proposition 4.1).

THEOREM 6.3. (1) Let Mr be an r-dimensional connected complete

totally real parallel submanifold of Mr(c). Then Mr c=—> Mr(c) is holo-

morphically congruent to M j Λ =—>MlΛc), i.e., there exists a holomorphic
MM

ίsometry δ of Mr(c) onto MlA(c) such that δ(Mr) = Mlr

(2) Let stf be an OJA with unity E satisfying (Ec 1), (Ec 2) and & the

HSGLA coming from s/. Then <srf &9 is equivalent to si and thus &&9 is

equivalent to &.

(3) Let s/9 s/' be OJA's with unities Ey Ef satisfying (Ec 1), (Ec 2)

respectively and <g, <&' the HSGLA''s coming from s/9 s/' respectively. Then

s/ is equivalent to srff if and only if <& is equivalent to & if and only if

Ml c=—> Ml(c) is holomorphically congruent to Mr

9.
cr—> Ml,(c).

Proof. (1) Let Mr+1 be the complete inverse of Mr and fix a point

z e M. Denote by s/* = (A, < > )̂ (resp. ^ ^ = (g^ = 2 (ίΛ» PA, ^ < > J )

the OJA (resp. HSGLA) associated with M. Identify A ® iA = T,(M) Θ

iTz(M) with Er+1.

Define a linear isomorphism δ of Er+1 onto pA by

δ(X + iY) = (-X, -Tγ, X) for X, Ye A.

Then we have

(δ(x + in KXf + ίYfy>,A = <x, xf)E + <(o, τγ% o), (o, τγ,, o)
= (X, X'}E + <(0, (1I2){LΛ(Y, E) + LA(E, Y)}, 0), (0, Tτ.9

), γyE = <x, x'>, + <y, r>,

for X+ iY, X' + iYf eEr+ί by (5.12), and moreover

di(X + iY) = (Y, -Tx, ~Y) = JΨΛ(-X, ~TY, X) = JJ(X + iY)

for X + iYeEr+ί. Hence δ is a holomorphic isometry of the pseudo-

Hermitian space Er+1 onto the pseudo-Hermitian space 2?ίi\ This implies

that δ(Mr+1) is a connected complete totally real parallel submanifold of

El^1 which is left invariant by the S^-action: θ-^expθJPA. Denote by j

the imbedding: K/Ko a kK0 -> k(p) e pA. Then the second fundamental form

(dj)0 at o = KQ is given by
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(σ3)0(A, B) = {ad (A) ad (B)v}PAf](ΰA)o

for A, Bern = {(X,0, X); Xe A} (See Ferus [4], Lemma 1 for the proof).

Note that δ(z) = v b y (6.9) and that Tv(K(v)) = Tv(δ(M)) = [m, v]. Denote

by (̂ (y))y (resp. (σδ(^X) the second fundamental form at v of if(i;) c Er^

(resp. d(M) c #ί+x). Then we have

, 0, - X ) , < Y, 0, - Y)) = (σ,)0((X, 0, X), (7, 0, Y))

= (0, (1/2){L,(Z, Y) + LA(Y, X)}, 0) = (0, TX.Y9 0) = -δ(iX Y)

= δ(σz(X, Y)) = ( O . ( ( ί 0, -X), (7, 0, - 7))

for (X, 0, -X), (Y, 0, - Y) e Γ ĴBΓ )̂) = T,(δ(M)) and thus

(6.10) ( ^ w ) v = ( ^ ^ } ) v .

Let ^ be a holomorphic isometry of Mr(c) onto Mlή(c), induced by δ.

Then we note that δ(Mr) = π9A(δ(Mr+1)). Putp = ττ^(i ) and denote by ( σ ^ ^

(resp. (σHM))p) the second fundamental form at p of M^^ c=—> Ml Ac) (resp.

-—> ΉlA{c)). Then we have

by (6.10), (4.1), (4.6), Lemma 1.1, (1). Hence we have 3(M) = Ml& (Naitoh

[8], Lemma 3.2).

(2) Let s/ = (A, < » and 9 = (%A = Σ (sX PA, JW < > J . Then

the second fundamental form (σ^),, at v of M9 — K(v) C El*1 is given by

(6.11) (a&χ{A, B) = (0, Tx.r, 0)

for A = (X, 0, - X ) , B = (Y, 0, - Y) and thus

JtJPtjXA, S) = (-X Y, 0, Z Y).

Define a linear isomorphism g of A onto [m, i>] by g(X) = (—X, 0, X) for

X e A Then we have

g(X- Y) = ( - X Y, 0, X Y) = JtΛ(dΛ.),(A, B)

and moreover

This implies that g is an isomorphism of OJA s/ onto OJA J/Λ and thus
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si is equivalent to si' &r Hence ^ is equivalent to (&ύ9 by Theorem 5.5,

(2).

(3) It is obvious by Theorem 5.5, (2) that si is equivalent to si' if

and only if <g is equivalent to &'.

Assume that si = (A, < » is equivalent to sif = (A', < )0, i.e.,

there exists an algebra isomorphism a of A onto A! such that (μ(X), OL(Y)Y

= (X, Y) for X, Ye A. The isomorphism a induces the isomorphism τga

of ^ onto ^' . Then we have

^ » = ^β(0, -icL, 0) = (0, -gΛoitAog-a\ 0) = (0, - i c U 0) = v'.

The restriction δ of τga into pA is a holomorphic isometry of 2s£+1 onto

£J,+1 and δ(K(v)) = Kf(vf). Hence we have δ(Mζ) = Aί;,, where 5 denotes

a holomorphic isometry of Mr

9(c) onto Ml>{c), induced by δ.

Conversely, assume that Ml c=—> Mr

9(c) is holomorphically congruent

to M;, c=—> M^(c), i.e., there exists a holomorphic isometry δ of Mj(c) onto

M£/(c) such that S(Mj) = Mj/. Then S induces a holomorphic isometry δ

of JEV1 onto EVι such that ^(MS+1) = Mrfx. Denote by σ̂  (resp. <v) the

second fundamental form of Mi+ί *=—> El+1 (resp. M^1 ^—> E^1). Then

we have

<KJPA(X, Y)) - J ^ ^ ( Z , 7)) - J p ^ r ( ί X , 3Y)

for X, Ye T2(M;+1). Hence stf'&9 is equivalent to si&9,. This implies that

si is equivalent to J / ; by (2). q.e.d.

Remark 6.4. Theorem 6.3 implies that the classification of r-dimen-

sional connected complete totally real parallel submanifold of Mr{c), c Φθ,

reduces to that of HSGLA's associated with OJA's with unities satisfying

(E cl), (EC2).

Remark 6.5. The proof of Theorem 6.3, (2) doesn't need the conditions

(Ec 1), (Ec 2) for si. Hence the claim (2) is true for any OJA with unity.

Let si = (A, < » be an OJA with unity and ^ = (QΛ = Σ (fiΛ» 9^ J9A>

< >jj the HSGLA coming from si. Denote by Hr

&

+1 the pseudo-Hermitian

space (pΛ, JPA, < >^) and put Mj + 1 = K(v). Then the proof of Theorem

6.3,(3) implies that the claim (3) can be generalized as follows: Let siy

sif be OJA's with unity and S?, & the HSGLA's coming from si, stff re-

spectively. Then si is equivalent to si' if and only if ^ is equivalent

to & if and only if Mj + 1 «=—> H£+1 is holomorphically and linearly con-
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gruent to Mj,+1 <=—> Hl?\ i.e., there exists a holomorphic and linear iso-

metry δ of H;+ί onto 7/J,+1 such that δ(M;+1) = M;,+1.

§ 7. A decomposition of the HSGLA coining from an OJA with

unity

Firstly we define the following two notions for each category given

in this series: one is "the sum of objects'' and the other is "a decomposi-

tion of an object".

Let (Vt9 { }<), l ^ i ^ s , be JTS's. Put V=@s

i=ιVi and define a

V-valued trilinear form { } on V by

{Σ x« Σ Yt,

for Xi9 Yi9 ZteVi9 1 ^ i ^ s. Then the object (V, { }) is a JTS. This

JTS is called the sum of JTS's (Vt, { }«) and is denoted by (V, { }) =

Θ(V<, { },). Conversely, let (V, { }) be a JTS. Let V= ®U V, be the

direct sum of linear subspaces Vt satisfying that {Vi9 Vj9 Vk) c Vt Π Vj

Π Vfc for I <L i,j, k ^L s. Denote by { }i? 1 ^ i ^ s, the restrictions of

{ } into subspaces Vt respectively. Then the objects (Vt9 { },), 1 ^ i ^ 5,

are JTS's and the JTS (V, { }) is equivalent to ®(Vi9{ },). The sum

Θ(V;, { },) is called a decomposition of the JTS (V, { }).

