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Introduction

This is a continuation of Part I, which appeared in this journal.

In the previous paper I we have defined the following notions: or-
thogonal Jordan triple system (OJTS), orthogonal symmetric graded Lie
algebra (OSGLA), orthogonal Jordan algebra (OJA), Hermitian symmetric
graded Lie algebra (HSGLA). And we have shown that equivalent classes
of OJTS naturally correspond to equivalent classes of OSGLA and through
this correspondence we have naturally constructed HSGLA’s from the
OJTS’s associated with OJA’s with unity.

In the present paper we will give OJA’s with unity and thus HSGLA’s
associated with r-dimensional complete totally real parallel submanifolds
of an r-dimensional complex space form of nonzero constant holomorphic
sectional curvature. And we will show that rigid classes of these sub-
manifolds correspond to equivalent classes of the associated OJA’s with
unity and thus the associated HSGLA’s (Theorem 6.3).

Moreover, in the section 7, we will decompose these OJA’s and
HSGLA’s into indecomposable ones (Theorem 7.10). The indecomposable
OJA’s and HSGLA'’s are devided into the following types: almost nilpotent
type or simple type. In the section 8 we will determine almost nilpotent
HSGLA’s by using results of Cahen-Parker [2], and in the section 9 simple
HSGLA’s by using results of Berger [1] and Kobayashi-Nagano [6].

We retain the definitions and notations in Part I.

§ 6. The OJA and HSGLA associated with a complete inverse

Let L’ be an /-dimensional pseudo-Euclidean space and N" an n-
dimensional connected parallel pseudo-riemannian submanifold of L’. De-
note by 6, A the second fundamental form, the shape operator of the
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inclusion N = L’ respectively. The pseudo-riemannian metrics on Lf,
N will be denoted by the same notation ( »;. Denote by R the cur-
vature tensor for the Levi-Civita connection V' of N and by B! the cur-
vature tensor for the normal connection D of the inclusion N=—» L'
respectively. Then we have the following identities:

(6.1) RX,V)VZ =40 X— Ktz nY,
(6.2) RX, Y)R=0,
(6.3) RYX, Y)3(Z, W) = 6(R(X, Y)Z, W) + &(Z, R(X, Y)W)

for vector fields X, Y, Z, W of N. In fact, the identity (6.1) is the result
of Gauss equation. The identities (6.2), (6.3) are attained from the paral- .
lelity of ft‘, G respectively.

Fix a point pe N and put V = T,(IN). Define a V-valued trilinear
form { } on V by

(X,Y,2}=RX, Y)Z + Az, 02

for X, Y, Ze V. Then the object (V, { }) is a JTS. In fact, the con-
dition (JT 1) is attained by (6.1) and the condition (JT 2) by (6.2), (6.3)
respectively (See Ferus [3], Lemma 2 for the detailed proof). Denote
also by { ), the restriction of { ), into V X V. Then we have

LX, Y)Y = —RX,Y)+ Az = BV, X) + &y, 1y = L(Y,X)

for X, Ye V. Hence the object (V,{ },{ >, is an OJTS. Note that
the tensor A, 4 () on N is parallel. Then the OJTS is independent of
the choice of a point p e N by the parallelity of B, A, 4(*).

Let H™ be a 2n-dimensional pseudo-Hermitian space with the complex
structure i, and the pseudo-riemannian metric { ), and N” an n-dimen-
sional totally real pseudo-riemannian submanifold of H". Then we have
the following identities:

(6.4) DyinZ = i,0»Z and thus BX(X, Y)inZ = i R(X, Y)Z,
(6-5) A~tHxY = _‘iH&(Xa Y) P
(6'6) <&(X) Y)7 iHZ>H = <6'(X, Z); iHY>H

for vector fields X, Y, Zof N*. In fact, the identities (6.4), (6.5) are at-
tained by Gauss-Weingarten formulas and the identity (6.6) is attained
by (6.5).
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Let N” be an n-dimensional connected totally real parallel pseudo-

riemannian submanifold of H”. Fix a point p ¢ N* and define a product
on V= T,(N) by
X Y=1i,6X7Y)

for X, Ye V. Denote by A this algebra (V,.). Note that
(6.7) P(iz0) =0 and thus R(X, Y)-(iyé) = 0
for X, Ye V by the parallelity of ¢ and (6.4).

LEMMA 6.1. The object (A, < >y) is an OJA. Moreover the OJTS
associated with (A, { >y) is the object (V,{ },{ >p).

Proof. We show that A is a JA. The condition (J1) is obvious.