Let ^ 4 = (Vo { }., < >.), 1 ^ f ^ s, be OJTS's. Let (V, { }) be the

sum of JTS's (Vi9 { }t) and define a non-degenerate symmetric bilinear

form < ) on V by

for X,, 7, e Vi9 1 ^ i < s. Then the object rT = (V, { }, < » is an OJTS.

This OJTS is called the sum of OJTS's iTt and is denoted by Ψ* = θ ^<.

Conversely, let ^ = (V, { }, < » be an OJTS. Let Θ(V;, { }d be a

decomposition of the JTS (V, { }) such that (Vi9 Vj) = {0} for iφj.

Denote by < }i9 I <^i ^ s, the restrictions of < > into subspaces V« respec-

tively. Then the objects f, = (V,, { }„ < >4), 1 ^ i ^ s, are OJTS's and

y is equivalent to 0 ô V The sum 0 Ψ'i is called a decomposition of the

OJTS f.
Let J / , = (Ai9 < >,), 1 ^ i ^ s, be OJA's. Let A = 0 A, be the sum

of JA's Aέ and define a non-degenerate symmetric bilinear form < > on

A by
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for Xίy Yt e Aiyl<,i <, s. Then the object s/ = (A, < » is an OJA.

This OJA is called the sum of OJA's (At, < >t) and is denoted by s/ =

φ s/t. Conversely, let s/ = (A, < » be an OJA. Let 0 ^ be a decom-

position of A into the sum of ideals Ai satisfying that (Ai9 Aj) = {0} for

i φ ]. Denote by < }i9 1 <L i ^ s, the restrictions of < ) into ideals At

respectively. Then the objects s/t = (Ai9 < ) ί), 1 fj i ^ s, are OJA's and

j / is equivalent to φ J/^. The sum φ J ^ is called a decomposition of the

OJA <*/.

Moreover, two notions of "sum" and "decomposition" can be defined

naturally for other categories: OSLA, HSLA, OSGLA, HSGLA, etc.

Since the definitions are clear, they are not discribed here. But the

notions are often used in this paper.

PROPOSITION 7.1. (1) Let *T9 y,, r2 be OJTS's and &9 &l9 %2 the

OSGLA's associated with nΓ9 Ψ^u i^2 respectively. Then Ψ* is equivalent

to ir

λ φ τT2 if and only if & is equivalent to <&x ® &2.

(2) (a) Let s/l9 s/2 be OJA's. Then stfλ φ s/2 has the unity if and

only if each s/t has the unity.

(b) Let &l9 &2 be HSGLA's. Then <&x Φ ^ 2 is equivalent to an HSGLA

coming from an OJA with unity if and only if each ^ is equivalent to

an HSGLA coming from an OJA with unity.

(3) Let s/9 s/l9 stf2 be OJA's with unity and &9 &ί9 &2 the HSGLA's

coming from s/, s/l9 <stf2 respectively. Then stf is equivalent to sέ\ © s/2 if

and only if & is equivalent to <3λ φ ^2.

Proof. (1) Note that the OSGLA associated with Ψ'ι Φ i^2 is equi-

valent to ^i φ ^ 2. Then our claim is clear by Theorem 5.4, (2).

(2) The claim (a) is obvious. We show the claim (b). Assume that

^ Φ ^ 2 is equivalent to ^ = (qΛ = £ (qA)μf pA9 JPA, < > J coming from

s/ = (A, < » with the unity E by an isomorphism τ: ^ θ ^ ^ ^ Let

^< = (βi = Σ ( β λ ι Λ , JM, < >w), ί = l ,2. Put A ί -{XeA;(X,0,0)eτ( 9 ί ) } ,

i = 1, 2. Then A is decomposed into the sum of linear subspaces At.

We show that Ai9 i = 1, 2, are orthogonal ideals of the JA A for < >.

Suppose that Xe Ai9 i.e., (X, 0, 0) e r(g€). Since τ(Qt) is an ideal of qA, we

have

(X Y, 0, 0) - (L^X, y)JB, 0, 0) = -2[[(X, 0, 0), (0, 0, 7)], (£, 0, 0)] e τ(9i)

for Ye A and thus X YeA*. This implies that At is an ideal of A.
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Moreover, noting that (Xi9 0, —X^) e τ(pt) for Xt e Aiy i = 1, 2, we have

(Xu X2) = ((Xly 0, -Xx\ (X2, 0, -X2)>, = 0

and thus <Aj, A2> = {0}. Denote by < ><, i = 1, 2, the restrictions of < >

into the ideals A^ respectively and put s/t = (A*, < >€) for i = 1, 2. Then
OJA's s/t have the unities by (a) and the OJA si is decomposed into the
sum sίγ Θ si2.

Let <g\ = (βί = Σ (flO/ii ώ> Jn> < X'Λ * = 1 ' 2 ' b e t h e H S G L A > S coming
from sύt respectively. Denote by Fi9ί = 1, 2, the restrictions of FeLΛ

into Ai respectively. Then we have

(8θo = {(0, {LA{X, Y))u 0); X, Ye At)

Define mappings λiy i — 1, 2, of ĉ  into τ(gj by

for Xί? Yiy Ziy Wi e Au i = 1, 2. Then we can easily see that λt are well-

defined isomorphisms of the HSGLA's <&\ onto the HSGLA's τ(&t) res-

pectively. Hence ^t are equivalent to the HSGLA's ^ ' coming from .ir-

respectively.

The converse is obvious.

(3) Note that the HSGLA coming from s/x Θ s/2 is equivalent to

^! Θ S?2. Then our claim is clear by Theorem 5.5, (2). q.e.d.

Let *r = (V, { }, < » be an OJTS and denote by β the trace form

of the JTS (V, { }). Then β is a symmetric bilinear form on V. Define

a symmetric endomorphism Lr of V by

β(X, Y) = (LAX), Y>

for X, Ye V, Let {eu • , ek, ek+1, ,en} be an orthonormal basis of V,

i.e., (et, ety = —1 for I <: i ^, k, (es, e}y = 1 for k + 1 ^j <L n, and (eit e}y

= 0 for 1 <Ξ i Φ j" ̂  n. Then the symmetric endomorphism L̂ - is given by

(7.1) Zv = - Σ 1 1 Ufii, ed + ΣU+. i(β,, β,).

In fact, note that <L(Z, Y)Z, W) = <L(Z, W)X,Y) for X,Y,Z,WeV by

(5.3), (JT 1). Then we have

β(X, Y) = Tr L(X, Y) = -Σf .χ <L{X, Y)et, et> + Σ%^(L(X, Y)elt

, Y> + Σ?-»+i <^fe, e,)X, Y>

, Y>
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for X, Ye V. This implies (7.1).

Moreover the symmetric endomorphism Lr is contained in the center

of L, i.e.,

(7.2) [Lr, L(X, Y)] = 0

for X,YeV. In fact, note that β(L(X, Y)Z, W) = β(Z, L(Y, X)W) for X, Y,

Z, We V by (JT2). Then we have

{[Lr, L(X, Y)] (Z), W> - (L(X, Y)Z, LAW)) - <L.(Z), L(Y, X)W}

= 0

for X, Y,Z9We V. This implies (7.2).

Let T = (V,{ }, < » be an OJTS and (Vu { h) ® (V2ί { }2) a

decomposition of the JTS (V, { }). Denote by < >ί? ί = 1, 2, the restric-

tions of < > into subspaces Vi respectively.

LEMMA 7.2. Assume that the symmetric endomorphism Lr is non-

degenerate on Vlβ Then the objects "Γί = (Vί,{ }i9 < >J, £ = 1, 2, are

OJTS's and the OJTS Ψ* is equivalent to the sum Ψt

ι © y 2 .

Proo/. It is sufficient to show that <V1? V2> = {0}. Note that β(Vu V2)

= {0} and thus (Jjr{V^), V2) = {0}. Since Lr is non-degenerate on Vu we

have L^yO = V, and thus <y i? V2> - {0}. q.e.d.

Let ir = (V, { }, < » be an OJTS. Put Vt = (Lr)\V) for non-negative

integers i. Then we have a decreasing sequence:

Let £ be the least number of Γs such that V< = Vi+U and put Kon = Vi, y d e g

— Ker(L^.y. Note that L^(Vnon) = F n o n . Then we have the direct sum

V = Vdeg Θ Vnon. Denote by { }deg, { }non (resp. < >degJ < >non) the re-

strictions of { } (resp. < )) into Vdeg, Vπon respectively.

PROPOSITION 7.3. (1) The objects ^ d e g = (Vdeg, { }deg, < >deg), ^ n o n =

(Vnon, { }non, < >non) ore OJTS's and the OJTS rΓ is equivalent to the sum

r deg vΓ/ ' πon

(2) The symmetric endomorphisms Iv d e g , Lrnon are the restrictions of

Lr into subspaces Vdeg, Vnon respectively. Hence,

(a) (LriJ = 0,
(b) Lrnon is non-degenerate, and thus the JTS underlying ^ n o n is non-

degenerate.
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(3) Let &, &deg, &non be the OSGLA's associated with y , -Tdeg, *rnon

respectively. Then & is equivalent to the sum &deg φ ^n o n . Moreover the

Lie algebra gdeg underlying &deg is not semi-simple and the Lie algebra gnon

underlying &non is semi-simple.

(4) Let r, Ψ*' be OJTS's and &, <3f the OSGLA's associated with y/\

irf respectively. Then the following four statements are equivalent to one

another:

(a) Ψ* is equivalent to irt.

(b) ^deg, ^Don are equivalent to Ϋ~dβg, ir^ respectively.

(c) 9 is equivalent to &'.

(d) ^ d e g, ̂ non are equivalent to &deg, &'non respectively.

Proof. (1) Note that

(7.3) L(V, V)Vάes c Vdeg,L(V, V)Vnon c F n o n

by (7.2), and moreover

(7.4) L(Vdeg, V)Vnon = L(Kon, V)Fd e g = {0}

by (7.3), (JT 1). Since L(Lr(X\ Y) = L(X, LAY)) for X, Ye V by (7.2),

(JT 2), we have

(7.5) L( Vdeg, Vnon) = L( Kon, Vdeg) = {0}.

Hence, by (7.3) ^ (7.5), the objects (Vdeg, { }deg), (Kon, { U ) are JTS's and

the JTS (V, { }) is decomposed into the sum (Vdeg, { }deg) Θ (F n o n , { }non).

Note that Lr is non-degenerate on ynon. Then, by Lemma 7.2, the objects

^deg, ^noπ are OJTS's and the OJTS Ψ* is equivalent to the sum ^ d e g Θ ^non.

The claim (2) is clear by (7.1), (7.4) and the claim (3) by Proposition

7.1, (1) and the claims (1), (2).

(4) We show that (a) =φ (b). Assume that Ψ* is equivalent to ^ by

an isomorphism g: nΓ ^Ψ*'. Then we have Lr, — goLrog-χ by (7.1).

Hence the restriction of g into Vάeg (resp. Fnon) is an isomorphism of y d e g

(resp. -rnon) onto i^dβg (resp. ̂ o n ) .

The claims that (b) => (d), (c) => (a) are obvious by Theorem 5.4, (2)

and the claim that (d) => (c) by the claim (3). q.e.d.

Let ^ = (A, < » be an OJA with the unity E and ̂  = (g^ = 2 ($A)μ,

PA, JPA, < >PA) the HSGLA coming from si. Denote by rT(si) the OJTS

(VΛ9 { }A, < » associated with ά and by 0(9) the OSGLA (QA = Σ (βΛ,

PA, < >PA) underlying 9. Then the OSGLA Θ(9) is associated with the
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OJTS "Γ{sί\ Regard (VA)deg9 (^Aon as subspaces of A and denote them

by Adeg, Anon respectively.

PROPOSITION 7.4. (1) The objects sideg = (Adeg, < >deg), sinon = (AΏ0n,

( )non) are OJA's with unity and the OJA si is decomposed into the sum

sideg Θ sin0Ώ. Hence the HSGLA & is equivalent to the sum ^ d e g 0 ^ n o n of

the HSGLA9s &deg9 &n0ΐl coming from sidβg9 sinon respectively.

(2) The OJTS's ^(sideg)9 ^ ( ^ n O n ) are equivalent to the OJTS's i^(si)deg9

^(•^)non respectively. Hence the OSGLA's Θ(^dQg)9 0(^non) are equivalent to

the OSGLA's (9(&)deg9 Θ(^)noτι respectively.

(3) Let si9 si' be OJA's with unity and &, &' the HSGLA's coming

from si, sir respectively. Then the following four statements are equivalent

to one another:

(a) si is equivalent to si'.

(b) sideg9 s/non are equivalent to si'deg, si'non respectively.

(c) ^ is equivalent to &'.

(d) ^deg, ̂ non are equivalent to &'ύeg, &'Ώon respectively.

Proof. (1) The OJTS "Γ(si) is decomposed into the sum f <y)deg ®

^(^)non by Proposition 7.3, (1). Note that the Jordan product on A is

given by X- Y = {X, Y, E}A. Then the objects s/deg9 sinon are OJA's and

the OJA si is decomposed into the sum s/des φ sfΏOΐι. Since si has the

unity, sideg, sinon also have the unities by Proposition 7.1, (2), (a).

(2) Note that {X, Y, Z}A = TX.Y(Z) + [Tx, TY](Z) for X, Y, Z e A. Then

our claim is obvious by a routine way.

(3) We show that (a) =^ (b). Assume that si = (A, < » is equivalent

to si' — (A\ < >') by an isomorphism a: si ^ si'. The isomorphism a

induces the isomorphism ga of the OJTS «T(si) onto the OJTS i^isi').

Then ga translates subspaces (VA)deg, (VA)non to subspaces (VΛ,)deg9 (VA,)Ώ0n

respectively. Hence a translates JA's Adeg, AΏ0Ώ to JA's Adeg, A'non respec-

tively. This implies that s/deg, siΏ0n are equivalent to ^deg> ^Ln respec-

tively.

The claims that (b) => (d), (c) => (a) are obvious by Theorem 5.5, (2)

and the claim that (d) Φ (c) by the claim (1). q.e.d.

Let si be an OJA with unity and ^ the HSGLA coming from si.

Denote the OJA s/non, the HSGLA ^ n o n by siaon = (Anon, < >non), ^ n o n =

(δnon = Σ (flnon),,, ^n o n, J f e o n, < >Pnon). Then the Lie algebra gnon is semi-simple

by Propositions 7.3, (3) and 7.4, (2). Let gnon = βi θ θ gs be the decom-
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position of the Lie algebra gnon into simple Lie algebras gi# Define sub-

spaces Ai9 1 <L ί <S s, of AΏ0n by At = {Xe Anon; (X9 0, 0) e gj and denote by

< ) i ? 1 ^ i <[ s, the restrictions of < ) n o n into subspaces A4 respectively.

THEOREM 7.5. (1) The objects si% = (A«, < >«), 1 <: ί <; s, are OJA's

ι#i£/ι unity and the OJA sinon is decomposed into the sum φ sit. Hence

the OJA si is decomposed into the sum s/deg φ (φ s/t).

(2) Let &i9 1 <̂  i <̂  s, 6e £Λe HSGLA1s coming from sit respectively.

Then the Lie algebras underlying &i9 1 <; i <; s, are isomorphic to g, res-

pectively and the HSGLA @non is equivalent to the sum φ ^ > Hence the

HSGLA & is equivalent to the sum &deg Φ (φ ̂ ) .

(3) Lei ««/, Λ/' be OJA's with unity and &, <&' the HSGLA's coming

from si, sif respectively. Let siάeg Φ (© =i sit)9 sidQg®(®\=ιsi^ be the

decompositions of si9sir respectively given in (1) and let &άeg®(®Uι&ί),

&deg ® (®Uι &d he the decompositions of &9 & respectively given in (2).

Then the following four statements are equivalent to one another \

(a) si is equivalent to sif.

(b) The object (siΛeg9 siί9 , si,) is equivalent to the object (sideg, si[9

- - -, J/Q, i.e., (i) j / d θ g is equivalent to s/'ύeg, and (ii) s = t and there exists

a permutation Σ such that sif

ΣU) is equivalent to sit for any i.

(c) ^ is equivalent to <&'.

(d) The object (&deg9 &ί9 > 9 &,) is equivalent to the object (&f

dQg9 &[9

• , ̂ 0 , i.e., (i) ^ d e g is equivalent to &deg, and (ii) s = t and there exists a

permutation Σ such that ^ ω is equivalent to &t for any ί.

Proof. (1) Let v = (0, -id^ n o n , 0) e (gnon)0. Then (gnon),, μ = 0, ± 1 , are

characterized as eigen spaces of aά(v) for eigen values μ respectively.