Now we have
X (XY - X (X*Y)
= 1,6(iz0(X, X), iz6(X, Y)) — i,6(X, i46(i,6(X, X), Y))
= —AE(X, X)AiHXY + Amxl&a(x, nY = [Amx, A&(X, X)](Y)
for X, Ye V by (6.5), and moreover

(A A.;(X,xi](Y), Zyy = (RY(Y, Z)iyff, HX, X))
= —(izR(Y, Z)X, 6(X, X)>y = (R(Y, Z2)X, i,6(X, X)>y
A3 —<X, R(Y, Z)ino(X, X))y + X, in0(R(Y, 2)X, X))}
= —(U3X, {R(Y, 2)-(u0)}(X, X)) = 0
for Ze V by Ricci equation and (6.6), (6.7). This implies the condition
(J 2). Hence the algebra A is a JA. Since

(TY), 25y = (XY, Zyy = CGud(X, X), Z)p = (igd(X, Z), Y)ur
=(X-Z,Y)y = (TZ), Y)u

I

for X, Y, Z ¢ A by (6.6), endomorphisms 7'y, X ¢ A, are symmetric for { >;.
Hence the object (A, { >p) is an OJA.

Let (V, { }u { >x) be the OJTS associated with (A4, { )). Then
we have
X,Y,2),=XYV)Z+XY-2Z)-Y(X-Z)
= 1,60,6X,Y), Z) + i56(X, i56(Y, Z)) — i56(Y, i6(X, Z))
=AxnZ+ Aoy X — Asix, Y
— A unZ+ RX, Y)Z=1(XY, 2}
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for X, Y,Ze A by (6.1), (6.5), and thus (V, { 1, < >n)=V,{ }, { D).
g.e.d.

Note that the OJA (A, { >j) is independent of the choice of pe N
by the parallelity of i,d.

Let M7” be an r-dimensional connected complete totally real parallel
submanifold of M7(c), c += 0. The complete inverse M of M’ is a con-
nected complete totally real parallel submanifold of E’*' by Proposition
4.1, Lemma 1.1, (3), (4.5). Then we have the following

LEmMA 6.2. Let (A, { )j) be the OJA constructed as above from the
complete inverse Mr'=—>E™*'. Then (A, { >p) has the unity E and
satisfies that

(E, 1) the signature of { >, is (1, r), (0,r + 1) according as c < 0,
¢ > 0 respectively,

(E.2) {E,E>; = 4c.

Proof. Note that
(6.8) A, = —(WIc)2) id,
by (4.1), (4.6). This implies that
(6.9) ia(iv, X) = —(V[c|/2X

for Xe A by (6.5). Put E = —(2/+/]|c)ir. Then E is the unity of A.
The properties (E, 1), (E, 2) are obvious. q.ed

This object (A, { )5 (resp. (64 = 2 (@a)w 0 Sy D) coming from
(A, { DY) is called the OJA (resp. HSGLA) associated with a complete
inverse M"*' and will be denoted by 4 (resp. ¥5).

Fix a real number ¢ # 0. Let & = (A4, { )) be an OJA with unity
E satisfying (E, 1), (E,2) and ¢ = (g, = 2 (84w £ Sos { D, the HSGLA
coming from /. Denote by E;*' the pseudo-Hermitian space (p,, J,,
{ 3,0 Put N¥+(c/4) = {Xep,; (X, X),, = c/4} and denote by M(c) the
complex space form of constant holomorphic sectional curvature ¢, defined
by the set of orbits in N7 *'(c/4) by the S'-action: § — exp 6J,,, Then
K(v) is an (r + 1)-dimensional connected complete totally real parallel
submanifold of E;*' and is left invariant by the S'-action (Theorem 5.7).
Since K acts isometrically on E;*' and (v, v),, = 4/c, the submanifold
K(v) is contained in N2 *!(c/4). Denote by =z, the projection of N¥*!(c/4)
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onto Mi(c). Then M; = z,(K(»)) is an r-dimensional connected complete
totally real parallel submanifold of M:(c) and the complete inverse M7*!
of M7 is the submanifold K(») (Lemma 1.1, (3), Proposition 4.1).

THEOREM 6.3. (1) Let M™ be an r-dimensional connected complete
totally real parallel submanifold of M’(c). Then M™=—> M(c) is holo-
morphically congruent to M} " =—> M; M(c), i.e., there exists a holomorphic
isometry & of M'(c) onto M (c) such that 5(M’) = M _.

() Let o be an OJA with unity E satisfying (E, 1), (E,2) and & the
HSGLA coming from /. Then <y, is equivalent to o/ and thus %4, is
equivalent to %.

B) Let o, s/’ be OJA’s with unities E, E’ satisfying (E,1), (E, 2)
respectively and ¢, ¥’ the HSGLA’s coming from £, o/’ respectively. Then
o is equivalent to <’ if and only if ¢ is equivalent to %’ if and only if
M7, =—> M(c) is holomorphically congruent to M7, = M:(c).

Proof. (1) Let M7+ be the complete inverse of M’ and fix a point

ze M. Denote by o4 = (A, { >5) (resp. ¥4 = @4 = 5 @ > oo < D0)
the OJA (resp. HSGLA) associated with M. Identify A ®iA = T,(M)®
iT(M) with E7*.