Hence, putting ( g ^ = g* Π (gnon)/ι> μ = 0, ± 1 , 1 ^ i ^ s, we have

(7.6) β i = Σ» (Bλ

for 1 <Ξ! i ^ s and

(7.7) (gnon), = ®U (flλ

for μ = 0, ± 1 . Since (g^J^ = (Anoα, 0, 0) and (g,)^ = (A,, 0, 0), 1 ^ i ^ s,

the JA Anon is decomposed into the sum φ At of linear subspaces A, by

(7.7). Let XeAt, Ye Anon. Since gί is an ideal of gnon, we have

(x-y>o,o) = [(o>rF,o),(x,o,o)]€B<

and thus X YeA^. This implies that At is an ideal of A. Hence the
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JA Anon is decomposed into the sum Θ Ai of JA's At.

Let ^(^non) = (Kon, { }non, < >non). Regard A,, 1 ^ i £ s, as sub-

spaces Vt of Vnon respectively and denote by { }i9 1 ^ ί < s, the restric-

tions of { }non into subspaces Vt respectively. Then the JTS (Vnon9 { }non)

is decomposed into the sum ®(Vi9 { }t) of JTS's (Vi9 { }t) and moreover

the symmetric endomorphism LrUnon) is non-degenerate on Vnon and thus

on Vi9 1 <̂  ί ^ s, by Proposition 7.3, (2), (b). Hence the restrictions < }i9

1 <̂  i ^ s, of < >non into subspaces Vt are non-degenerate by Lemma 7.2.

This implies that the OJA j / α o n is decomposed into the sum Θ J / 4 of 0JA's

j / i β Since ^ n 0 I ) has the unity, jrfί9 1 ^ ί ^ s, also have the unities.

(2) Let £Jnon be the unity of s/non and put ε^ = (ίJnonJ 0, 0)e(gnon)_1,

€ l - (0, 0, #non) e (gnon)i. Then we have

ad( e i)
2(X,0,0)- -(l/2)(0, 0,X)

for Xe Anon. This implies that (X, 0, 0) e (q^-i if and only if (0, 0, X) e (gtX.
Since (gj-i = (Ai? 0, 0) by definition, we have (ĝ X = (0, 0, At)9 and thus
(qdo = {(0, Lnon (Z, W), 0); Z, We A,} by (7.6). Note that U{Z9 W), Z,We Aί}

are the restrictions of Lnon(Z, W) into A<. Define a mapping λt of the

Lie algebra underlying ^ onto the Lie algebra qt by

^(Z, LIZ, W), Y) = (X, Lnon(Z, W0, 7)

for X, Y, Z, We At. Then we can easily see that λt is an isomorphism.

Hence the Lie algebras underlying <&i9 1 <Ξ i ^ s, are isomorphic to the

Lie algebras g4 respectively.

The other claim is obvious by (1).

(3) The claim that (c) => (d) is ovbious by Proposition 7.4, (3) and

Shur's Lemma, the claim that (b) =̂> (a) by (1), and the claims that (d) =̂>

(b), (a) => (c) by Theorem 5.5, (2). q.e.d.

Remark 7.6. Let ^, ^ d e g, ^<, 1 ^ i < s, be as given in (2) and M; c

/ίj, MSdeg C H%°άes, M;* C ffj*, 1 <; ί ^ s, the complete totally real parallel

submanifolds associated with ^, ^d e g, ^ 4 respectively. Then M% c /ίj is

holomorphically and linearly congruent to the product:

M?ύeg X Mil X * * X Mi: c ^ e g x Jϊjj; x - x ^ .

Remark 7.7. We give a geometric view for the symmetric endomor-

phism Zvu), which plays an important role for the decompositions of J/ ,
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9. Define an element η, e A by η, = n-Lru){E). Let {e1? , ek, ek^u , en}

be an orthonormal basis of A. Then we have

(7.8) n.η, = - Σ i - i β f β t + Σy=fc+i err-

and thus

(7.9) n T^^Lrω

by (7.1). Put ^ = ( ^ , 0 , — ^ ) e ^ . Then the vector —JPA(ηJ) is the

mean curvature vector at v of the complete totally real parallel submanifold

Ml c HI by (6.11).

Now we apply Theorem 7.5 for the classification of r-dimensional

complete parallel submanifolds of Mr(c), c Φ 0.

LEMMA 7.8. Let si be an OJA with unity and 9 the HSGLA coming

from si. Assume that the symmetric bilinear form underlying si is posi-

tive definite. Then the Lie algebra underlying & is semi-simple.

Proof. Note that the pseudo-Hermitian space HI is isometric to the

Euclidean space R2n and thus that the parallel submanifold M% is con-

tained in a sphere of R2n. Hence the Lie algebra underlying the HSGLA

y&y associated with M% is semi-simple (Ferus [3], Takeuchi [12]). This

implies that the Lie algebra underlying ^ is semi-simple, since ^ is

equivalent to ^ ^ by Remark 6.5. q.e.d.

In our categories, an object is called decomposable if it is decomposed

into the sum of two proper objects, and is called indecomposable if not so.

LEMMA 7.9. Let si = (A, < )) be an OJA with unity and & =

(QΛ = Σ (flΛ> PΆ> JpΛ> < ><J t h e HGSLA coming from si. Then,

(1) the following five objects are indecomposable if one of them is

so: OJA si, HSGLA 9, OJTS r(s/)> OSGLA 0(9), OSLA underlying*?.

Moreover,

(2) 9 is indecomposable if either of the following conditions is satis-

fied:

(a) The Lie algebra underlying 9 is simple.

(b) Ls

rU) = 0 for some £ and the signature of < ) is (1, n — 1).

Proof. (1) It is obvious by Propsition 7.1, (1) (resp. Proposition 7.1,

(2)) that rΓ(si) (resp. si) is indecomposable if and only if Φ(9) (resp. 9)

is so. Note that the complex structure J9A is given by JPA = ad (/) | pA and
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that the Lie subalgebras (qA)μ of ĝ  are characterized as eigen spaces of

ad (v) for eigen values μ respectively. Then it is obvious that 9 is inde-

composable if and only if Θ{9) is so if and only if the OSLA underlying

9 is so.

(2) It is obvious that 9 is indecomposable if (a). We show that 9

is indecomposable if (b). Assume that 9 is decomposed into the sum

9X Θ ^ 2 of proper HSGLA's 9t. Then we may assume that 9i9 ί = 1, 2,

come from OJA's <stft = (Ai9 < ) J with unity respectively, such that s/ is

equivalent to the sum stfx Θ s/2 by Proposition 7.1, (2), (b) and (3). Since

the signature of < > is (1, n — 1), either of < }i9 ί = 1,2, is positive definite.

Assume that < )i is so. Then the Lie algebra underlying 9γ is semi-

simple by Lemma 7.8. Hence LrUl) is non-degenerate on Aλ by Theorem

5.4, (4). This contradicts that L^U) = 0. Hence ^ is indecomposable.

q.e.d.

Denote by s/e an OJA with unity satisfying the conditions (Ec 1),

(EC2) and &c the HSGLA coming from s/e. Then, by Lemma 7.9 and

Theorem 7.5, (2), an HSGLA ^ c is indecomposable if and only if it satis-

fies either of the following:

(a) The Lie algebra underlying &c is simple.

(b) L£

rUc) — 0 for some £.

The HSGLA &c is called simple if it satisfies (a) and is called almost

nίlpotent if it satisfies (b). Note that c < 0 for an almost nilpotent

HSGLA &e.

Fix a real number c Φ 0 and an integer r Ξ> 0. Let </ = (( 0̂)e0> >

(^)cs) be an object consisting of indecomposable HSGLA's (&t)ei9 0 <̂  i <; s,

such that (i) 2]ί=o 1/CΪ = Vc, and (ii) the signature of the symmetric bili-

near form underlying 0 =0 («^<)c< is (1?

 r ) o r (0, r + 1) according as c < 0

or c > 0. Two objects / = ((#o)co, , 0?,)β.), / 7 = ((^ί)c6, , (^)c ;) sat-

isfying the conditions (i), (ii), are said to be equivalent to each other if

s = £ and there exists a permutation U such that (^iu))c$.(ΐ) is equivalent

to (^) c . for any i. Here we note that c'Σω = Ct for any ί.