Define a linear isomorphism 6 of E**' onto p, by

X+ iY)=(-X, - T, X) for X, Ye A.
Then we have

X + 1Y), 6(X" + iY"N,, = <X, XD + O, Ty, 0), (0, Ty, 0)),,
= <X’ X’>E‘ + <(O, (1/2){LA(Y’ E) + LA(E9 Y)}9 0), (0, Ty, O)>u
= <X’ XI)E + <TY') (E), Y>E = <X, X/>E + <Y, YI)E
(X iV, X + iV,

for X 4+ iY, X’ +iY’ e E™*! by (5.12), and moreover
WX +iY)=(Y, -Ty, - Y)=J,(—X, — Ty, X) = J,,6(X + 1Y)

for X+ iYeE™'. Hence d is a holomorphic isometry of the pseudo-
Hermitifm space E™*' onto the pseudo-Hermitian space E;L. This implies
that 6(M7*') is a connected complete totally real parallel submanifold of
E;3! which is left invariant by the S'-action: § — exp@<J,,. Denote by j
the imbedding: K/K, s kK, — k(v) € p,. Then the second fundamental form
(d,), at o = K, is given by
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(5‘])0(.4, B) = {ad (A) ad (B)’-’}vm(mo

for 4, Bem = {(X, 0, X); Xe A} (See Ferus [4], Lemma 1 for the proof).
Note that 3(2) = » by (6.9) and that T(K(»)) = T(3(M)) = [m, v]. Denote
by (5’“"’)",. (resp. (Gsm),) the second fundamental form at » of K(») C E
(resp. 8(M) C E;7). Then we have

(&I{(v))v((X, 03 _X)’ (Y’ O’ - Y)) = (&j)o((Xa 0’ X)1 (Y9 07 Y))
= (0, A/2{LX, Y) + LY, X)}, 0) = (0, Tx.r, 0) = —3(GX-Y)
= 5(&Z(X’ Y)) = (66(M))v((X’ 07 —X), (Y’ 09 - Y))

for (X, 0, —X), (Y,0, —Y) e T(K(»)) = T,(3(M)) and thus

(6.10) Gxw) = @sm) -

Let 6 be a holomorphic isometry of M'(c) onto M; (c), induced by .
Then we note that 6(M") =r, ﬂ(b‘(M ™1). Putp ==, ,(v) and denote by (g, e

(resp. (dsun),) the second fundamental form at p of M, =—> M; 2(€) (resp.
(M) =—> M;_(c)). Then we have

'(aMgﬁ)p = (US(M))p

by (6.10), (4.1), (4.6), Lemma 1.1, (1). Hence we have (M) = M, , (Naitoh
[8], Lemma 3.2).

@ Let & =(4,{ )) and ¥ =(g,=2 (82w 045 oo { 7,0 Then
the second fundamental form (64,), at » of M, = K(v) C E;*' is given by

(6‘11) (61ﬂg)l/(A, B) = (09 TX~Y’ O)
for A= (X,0, -X), B=(Y,0, —Y) and thus
JpA(aﬁg)v(Aa B) = ('—X Y) 09 X Y) .

Define a linear isomorphism g of A onto [m, v] by g(X) = (—X, 0, X) for
XeA. Then we have

8X-Y)=(-X-Y,0,XY) = J,(62,)(4, B)
= J,(02,)0(8(X), &(Y))

and moreover

(&(X), g(Y),, = X, Y).

This implies that g is an isomorphism of OJA ./ onto OJA . ;_ and thus
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&/ is equivalent to «/4,. Hence # is equivalent to ¢, by Theorem 5.5,
(2).

(8) It is obvious by Theorem 5.5, (2) that =/ is equivalent to <7’ if
and only if ¢ is equivalent to ¢'.

Assume that o = (4, { )) is equivalent to &' = (A4’,{ ))), ie,
there exists an algebra isomorphism « of A onto A’ such that (a(X), a(Y))’
=<(X,Y) for X, Ye A. The isomorphism « induces the isomorphism <,
of ¢ onto ¥’. Then we have

Tgn(l)) = Tga(o’ '_idA) 0) = (07 — 8 °idA °g;l’ 0) = (07 —idA', O) =,

The restriction 6 of z,, into p, is a holomorphic isometry of E;*' onto
E:;+' and 8(K(v)) = K’(v'). Hence we have (M) = M}, where § denotes
a holomorphic isometry of M:(c) onto M7(c), induced by 6.

Conversely, assume that M7 =—> M(c) is holomorphically congruent
to M7, =—> M:(c), i.e., there exists a holomorphic isometry & of M’(c) onto
M:(c) such that 6(M;) = M7;. Then § induces a holomorphic isometry &
of E;*' onto E.*!' such that E(M;“) = Mz+. Denote by &, (vesp. ,) the
second fundamental form of M;*'=—» E;*' (vesp. My =—> E;*). Then

we have
0(J,,04X, Y)) = J,,06,X, Y)) = J,,5,(0X,3Y)

for X, Ye T,(M;”). Hence /4, is equivalent to /4, This implies that
o/ is equivalent to =’ by (2). q.e.d.

Remark 6.4. Theorem 6.3 implies that the classification of r-dimen-
sional connected complete totally real parallel submanifold of M(c), ¢ # 0,
reduces to that of HSGLA’s associated with OJA’s with unities satisfying
(E. 1), (E.2).