Now let us define an object f M associated with an r-dimensional

complete totally real parallel submanifold Mr of Mr(c). Let si A (resp. &&)

be the OJA (resp. HSGLA) associated with the complete inverse Mr+1 of Mr,

and ( ^ ) d e g Θ ( Θ ί - i ( ^ ) < ) (resp. ( ^ ) d e g θ ( θ ί - i ( ^ ) f ) ) the decomposition

of .a/* (resp. 9A) given in Theorem 7.5. Denote by Edeg, Ei9 1 ^ i ^ s, the

unities of Cs/#)deg, (^^)< respectively and by < >deg, < ><, 1 ^ i ^ s, the
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non-degenerate symmetric bilinear forms underlying (<stfj&)άeg, (^/g)i res-

pectively. Define real numbers ci? 0 <; i ^ s, by <2?deg, Eύeg)άeg = 4/e0,

(Et9 Ei}i = 4/c<. Then, since J / # satisfies the conditions (Ec 1), CEC2) by

Lemma 6.2, OJA's (j/^)deg and (J/#)<, 1 ^ t ^ S, satisfy the conditions

(E c ol), (EC02) and (Ec. 1), (ECi2) respectively, and moreover the object

((̂ *)deg> ( ^ ) i , * J (^*)*) satisfies the conditions (i), (ii). We denote this

object by βM.

Conversely, let β = ((&0)CQ9 > (^*)c,) be an object satisfying the con-

ditions (i), (ii) and put ^ c = 0{βO (^)C ί. Then ^ c is the HSGLA coming

from an OJA s/e with unity satisfying the conditions (Ec 1), (Ec 2). For

simplicity, denote by M} c M^(c) the complete totally real parallel sub-

manifold M;c c M;c(c) associated with the HSGLA 0C.

THEOREM 7.10. (1) Let Mr be an r-dimensional complete totally real

parallel submanifold of Mr(c), c Φ 0. Then Mr

/M c M}M(c) is holomorphi-

cally congruent to Mr c Mr(c).

(2) ie ί β is an object satisfying the conditions (i), (ii). Then f Mr is

equivalent to β\

(3) Let /, ff be objects satisfying the conditions (i), (ii). Then / is

equivalent to βr if and only if M} C M^(c) is holomorphically congruent

to Mr

r c M>(c).

Proof. The claims (1), (2) are obvious by Theorem 6.3, (1), (2) res-

pectively and the claim (3) by Theorem 6.3, (3) and Theorem 7.5, (3).

q.e.d.

Remark 7.11. Let β = ((&0)co, ,(^) C s ) be an object satisfying the

conditions (i), (ii). Assume that c > 0. Then all (&t)Ci are simple and all

ci are positive. Hence Theorem 7.10 is a reproduction of Theorem 3.1.

Assume that c < 0. Then there exists an index i such that (&i)Ci is

simple or almost nilpotent with ct < 0 and that {^3)cp j φ ί, are simple

with Cj > 0.

§ 8. Almost nilpotent HSGLA's &c

Let J/ C be an OJA with unity satisfying the conditions (E cl), (EC2)

and ^ c the HSGLA coming from J/ C . If ^ c is almost nilpotent, the Lie

algebra underlying &c is neither semi-simple nor solvable by Proposition

7.3, (3), the condition (SGL 4) and the property that id e (ge)0.

Now Cahen-Parker [2] has studied indecomposable effective OSLA's
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and HSLA's such that the Lie algebras underlying them are neither semi-

simple nor solvable. We pick up some results which we need in this

section.

Let (g, p, < )ί)) be an OSLA. If the OSLA is effective and satisfies

that ϊ = [p, p], the form < ) p on p is uniquely extended into a non-degen-

erate symmetric bilinear form on g which is left invariant by p and which

ad(jP), Teg, are skew symmetric for. We denote by < ) the bilinear

form on g.

Let (g, p) be an SLA. A subspace 3 of g is called p-inυariant if p(§)

= §. A ^-invariant subspace 3 is decomposed into the sum of 3 Π ϊ, 3 Π p.

These subspaces § Π ϊ, § Π p are denoted by 3fc, 3P respectively. A Levi

decomposition of g into the sum of radical 01 and semi-simple subalgebra

Sf is called p-invariant if p(^) = £f. There always exists a ^-invariant

Levi decomposition of g.

LEMMA 8.1 (Cahen-Parker [2]). Let & = (g, p, < >p) be an indecom-

posable effective OSLA satisfying that

(0) t=[p,p],

( i ) g is neither semi-simple nor solvable,

(ii) ^ underlies an HSLA,

(iii) the signature of < ) p is (2, 2r), r >̂ 1.

Let g = & 0 5^ fee a p-invariant Levi decomposition. Then,

(1) the radical & is nilpotent and dim £f = 3,

(2) C f(^) = {Ze ϊ; [X, 51 = {0}} = {0}.

Moreover,

(3) ί/iβ nilpotent radical & is decomposed into the sum Y* 0 SP of

mutually orthogonal p-invariant ^-modules ir, £fr such that

(a) 9" is the center of 01 and dim Sf' = 3,

(b) y is orthogonal to 9,

(c) [τr,τr]c^,

(d) ^

Hereafter in this section we denote by ^ c = (g = Σ g,, p, Jp, < >„)

the HSGLA coming from an OJA sίc = (A, ( » with the unity E satis-

fying the conditions (Ec 1), (Ec 2), and assume that @c is almost nilpotent.

Then we note that ί = [p, p] and dim A = r + 1 >̂ 2. Since c < 0, the

signature of < > is (1, r) by (E cl) and thus that of < )„ is (2,2r).

Hence the OSLA (g, p, < )p) underlying ^ c satisfies the conditions (0),
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(i), (ii), (iii). We apply Lemma 8.1 to this OSLA. Denote by ̂  the radical

of g and put ST = {βM = (E9 0, 0), * = (0, 0, E)9 v = (0, - id, 0)}Λ.

LEMMA 8.2. (1) The subspace Sf is a p-inυariant Lie subalgebra of

g isomorphic to sl(2, R) and g is the direct sum of &, y, i.e., the direct

sum Q = & Θ y is a p-invarίant Levί decomposition.

(2) [Tx,TY] = 0 for X,YeA.

Proof. (1) Put ex = (E, 0, E), e2 = (E, 0, -E), e3 = v. Then we have

[eue2] = — e3, [eu e3] = e25 [e2, e3] = ex. This implies that y is a Lie su-

balgebra of g isomorphic to sl(29 R). The claim that p(S?) = ̂  is obvious

by the definition of p and the claim that g = ̂ © y by the simplicity of

y and Lemma 8.1, (1).

(2) Since (0, [TJ9 Tγ], 0) e ϊ and [(0, [TX9 Tγ], 0), S?] = {0}, we have

(0, [TZ9 Tγ], 0) e Ct(y)9 and thus [Tx, Tγ] = 0 by Lemma 8.1, (2). q.e.d.

Let ^ = f ® / be the decomposition of ^ given in Lemma 8.1, (3).

Put

Ay = {£J}Λ , A^ = { I e A; Tx is nilpotent.},

^ = fo = ̂ C } Λ , A . = { l e A,; <X, E> = 0}.

LEMMA 8.3. (1) The subspaces Sf, &9 ¥'9 Ψ* are characterized by Ay,

AΛ, Ay,9 Ar respectively as follows:

γ,Z)eq; X,Y,ZeAy}, Λ = {(X, Tγ, Z) e fl; X9Y9ZeAm},

<?' = {(X9Tτ,Z)eύ; X,Y,ZeAy], r = {(X, TY9 Z) eg; X, Y,ZeA,}.

(2) A = A^ φ AΛ, A& = Ar 0 Ayf and dim A^ = 1, dim Am — r9 dim

Ar = r — 1, dim A^ = 1.

Proof. It is obvious by the definition of £f that £f is characterized

by Ay as above.

Recall that ĝ , μ = 0, ± 1, are characterized as eigen spaces of ad (v)

for eigen values μ respectively, and note that veS?. Then, since Sf9 &ί9

y 9 Ψ* are ̂ -modules, we have

(8i) F = Σ^ng,, ^'^Σ^'ng,, >r = Σ^r)Qμ,
is, = ̂ n g,e^ n g,, «nβ, = ̂ n ί , θ f ng,, ^ = o, ±1.

Note that g0 = {(0, TX90); XeA} by Lemma 8.2, (2), and that

(resp. ad(ε!)|g0) is a linear isomorphism of g_j (resp. g0) onto g0 (resp.

given in the following.
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rad
t(resp. ad(βl)(0, Tx, 0) = (0, 0, X)) .

Define subspaces AΛ, Ay, Ar by 9t Π β-i = (AΛ, 0, 0), 9" Π β-i = (JU 0, 0),
f Π 9-i = (A*-, 0, 0). Then, since S l e ^ , we have

- {(X, TF, Z); X Y, Ze A,}, ST - {(X, TF, Z); X, 7, Ze A,,},

= {(X,TF,Z); XY,ZeΆr)

by (8.1), (8.2). Here note that dim A^ = r, dim A ,̂ = 1, dim Ar = r — 1
since dim ^ = dim ^ = 3 by Lemma 8.1.