Remark 6.5. The proof of Theorem 6.3, (2) doesn’t need the conditions
(E. 1), (E.2) for &/. Hence the claim (2) is true for any OJA with unity.

Let &« = (A, { )) be an OJA with unity and = (g, = X 6w 01 Sy
{ »,) the HSGLA coming from /. Denote by H}*' the pseudo-Hermitian
space (p,, J,,, { »,) and put M;“ = K(»). Then the proof of Theorem
6.3, (3) implies that the claim (8) can be generalized as follows: Let 7,
o/ be OJA’s with unity and ¢, ¥’ the HSGLA’s coming from .7, </’ re-
spectively. Then « is equivalent to .« if and only if ¢ is equivalent
to ¢’ if and only if M;“ =—> H7*!' is holomorphically and linearly con-

https://doi.org/10.1017/5S002776300002047X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002047X

126 HIROO NAITOH

gruent to M;.“ =— H}*' i.e., there exists a holomorphic and linear iso-
metry 6 of H;*' onto H}'' such that 5(M;*‘) = M;f‘.

§7. A decomposition of the HSGLA coming from an OJA with
unity

Firstly we define the following two notions for each category given
in this series: one is “‘the sum of objects” and the other is ‘‘a decomposi-
tion of an object”.

Let (V,{ }),1<i<s, be JTS’s. Put V=@, V, and define a
V-valued trilinear form { } on V by

{Z X Z Y, Z Zi} = Z {Xz, Y, Zi}i

for X,, Y, Z,eV, 1<i<s. Then the object (V,{ }) is a JTS. This
JTS is called the sum of JTS’s (V,, { },) and is denoted by (V,{ }) =
@V, { }). Conversely, let (V,{ }) be a JTS. Let V= @i, V, be the
direct sum of linear subspaces V, satisfying that {V,, V,, V,}cC V,Nn V,
NV, for 1<i,j,k<s. Denote by { },, 1<i<s, the restrictions of
{ }into subspaces V, respectively. Then the objects (V,,{ }),1<Zi<s,
are JTS’s and the JTS (V,{ }) is equivalent to ®(V,,{ },). The sum
@ (V,{ }) is called a decomposition of the JTS (V,{ }).

Let v, = (V,, { 1,< D), 1<i<s, be OJTS’s. Let (V,{ }) be the
sum of JTS’s (V,{ }) and define a non-degenerate symmetric bilinear
form ( ) on V by

<Z X Z Yz‘> = Z <Xu Yz>z

for X,, Y,e V,,1 <i<s. Then the objectv" =(V,{ 1}, { >)is an OJTS.
This OJTS is called the sum of OJTS’s ¥°, and is denoted by " = @ ¥",.
Conversely, let v =(V,{ },{ >) be an OJTS. Let ®(V,{ }) be a
decomposition of the JTS (V,{ }) such that (V,, V> = {0} for i+ j.
Denote by { ), 1 < i < s, the restrictions of { ) into subspaces V, respec-
tively. Then the objects ¥", = (V,, { }, { D), 1< i <s, are OJTS’s and
¥ is equivalent to @ ¥",. The sum @ 7", is called a decomposition of the
OJTS 7.

Let &, = (A, { DY), 1<i<s, be OJA’s. Let A =@ A, be the sum
of JA’s A, and define a non-degenerate symmetric bilinear form { > on
A by

<Z X ZYi> = Z <Xio Yi>t

https://doi.org/10.1017/5002776300002047X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002047X

COMPLEX SPACE FORMS 127

for X, Y,e A, 1<i<s. Then the object & = (A4, ( ») is an OJA.
This OJA is called the sum of OJA’s (A, { ), and is denoted by & =
D &, Conversely, let & = (A, ( )) be an OJA. Let @ A, be a decom-
position of A into the sum of ideals A, satisfying that (A, A,> = {0} for
i #j. Denote by ( >, 1 <1< s, the restrictions of {( ) into ideals A,
respectively. Then the objects &7, = (A, { >),1 < i< s, are OJA’s and
o is equivalent to @ o/,. The sum @ .«/, is called a decomposition of the
OJA «.

Moreover, two notions of “sum’” and ‘“‘decomposition” can be defined
naturally for other categories: OSLA, HSLA, OSGLA, HSGLA, etc.
Since the definitions are clear, they are not discribed here. But the
notions are often used in this paper.

ProrosiTioN 7.1. (1) Let v, v, v, be OJTSs and %, %, %, the
OSGLA’s associated with v, v, ¥, respectively. Then ¥ is equivalent
to v, ® 7, if and only if ¢ is equivalent to 4, D %,.

(2) (a) Let o, o/, be OJA’s. Then <, @ </, has the unity if and
only if each <7, has the unity.

(b) Let 9,9, be HSGLA’s. Then 9,® %, is equivalent to an HSGLA
coming from an OJA with unity if and only if each %, is equivalent to
an HSGLA coming from an OJA with unity.

(8) Let o, o, o, be OJA’s with unity and 9, 9,, 9, the HSGLA’s
coming from f, o/,, o/, respectively. Then <« is equivalent to o/, ® o, if
and only if ¢ is equivalent to 4, D %,.

Proof. (1) Note that the OSGLA associated with ¥, ® 7", is equi-
valent to 4, @ ¢,. Then our claim is clear by Theorem 5.4, (2).

(2) The claim (a) is obvious. We show the claim (b). Assume that
4, ®%, is equivalent to ¢ = (g, = > (8. 04 Sy { D,») coming from
o = (A, { D) with the unity E by an isomorphism z: ¥, ® .% =~ . Let
Y= =2@)w o6 Jps { Dp)i=12 Put A, ={XeA;(X0,0)eg)
i=1,2 Then A is decomposed into the sum of linear subspaces A,
We show that A, i = 1,2, are orthogonal ideals of the JA A for { ).
Suppose that Xe A, ie., (X, 0, 0)ez(g,). Since z(g;,) is an ideal of g,, we

have
(X-Y,0,0) = (Ly(X, Y)E, 0,0) = —2[[(X, 0, 0), (0,0, Y)], (E, 0, 0)] € =(g,)

for Ye A and thus X-Ye A, This implies that A, is an ideal of A.
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Moreover, noting that (X;, 0, —X;) e «(p,) for X, A,, i = 1,2, we have
<X1’ )(2> = <(X1’ 0’ —Xl)’ (X.Z’ O’ —X2)>h = O

and thus (A, A,> = {0}. Denote by { >, i = 1,2, the restrictions of ( >
into the ideals A; respectively and put «/, = (4, { ;) for i = 1,2. Then
OJA’s &7, have the unities by (a) and the OJA .« is decomposed into the
sum & D ,.

Let &} = (g0 = 22 (@) 0% Iy, < Dy i = 1,2, be the HSGLA’s coming
from «f, respectively. Denote by F, i =1, 2, the restrictions of FelL,
into A, respectively. Then we have

(6 = {(0, (Lui(X, Y)),, 0); X, Ye A}
Define mappings 4,, i = 1, 2, of g, into =(g;) by
)‘L‘((Xi, (LA(Zi’ Wi))i’ Yi)) = (Xi’ LA(Zi’ Wi), Yz)

for X,, Y, Z, W,e A, i=1,2. Then we can easily see that i, are well-
defined isomorphisms of the HSGLA’s ¢, onto the HSGLA’s (%, res-
pectively. Hence %, are equivalent to the HSGLA’s ¢, coming from .7,
respectively.

The converse is obvious.

(8) Note that the HSGLA coming from &, ® &, is equivalent to
4, ® %, Then our claim is clear by Theorem 5.5, (2). q.e.d.

Let v =(V,{ },<{ D) be an OJTS and denote by B the trace form
of the JTS (V,{ }). Then g is a symmetric bilinear form on V. Define
a symmetric endomorphism L, of V by

BX, Y) = LAX), Y)
for X, YeV. Let {e, - -, e,€.,1, -, e, be an orthonormal basis of V,
ie, {e,epy=—1for 1<i<k (e,ep =1fork+1<j<n, and {e, e,
=0 for 1<i=+j<n Then the symmetric endomorphism L, is given by
(7'1) L, = “‘le?=1 L(ei’ ei) + Z?=k+1 L(ej’ ej) .
In fact, note that (X, Y)Z, W) = (L(Z, W)X,Y) for X, Y, Z, We V by
(5.3), JT 1). Then we have
‘B(X> YV)=TrL(X,Y) = —Zlg:l <L(-X’ Y)e,, ey ‘|‘ Z?=k+l<L(X’ Y)ej; ej>
= —>h. e, e)X, Yy + > n sii Lhey, )X, Y)
= <(_—Z,ic=1 L(e; e;) + Z}L=k+1 L(ej’ ej))X) Y>
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for X, Ye V. This implies (7.1).

Moreover the symmetric endomorphism L, is contained in the center
of L, i.e.,
(7‘2) [L,,/, L(X’ Y)] =0

for X, Ye V. In fact, note that S(L(X, Y)Z, W) = B(Z, L(Y, X)W) for X, Y,
Z,WeV by (JT2). Then we have

UL, (X, Y)] (Z), W) = X, Y)Z, L(W)> — (LAZ), L(Y, X)W
= (X, Y)Z, W) — B(Z, L(Y, X)W) = 0

for X, Y, Z, We V. This implies (7.2).

Let v =(V,{ },{ ») be an OJTS and (V,{ }D®(V,{ }) a
decomposition of the JTS (V,{ }). Denote by { >, i = 1,2, the restric-
tions of ( ) into subspaces V, respectively.

LEMMA 7.2. Assume that the symmetric endomorphism L, is non-
degenerate on V,. Then the objects vy = (Vy,{ }, { D), i=12, are
OJTS’s and the OJTS v is equivalent to the sum ¥, ® ¢ ..