To complete our proof, we may show that A^ — AΛ, Ay. = A^,,
Ar = Ar.

Take an element XeA^. Then we have (0, Tx, 0) 6 0t. Since 0t is a
2-step nilpotent ideal by Lemma 8.1, we have

(TKY), 0, 0) = ad((0, TZ9 0))3(7, 0, 0) e [«, [«, «]] - {0}

for Y e A and thus Tx = 0. This implies that X e AΛ. Hence we have
Άg C Aa. Note that E $ A^ since JΓ̂  — id is not nilpotent, and thus that
dim A^ <̂  r. Then we have A^ = A^ since dim A^ = r.

Next we show that Ar = Ar. Note that dim Ar ^ r — 1. In fact,
we have 27 e AΛ since (r + ί)Tη = LrUc) by (7.9). Moreover we have

<7> £J> (l/(r + l))<-eo.eo + Σt ^ ' ^

by (7.8), where {eOί e19 , er} denotes an orthonormal basis of A. Hence
we have η $ A .̂ This implies that dim Ar ^ r — 1. Take an element
Z e l f c l , = AΛ. Then we have (X, 0, — X) e rΓ. Since ^ is orthogonal
to Sf by Lemma 8.1, (3), (b), we have

<X, E) = <(X, 0, -X), (E, 0, -£J)P> = 0

and thus X 6 Ar. This implies that Ar c A .̂. Since dim JL .̂ = r — 1, we
have Ar = Ar.

Finally we show that Ay = Ay. Note that

(8.4) <^,A.> = {0}.

In fact, take Xe Ay, Ye A*. Then we have (0, Tx, 0) e ^ , (Y, 0, Y) e 9tx.
Hence we have
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o = <[(£, o, -# ) , (o, rx, o)], (Y, o, y» = -<(o, rx, oχ [(E, O, -E\ (F, O, F)]>

= <(0, Tx, 0), (0, TF, 0)>, = <X, Y>

by Lemma 8.1, (3), (d). This implies (8.4). Now, since (E, A<?,) Φ {0}, there

exists an element UeA such that (E, U) = 0, E + UeAy,. Then we

have

(8.5) < U, Ar) = {0}, < 17, [/> = - (4/c),

(8.6) UU= -E-2U.

In fact, we have

and

0 = (E+U,E+U} = <β, E) + <i7, U) = 4/c

by (8.4). These imply (8.5). Since $f' is the center of 3t by Lemma 8.1,

(3), (a), we have

((E +U) (E+ U), 0, 0) = [(0, TE+U, 0), (E + U, 0, 0)] e ψ\ <?f] = {0}

and thus (E + U)-(E + U) = 0. This implies (8.6). Put e0 = (V^

β! = (V—C/2)C7 and let {e2, , er} be an orthonormal basis of Ar. Then

{β0, βj, , er) is an orthonormal basis of A by (8.5). Note that

(et.ei9 0, 0) = [(0, Tβi9 0), (β<, 0, 0)] 6 [r, rT] C <?'

for / ̂  2 by Lemma 8.1, (3), (c), and thus ei-ei e A^, i ^ 2. Then we have

(r + l)η = - e o eo + e ^ + S U ^ - e ,

by (8.6). This implies that Ay. C Ay,. Since η Φ 0 and dim A^ = 1, we

have Ay = A<?,. q.e.d.

LEMMA 8.4. The Jordan product on A and the non-degenerate sym-

metric bilinear form < ) on A are given in the following.

(E.X=X E= X forXeA,

(8.7) Lγ=γ.η = 0 for Ye A,,

[z.W=W-Z= <Z, W)v for Z, We Ar ,

and
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= 4/c, <β,η) = l, <E,A
r
y = {0},

Proof. Since £fr is the center of 0t, we have

(Ψ Y, 0, 0) = [(0, Γ,, 0), (7, 0, 0)] e ψ\ 3t\ = {0}

for Ye A^ and thus rj Y = 0.

Let Z, We Ar. Since [y, y ] c y7', we have

(Z W, 0, 0) = [(0, Tz, 0), (W, 0, 0)] e 9"

and thus Z We A?,. Put Z VF = λ(Z, W)η. Then we have

<z w, #> = λ(z, wχv, E) = x(z, w)

by (8.3) and thus λ(Z, W) = <Z, V7>. This implies that Z W= <Z, W>.

The other equations of (8.7) are obvious. In the equations of (8.8)

the first is clear by (Ec 2), the second by (8.3), the third by the definition

of Ar, the forth and the fifth by (8.4). q.e.dL

Fix an integer r >̂ 1 and a negative number c. Let 0* = (P, < » be

an object consisting of (r — l)-dimensional real vector space P and posi-

tive definite inner product < > on P. Let E, η be elements. Define an

(r + l)-dimensional real vector space A by A = R>E®R η®P. And

define a product on A by (8.7) and extend the inner product < > on P

into a symmetric bilinear form on A by (8.8). This symmetric bilinear

form on A will be also denoted by < ). We denote this object (A, < ))

by s/(r, c, 0>, E, η).

THEOREM 8.5. (1) The object <stf(r, c, &>, E, rj) is an OJA with the unity

E satisfying the conditions (Ec 1), (Ec 2), such that η^^, c> 0>> Ef η) = η. More-

over the HSGLA &(r, c, &, E, rj) coming from s/(r9 c, &, E} η) is almost nil-

potent.

(2) Let s/(r, c, 0, E, η), st(f, c\ &>\ E\ if) be OJA's constructed as

above. Then s/(r, c, 0>, E, rj) is equivalent to srf(r\ c\ &\ E\ rj) if and only

if r = rf and c = d.

(3) Let <stfc = (A, < » be an OJA with the unity E satisfying the

conditions (Ec 1), (Ec 2). Assume that the HSGLA &c coming from s/c is

almost nilpotent. Then stf\ is equivalent to s/(r, c, ^ , E, η), where r = dim

A - 1 and & = (Ar, < > | Ar).

(4) Let &c be as in (3). Then the submanifold Mjc

+1 is flat, and thus

https://doi.org/10.1017/S002776300002047X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300002047X


142 HIROO NAITOH

so ίs the submanifold Mjc.

Proof. The claim (1) is proved straightforwardly. The claim (2) is

clear from the construction of objects and the claim (3) by Lemma 8.4.

We show the claim (4). Let j/^r+i be the OJA associated with Mjc

+1.

Then j/^r+i is equivalent to sέ\ by Theorem 6.3, (2). Hence the curvature

endomorphisms R(X, Γ), X, YeT^M^1), of Mjc

+1 are identified with [Tx,

Tγ], X, Ye A. Hence M£c

+1 is flat by Lemma 8.2, (2). q.e.d.

§ 9. Simple HSGLA's &c

Let J/ C = (A, < » be an OJA with the unity E satisfying the condi-

tions (E cl), (EC2) and ^ = (fl = Σ f c f t ^ ( X) the HSGLA coming

from s/c. Assume that @c is simple. Then g is a simple Lie algebra of

non-compact type.

Assume that c > 0. Then < ) is positive definite by (Ec 1), and thus

so is < > r This HSGLA &c is constructed from an object (D, c) of irre-

ducible symmetric bounded domain D of tube type and positive number

c (See Naitoh-Takeuchi [10] for the construction).

In this section we study simple HSGLA's ^ c such that c < 0. Such

an HSGLA &c has the following properties:

(1) (g, p, Jp, < >p) is an HSLA such that the signature of < >„ is

(2, 2r), r ^ 0.

(2) 9 = Σ δ// is a GLA such that ĝ , μ = 0, ± 1 , are eigen spaces of

ad(p) for eigen values μ respectively.

(3) 2 dim β-i = dim p.

Now Berger [1] has classified SLA's (g, p) with simple Lie algebra g

of non-compact type and moreover has pointed out SLA's underlying

HSLA's among them. Let (g, p) be an SLA with simple Lie algebra g and

let g = ϊ © p be the canonical decomposition of g by the involution p.

Then the restriction Bp of the Killing form B of g is a non-degenerate

symmetric bilinear form on p (See Berger [1]). We list up Lie algebras

g, Lie subalgebras ϊ, and signatures of Bp for SLA's (g, p) underlying

HSLA's in the following, (Table I).

Now let g be a simple Lie algebra of non-compact type and e an

element of g such that the eigen values of ad(e) are 0, ± 1 . Kobayashi-

Nagano [6] has classified all such pairs (g, e). Denote by g_j the (—1)-

eigen space of ad(e). We list up Lie algebras g and dim g_j for pairs

(g, e) in the following, (Table Π).
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Table I.