Proof. It is sufficient to show that (V}, V,> = {0}. Note that (V,, V,)
= {0} and thus <(L,(V,), V,) = {0}. Since L, is non-degenerate on V,, we
have L(V}) = V, and thus (V,, V;> = {0} g.e.d.

Let v = (V,{ }, { )) be an OJTS. Put V, = (L,)(V) for non-negative
integers i. Then we have a decreasing sequence:

V=V2V2...-2V,2.-..

Let ¢ be the least number of i’s such that V, = V,,,, andput V,,, = V,, Vi,
= Ker (L,)’. Note that L (V,,) = V... Then we have the direct sum
V= Vig® Vien. Denote by { Jug { Juon (€SP { Daegs { Duon) the re-
strictions of { } (resp. { )) into Vi, V. respectively.

ProrosiTioN 7.3. (1) The objects 7 see = (Views { Jaewr { Dace)s ¥ non =
(Vaoms £ Yaons € Dnon) @re OJTS’s and the OJTS " is equivalent to the sum
Y deg D ¥ non-

(2) The symmetric endomorphisms L,,,., L
L, into subspaces Vi, V... respectively. Hence,

(@) (L)' =0,

(b) L, _is non-degenerate, and thus the JTS underlying ¥ ... is non-
degenerate.

are the restrictions of

7non

7non
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(3) Let 9, Dsoyy non be the OSGLA’s associated with 7", ¥ 4eey ¥ non
respectively. Then % is equivalent to the sum %, ® %,..,. Moreover the
Lie algebra g4, underlying &.., is not semi-simple and the Lie algebra g,,,
underlying %... is semi-simple.

(4) Let v, v’ be OJTS’s and %, %' the OSGLA’s associated with V",
v respectively. Then the following four statements are equivalent to one
another:

(a) ¥ is equivalent to 7.

() Y aegs ¥ von QTe equivalent to ¥ gee, ¥ hon Trespectively.

(c) ¥ is equivalent to ¥'.

(d) Dacgy Guon are equivalent to i, Fion respectively.

Proof. (1) Note that
(7.3) L(V, V)Vie C Viegy LV, VIV,0 C Vi
by (7.2), and moreover
(7.4) L(Veegy V) Vion = L(Vion, V) Vieg = {0}

by (7.3), JT 1). Since L(L(X),Y)= L(X, L(Y)) for X,YeV by (7.2),
(JT 2), we have

(7.5) L( Vdeg, Vnon) = L(Vnon, Vdeg = {0} .

Hence, by (7.3) ~ (7.5), the objects (Vieg, {  }aee)s (Vaons {  }non) are JTS’s and
the JTS (V,{ }) is decomposed into the sum (Vi { }aeg) @ (Vaons {  }non)-
Note that L, is non-degenerate on V. Then, by Lemma 7.2, the objects
Y ey 7 non are OJTS’s and the OJTS 7" is equivalent to the sum # . @ ¥ pp.

The claim (2) is clear by (7.1), (7.4) and the claim (3) by Proposition
7.1, (1) and the claims (1), (2).

(4) We show that (a) = (b). Assume that ¥ is equivalent to ¥~ by
an isomorphism g: v~ x ¥”. Then we have L, = goL,og™' by (7.1).
Hence the restriction of g into Vj, (resp. V,,,) is an isomorphism of 7",
(resp. ¥ won) ONtO ¥l (resp. ¥ lon).

The claims that (b) = (d), (c) => (a) are obvious by Theorem 5.4, (2)
and the claim that (d) = (¢) by the claim (3). q.e.d.

Let & = (A, { ))be an OJA with the unity E and ¢ = (g, = >, (@),
0as Iy C D,) the HSGLA coming from /. Denote by ¥(«/) the OJTS
(Vi { }s ( D) associated with &/ and by 0(%) the OSGLA (g, = > (8.1,
04 { ,) underlying ¢. Then the OSGLA @(%) is associated with the
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OJTS 7v(«7). Regard (V)aee (Vi) as subspaces of A and denote them
by Agegs Anon Trespectively.

ProPOSITION 7.4. (1) The objects Zog = (Auegs { Do)y Fnon = (Anon,
{ Dnen) are OJA’s with unity and the OJA <of is decomposed into the sum
L jog @ Hyon. Hence the HSGLA % is equivalent to the sum % ® Fpon Of
the HSGLA’S % 4ogy Gnon COMING from o 4oy, o non Tespectively.

(2) The OJTS’s ¥ (H 4eg)s ¥ (A non) are equivalent to the OJTS’s ¥ (L )seqs
V(A )aon Trespectively. Hence the OSGLA’s )(%yy), (%) are equivalent to
the OSGLA’s O(%)segy O(%)non Tespectively.

) Let o, o' be OJA’s with unity and 9, %’ the HSGLA’s coming
from <7, of' respectively. Then the following four statements are equivalent
to one another:

(a) «f is equivalent to </’.

(b) Aoy Fnon are equivalent to i, . respectively.

(c) ¥ is equivalent to ¥'.

(d)  Ziogy Guon are equivalent to G4, Ghon respectively.

Proof. (1) The OJTS 7(«/) is decomposed into the sum 7" ()4, ©
V(A )on by Proposition 7.3, (1). Note that the Jordan product on A is
given by X-Y={X, Y, E},. Then the objects sy 1 are OJA’s and
the OJA «/ is decomposed into the sum &4, @ A4 Since & has the
unity, 4. @non also have the unities by Proposition 7.1, (2), (a).

(2) Note that {X, Y, Z}, = Tx.+(Z) + [Tx, Tv1(Z) for X, Y, Ze A. Then
our claim is obvious by a routine way.

(38) We show that (a) = (b). Assume that &/ = (A4, { )) is equivalent
to &’ = (A, { ) by an isomorphism «: & = «/’. The isomorphism «
induces the isomorphism g, of the OJTS 7 (&) onto the OJTS ¥ («’).
Then g, translates subspaces (Vag (Vi)un to subspaces (V,)aee, (Viduon
respectively. Hence « translates JA’s A, A, to JA’s Af,, Al,, respec-
tively. This implies that 7y, </, are equivalent to 4., ;. respec-

tively.
The claims that (b) = (d), (c) = (a) are obvious by Theorem 5.5, (2)
and the claim that (d) = (¢) by the claim (1). g.e.d.

Let o/ be an OJA with unity and ¢ the HSGLA coming from /.
Denote the OJA 7., the HSGLA %, by oo = (Ason, { Duon)s Faon =
Bnon = 23 Bnondes Onons Jonomr < Domer)- Then the Lie algebra g, is semi-simple
by Propositions 7.3, (3) and 7.4, (2). Let guon =g, ® -+ ® g, be the decom-
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position of the Lie algebra g,., into simple Lie algebras g,. Define sub-
spaces A, 1 <i<s, of Ay by A, = {X € Ap; (X, 0,0) € g;} and denote by
{ > 1 £i<s, the restrictions of { ), into subspaces A, respectively.

THEOREM 7.5. (1) The objects o/, = (A, { Dy, 1< i< s, are OJA’s
with unity and the OJA o, is decomposed into the sum @ of,. Hence
the OJA « is decomposed into the sum &, ® (D &),

(2) Let 4, 1 <i<s, be the HSGLA’s coming from <, respectively.
Then the Lie algebras underlying %, 1 <1 < s, are isomorphic to g, res-
pectively and the HSGLA %, is equivalent to the sum ® %, Hence the
HSGLA % is equivalent to the sum %, @ (D %,).

(8) Let o/, /' be OJA’s with unity and %, % the HSGLA’s coming
from o, o’ respectively. Let ofge® (Piy ), Lig® (Dicy 7)) be the
decompositions of </, o' respectively given in (1) and let %y @ (Pi-: %)),
Gl D (DL, ¥7) be the decompositions of %, ¥’ respectively given in (2).
Then the following four statements are equivalent to one another:

(a) « is equivalent to </'.

(b) The object (L sog, &1, -+, ,) IS equivalent to the object (A g, A1,
coe, ), e, (1) Ao 1S equivalent to G, and (ii) s =t and there exists
a permutation Y such that /%, is equivalent to </, for any i.

(¢) % is equivalent to ¥'.

(d) The object (Zoogy %1s - > %,) is equivalent to the object (Zfey, %1,
<o, D), e, (1) Gaog is equivalent to %h,, and (ii) s =t and there exists a
permutation X such that %%, is equivalent to 4, for any i.

Proof. (1) Let » = (0, —id,, ,, 0) € (Guon)o- Then (guon)s ¢ = 0, +1, are
characterized as eigen spaces of ad(y) for eigen values p respectively.
Hence’ puttlng (gi),u =g, N (gnon)m H’ = 0, £1, 1< i < s, we have

(7.6) 8= 2.2, @)
for 1<i<s and
(7'7) (gnon),u = ®:=l (gz);«

for o= 0, +£1. Since (gnon)—l = (Anom 07 0) and (gi)—l = (Az’ 0’ 0)9 1< i < s,
the JA A, is decomposed into the sum @ A, of linear subspaces A, by
(1.7). Let Xe A, Ye A,,.. Since g, is an ideal of g,,, we have

(X Y9 0, 0) = [(O: TY’ O)y (X’ 0: 0)] €4g;
and thus X-Ye A,. This implies that A, is an ideal of A. Hence the
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JA A, is decomposed into the sum @ A, of JA’s A,.

Let ¥ (uon) = (Vaony {  Jooms { Duen)- Regard A, 1<i<s, as sub-
spaces V, of V,,, respectively and denote by { },, 1 <i < s, the restric-
tions of { },,, into subspaces V, respectively. Then the JTS (Voo { }uon)
is decomposed into the sum @ (V, { },) of JTS’s (V,,{ },) and moreover
the symmetric endomorphism L, ., is non-degenerate on V,, and thus
on V,, 1 < i< s, by Proposition 7.3, (2), (b). Hence the restrictions { »,,
1<i<s, of { D into subspaces V, are non-degenerate by Lemma 7.2.
This implies that the OJA 7., is decomposed into the sum @ 7, of OJA’s
o, Since &, has the unity, «/,, 1 <1 < s, also have the unities.