0 ί

§ϊ(fc, C)

§ϊ(2fe, R)

3a*(2fc) !

§n(p, g)

§o(2fc, C)

§o(&, C) :

3o*(2fc) '

8o*(2fe) :

$o(2p, 2g)

§o(p + 2,g) |

%p(k, C )

δtffc, /?)

&p(p, g)

#? :

El

£?? |

^ 7

E3

7 \

E\ ί

Note: Lie ale

ϊ

δlO", C) 0 3I(fc - i, C)@C

δl(fe, C) © i?

§ί(/ΰ, C) © 7?

δu(2, j) © ^u(p — i, q — j) © i?

3ϊ(fe, C) @ C

So(fc - 2, C) © C

3uO", k- j)φR

δo*(2fc — 2) © i?

δu(p, g) © i?

8o(p,,g)@if

gί(/c, C) © C

δu(i, fe - i) © /?

&i(p, g) © J?

3o(10, C) © C

go*(10) 0 i?

§o(4, 6) © R

§o(10) © /?

§o(2, 8) © R

3o*(10) © R

Eξ@C

El@R

E3

QφR

El@R

E6®R

El@R
Ei®R

ebras α are not necessarily simi

signature of Bp

(2j(k - j), 2j(k - j))

(k(k - 1), k(k + 1))

(k(k + 1), k(k - 1))

(2ί(p -i) + 2i(g ~ j), 2{(p + q)(i + j)

(k(k - 1), k(k - 1))

(2k - 4, 2k - 4)

(2j(k - j), k(k - 1) - 2j(k - j))

(2k -2,2k- 2)

(p2

 + q2-(p + q), 2pq)

(2p, 2g)

(k(k + 1), k(k + 1))

(2i(fe - j), k(k + 1) - 2j(k - j))

(p2 + q2 + (p + g), 2pq)

(32, 32)

(12, 20)

(16, 16)

(0, 32)

(16, 16)

(20, 12)

(54, 54)

(24, 30)

(22, 32)

(30, 24)

(0, 54)

(32, 22)

(26, 28)

ole.

LEMMA 9.1. Let Mjc c Mlc(c) be the complete totally real parallel

submanίfold associated with the simple HSGLA &e, c < 0. Then the fol-

lowing three cases are possible:

(a) The submanίfold Mlc is isometric to the real hyperbolic space

SO(1, r)/SO(r) of constant sectional curvature c/4 and is totaly geodesic in

Ή'Sfi). _

(b) r = 1, i.e., M\c is a curve in Mlc(c).

(c) r = 0, i.e., M%c = M%c(c) is a point
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Table II.

q,R)

q,C)

+ 2q)

n)

, C)

+ 1,

+ q 4- 2, C)

, n)

dim

: pq

\ 2pq

\ 4pg

1 n(n-

\ n(n —

! n(2n -

1) P + q
C) 2(p +

| n(n-

9-i

D/2

1)

-1)

0)

D/2

9 dim g_i

&ρ(?t, n) ! 2tι2 4- w

δrtw, R) : n(n +1)/2

ap(n, C) n 2

δp(w, %) 2n2 + n

E\ \ 16

Eξ 1 32

^ e ! 16

^J 27

Ef 54

27

Proof. Since ^ c is effective and ϊ = [p, p], the form < )p is extented

into a non-degenerate symmetric bilinear form < > on g which ad(!Γ)y

Teg, are skew-symmetric for. Assume that the complexification gc of g

is complex simple. Then we have < , ) = aB for some a Φ 0 by Shur's

lemma. Assume that QC is not complex simple. Then the real Lie algebra

g is isomorphic to the complexification ψ of a compact simple Lie algebra

E). Denote by Bh the Killing form of Ij. Since &d(T), Γeg, are skew-

symmetric for ( , ), there exist real numbers a, b such that

>) - B,(Y, Y')}

, YO + B,(X', Y)}

for X, X', Y, Y' eΐ). The involution p commutes with a Cartan involution

of g (Berger [1]) and moreover the subalgebra ϊ is a complex Lie algebra

for g of this type contained in Table I. Hence we have p = § Π p Θ V — 1 §

Π ί>. Since B^ is negative definite, the signature of < }p is (dim ϊj Π ^, dim

5 Π p) by the above expression of < , >.

Now we pick up all possible cases satisfying the conditions (1), (2),

(3) by using Table I, II. Then we can see that the Lie subalgebra ϊ is

isomorphic to one of the following:

δo(l, r) Θ R(r ^ 2), C, R.

The tangent space at v of Mίc

+1 is identified with the subspace m =

{(X, 0, X); Xe A} of ϊ. Then we note that ϊ = [m, m] Θ m. Put p = π&c(i>)

e Mlc and m = Tp(Ml). Denote by ! 0 the holonomy algebra of curvature
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endomorphisms RP(X, Y), X, Feίίi. The direct sum ϊ = ϊ0 Θ m is a Lie

algebra with the following product [ ]:

[T,S] = ToS-SoT, [Γ,X] = -[X, T] = Γ(X), [X, Y] = - ^ ( X , Y)

for ϊ7, Se ϊ 0 , X5 Yem. Then we can easily see that [m, m] Θ m is isomo-

rphic to ! Θ 2? and thus ϊ is isomorphic to ϊ © R.

Assume that ϊ is isomorphic to 3o(l, r) 0 /?. Then ϊ is isomorphic to

3o(l, r). Hence Mj c is locally isometric to the riemannian symmetric space

SO(1, r)/SO(r) by Proposition 4.2. Then the submanifold Mj c is totally

geodesic in Mlc(c) (See the proof of Proposition 4.2). This implies that

M%c is globally isometric to the real hyperbolic space of constant sectional

curvature c/4.

Assume that ί is isomorphic to either C or R. Then we have dim

MJC

+1 = 1, 2 and thus r = 0, 1. q.e.d.

Now we study OJA's J/ C and HSGLA's ^ c for cases (a), (b), (c) res-

pectively.

Case (a). Assume that Mj c is totally geodesic in Mr^c(c). Let A =

0 i ϊ be the orthogonal decomposition of A for < ). Identify the tangent

space Tv(Mjc

+1) with the subspace (g-i Θ βi) Π p of p. Then, since Jp(v) =

(E,0, -E), the horizontal space Hv(Mr

9^\ the vertical space Vv(Mίc

+1) at

iί e Mjc

+1 are given by

1) = {(X, 0, - X ) ; Xe H}, V,(M;β

+1) = {(^ 0, -

respectively. Denote by σ the second fundamental form at v of the sub-

manifold Mjc

+1 in the pseudo-Hermitian space FJc

+1 = (p, Jp, < >p). Then,

since Mjc is totally geodesic in M£c(c), we have

σ((X, 0, - X ) , (Y, 0, - Y)) = -(c/4)<X, Y >

for X, Ye ί ί by (4.1), (4.6). On the other hand, the second fundamental

form σ is also given by

(9.1) σ((X, 0, -X), (Y, 0, - Y)) = (0, Tx.γ, 0)

for X, Ye A (See the proof of Theorem 6.3, (1)). Hence we have Tx.γ =

(c/4)<X, Y}TE for X, Yeίί . This implies that XΎ = (c/4)(X, Y)E for

X, YeH.

Fix an integer r 2> 1 and a negative number c. Let &> = (P, ( » be

an object of r-dimensional real vector space P and positive definite inner
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product < > on P. And let E be an element. Then put A = {E}R Θ P

and define a product on A by

(9.2) ZE= EZ=Z

for X, Y e P, Z e A and moreover extend the inner product < ) on P into

a non-degenerate symmetric bilinear form < > on A by

(9.3) (E,P} = {0}, (E,E) = 4/c.

Then the object j/(r, c, 0>9 E) = (A, < » is an OJA with the unity E

satisfying the conditions (Ec 1), (Ec 2). Moreover such two OJA's s/(r, c,

ζP, E), stf(r', c\ έ?\ E') are equivalent to each other if and only if r = rf

and c = c\ Our OJA sd'c is equivalent to srf(r9 c, Jf, E), where r = dim

— 1, JC = {11, \ ) \ H ) .

Denote by ^(r, c, 2tf, E) the HSGLA coming from the OJA jtf(r, c, 2?, E).

Then &c is equivalent to ^{r, c, J^, E). We show that the Lie algebra g

underlying &(r, c, Jf, E) is isomorphic to §o(r + 2, 1). Let {el9 , er} be

an orthonormal basis of Hand put eQ ~ (V — cl2)E. Then {β0, eu , e7) is

an orthonormal basis of A. Define a matrix a(F) = (a(F)ij) e Mr+ί(R) for

F e L by F(e,) = 2 , ^(F),^,, 0 <L i < r, and put

where l r + 1 denotes the unit matrix of degree r + 1. Then we can see

that β(F) e $o(r + 1) by (9.2). Put

— x,

for X = 2 J xfii ^ A. Define a linear mapping Φ of g onto §o(r + 2, 1) by

r + l

. y > = ( v ^
ί °
I <F(e0), eo>

(V-φX'&iX) + «ΛΓ(Y))

-i3(F)

(V3^/4)(^(X) _ t^y)) 0

e go(r -f 2,1)

for (X, F, y)eg . Then we can see that Φ is a Lie algebra isomorphism

by (9.2). Hence g is isomorphic to <$o(r + 2,1).

https://doi.org/10.1017/S002776300002047X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300002047X


COMPLEX SPACE FORMS 147

Various objects underlying the HSGLA ^(r, c, &f, E) may be expressed

explicitly through the isomorphism Φ.

Case (b). Assume that r = 1, i.e., M\e is a curve in M*c(c). Since

the curve M\e is parallel in Mlc(c), it is a Frenet curve of osculating

rank 0 or 1. Denote by tc = ̂  ;> 0 the Frenet curvature of M\c and by

σ^ the second fundamental form of M\c c MJc(c). Then, since M*c is

totally real, we have

(9.4) σM(X,X) = tc\X\JM(X)

for a tangent vector field X of M*c, where JM denotes the complex struc-

ture of Mlc(c) and |* | denotes the length of *. Let A = {E}R ® H be the

orthogonal decomposition of A for < ). Then the horizontal space

Hv(Ml), the vertical space VXM2

9e) at v are given as in the case (a).

Denote by σ the second fundamental form at v of M%Q C F\c. Then we

have σ(X, X) = (0, tc\X\Tx + (c/4)<X, Z>id, 0) for l e # by (4.1), (4.6), (9.4).

Hence we have Tz.x = κ\X\Tx + (φ)(X, X)TE for XeH by (9.1). This

implies that XX = Λ | X | X + (c/4)<X, Z>E for l e if.

Fix a negative number c and a non-negative number K. Let ^ =

(P, < )) be an object of 1-dimensional real vector space P and positive

definite inner product < ) on P. Then put A = {JB}Λ ® P and define a

product on A by

(9.5) X X = Λ : | Z | X + (φ)(X,X}E, YE=E Y= Y

for XeP, Ye A, and moreover extend the inner product < ) on P into

a non-degenerate symmetric bilinear form < ) on A by

(9.6) <£,P> = {0}, <E,ί;> = 4/c.

Then the object s/(c, κ9 0>, E) = (A, < » is an OJA with the unity E

satisfying the conditions (Ec 1), (Ec 2). Moreover such two OJA's <stf(c, κ>

Θ*> E), <$/(&, tc\ &', E') are equivalent to each other if and only if c = d

and K = tc'. Our OJA stc is equivalent to j/(c, ιc, Jf, E), where K denotes

the Frenet curvature of M\c and 3f = (H, < }\H).

Denote by ^(c, K, JP, E) the HSGLA coming from J/(C, K, JP, E) and

by g the Lie algebra underlying ^(c, K, JP, E). Let ex be a unit vector

of i ϊ and put e0 = (ΛJ — cj2)E. Then {β0, e j is an orthonormal basis of A.

The matrix representation D(η) of ϊ7, for this basis is given by
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by (9.5), (9.6). Then we consider separately the following three cases (i),

<ii), (iϋ).

(i) % = V —c: In this case the eigen values of D(η) are zero and

thus Tη is nilpotent. This implies that the HSGLA ^(c, / ^ c , Jf, # ) is

equivalent to the almost nilpotent HSGLA ^(2, c, {0}, 2£, 27).

(ii) fc > V—c: In this case the matrix JD(̂ >) has two distinct nonzero

real eigen values λi9 i = 1, 2. Let A*, i = 1, 2, be eigen spaces of T7, for

eigen values ^ respectively. Since A is spanned over i? by the vectors

E, η, the subspaces At are ideals of A by (9.5), and thus A is decomposed

into the sum Ax 0 A2 of ideals At. Since Γv is non-degenerate on A, the

decomposition of A induces a decomposition stfι ® s/2 of the O JA J/(C, Λ:,

^ , E) by Lemma 7.2. Hence the HSGLA ^(c, A:, Jf7, E) is decomposed

into the sum &t Θ ^ 2 of two simple HSGLA's ^ . These HSGLA's ^,

will be studied in the case (c).

(iii) 0 <Ξ A: < V —c: Define a complex structure y£ on A by

- c - Λ:2)(-Λ:β0

and denote by Cκ the 1-dimensional complex linear space (A,jκ). More-

over identify Cκ with the complex space C by

Cκ 9 xeQ + yjκ(e0) +—> {^^cj2){x + yί)eC.

Then the Jordan product on Cκ corresponds with the canonical product

on C under this identification by (9.5). Hence the 2?-linear endomorphisms

FeL axe C-linear endomorphisms on C. Let α(F) be a complex number

such that F(Z) = α(F) Z for Z e C. Define a linear mapping Φκ of g onto

^ί(2, C) by

for (Z, F, W) e g. Then we can easily see that Φκ is a Lie algebra iso-

morphism. Hence g is isomorphic to §Γ(2, C).

Various objects underlying ^(c, *, jf, J5) may be expressed explicitly

through the isomorphism Φκ.
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Finally we note that ^(c, 0, Jf, E) is equivalent to the HSGLA ^(1, c,

&, E) in the case (a).

Case (c). Assume that r = 0. Then we have A = {I?}Λ and <22, JS>

- 4/c. Let ^ _ c = (A, - < » and ^_ c = (8 = Σ β« Λ ^ ~< >*)• Then

J/_ C (resp. ^_c) is equivalent to the OJA (resp. HSGLA) corresponding to

the object (D\ — c), where D1 denotes the 1-dimensional symmetric bounded

domain of tube type. Particularly, g is isomorphic to 3t(2, R). This OJA

sίe (resp. HSGLA &c) will be denoted by J/(C, E) (resp. ^(c, #)).

Summing up the above cases, we have the following

THEOREM 9.2. Let &c be the HSGLA coming from an OJA sέ\ with

the unity E satisfying the conditions (Ec 1), (Ec 2). Assume that c < 0 and

<&<. is simple. Then @c is equivalent to one of the following HSGLA's:

&(r, c, ^ , E) (r ^ 1) in Case (a), ^(c, K, &>, E) (0 < K < V^c)

in Case (b), (iii), and &(c, E) in Case (c).

REFERENCES

[ 1 ] M. Berger, Espaces symetriques non compacts, Ann. Sci. Ecole Norm. Sup. (3),
74 (1957), 85-177.

[ 2 ] M. Cahen and M. Parker, Pseudo-riemannian symmetric spaces, Memo, of the
Amer. Math. Soc, No. 229, 24 (1980).

[ 3 ] D. Ferus, Symmetric submanifolds of euelidean space, Math. Ann., 247 (1980),
81-93.

[ 4 ] , Immersionen mit paralleler zweiter Fundamentalorm: Beispiele und Nicht-
Beispiele, Manuscripta Math., 12 (1974), 153-162.

[ 5 ] S. Helgason, Differential geometry, Lie groups and Symmetric spaces, Acadeirdc
Press, New York, 1978.

[ 6 ] S. Kobayashi and T. Nagano, On filtered Lie algebras and geometric structures I,
J. Math, and Mech., 13 (1964), 875-907.

[ 7 ] S. Kobayashi and K. Nomizu, Foundations of Differential geometry I, II, Wiley

(Interscience), 1963 and 1969.
[ 8 ] H. Naitoh, Totally real parallel submanifolds in Pn(c), Tokyo J. Math., 4, No. 2

(1981), 279-306.
[ 9 ] , Parallel submanifolds of complex space forms I, Nagoya Math. J., 90 (1983),

85-117.
[10] H. Naitoh and M. Takeuchi, Totally real submanifolds and symmetric bounded

domains, Osaka J. Math., 19 (1982), 717-731.
[11] I. Satake, Algebraic structures of symmetric domains, Iwanami Shoten, Publishers

and Princeton Univ. Press, 1981.
[12] M. Takeuchi, Parallel submanifolds of space forms. In: Manifolds and Lie groups,

in honor of Y. Matsushima, 429-447. Progress in Math., Vol. 14, Birkhauser, 1981.

Department of Mathematics
Yamaguchί University
Yamaguchi 753, Japan

https://doi.org/10.1017/S002776300002047X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300002047X