(2) Let E,, be the unity of &/, and put e., = (E,on, 0, 0) € (Gnon)-1s
& = (0,0, E,.) € (goon);. Then we have

ad (6—1)2(0) 0, X) = (1/2)(X9 Oa 0) )
ad ()X, 0, 0) = —(1/2)(0, 0, X)

for Xe A,,.. This implies that (X, 0, 0) € (3,)_, if and only if (0, 0, X) € (g,)..
Since (g).; = (A,,0,0) by definition, we have (g), = (0, 0, 4,), and thus
@) = {0, Lyn (Z, W), 0); Z, We A} by (7.6). Note that L(Z, W), Z, We A,,
are the restrictions of L., (Z, W) into A, Define a mapping 4, of the
Lie algebra underlying &, onto the Lie algebra g, by

24X, L(Z, W), Y) = (X, Luu (Z, W), Y)

for X,Y,Z, We A,. Then we can easily see that 1, is an isomorphism.
Hence the Lie algebras underlying #,, 1 < i < s, are isomorphic to the
Lie algebras g, respectively.

The other claim is obvious by (1).

(8) The claim that (c) = (d) is ovbious by Proposition 7.4, (3) and
Shur’s Lemma, the claim that (b) = (a) by (1), and the claims that (d) =
(b), (a) = (c) by Theorem 5.5, (2). g.e.d.

Remark 7.6. Let 9, Gy, 91, 1 <1 < 5, be as given in (2) and MZ -
H, Mﬁgeg C Hg,,, M:j C HY, 1 < i < s, the complete totally reAal parallel
submanifolds associated with %, %, ¥, respectively. Then Mj; C H? is
holomorphically and linearly congruent to the product:

X
s

Ydeg

X M X - X My C Hp X HR X - X Hp:.

Remark 7.7. We give a geometric view for the symmetric endomor-
phism L,,, which plays an important role for the decompositions of 7,
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%. Define an element 5, € Aby 5, =n-L,,(E). Let{e, - -, e, e..., -, €.}
be an orthonormal basis of A. Then we have

(7.8) nen, = =3 1€ e+ D% i8-8

and thus

(7.9) n-T,,= L,

by (7.1). Put ,= ()., 0, —p,)€p,. Then the vector —d, (3.) is the
mean curvature vector at v of the complete totally real parallel submanifold
M C H® by (6.11).

Now we apply Theorem 7.5 for the classification of r-dimensional
complete parallel submanifolds of M(c), ¢ # 0.

LEMMmA 7.8. Let o be an OJA with unity and ¢ the HSGLA coming
from of. Assume that the symmetric bilinear form underlying </ is posi-
tive definite. Then the Lie algebra underlying % is semi-simple.

Proof. Note that the pseudo-Hermitian space H?% is isometric to the
Euclidean space R*" and thus that the parallel submanifold M” is con-
tained in a sphere of R™. Hence the Lie algebra underlying the HSGLA
% 5, associated with M§ is semi-simple (Ferus [3], Takeuchi [12]). This
implies that ths Lie algebra underlying ¢ is semi-simple, since ¢ is
equivalent to ¢5, by Remark 6.5. q.e.d.

In our categories, an object is called decomposable if it is decomposed
into the sum of two proper objects, and is called indecomposable if not so.

LEMMA 7.9. Let o = (A, { ») be an OJA with unity and % =
@s = 2@ pas Sy >, the HGSLA coming from «/. Then,

(1) the following five objects are indecomposable if one of them is
s0: OJA o/, HSGLA %, OJTS v (&), OSGLA O(%), OSLA underlying 4.
Moreover,

(2) ¢ is indecomposable if either of the following conditions is satis-
fied:

(a) The Lie algebra underlying % is simple.

M) L., = 0 for some £ and the signature of { > is (1, n — 1).

Proof. (1) It is obvious by Propsition 7.1, (1) (resp. Proposition 7.1,
(2)) that v (7) (resp. &) is indecomposable if and only if &%) (resp. %)
is so. Note that the complex structure oJ,, is given by oJ,, = ad (J)|p, and
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that the Lie subalgebras (g,), of g, are characterized as eigen spaces of
ad (p) for eigen values p respectively. Then it is obvious that % is inde-
composable if and only if @(%) is so if and only if the OSLA underlying
 is so.

(2) It is obvious that ¢ is indecomposable if (a). We show that ¢
is indecomposable if (b). Assume that ¢ is decomposed into the sum
4, ® %, of proper HSGLA’s ¢,. Then we may assume that %, i =1, 2,
come from OJA’s &/, = (A, { ), with unity respectively, such that < is
equivalent to the sum 7, ® &/, by Proposition 7.1, (2), (b) and (3). Since
the signature of {( ) is (1, n — 1), either of { >,, i = 1,2, is positive definite.
Assume that ( ), is so. Then the Lie algebra underlying %, is semi-
simple by Lemma 7.8. Hence L, ,, is non-degenerate on A, by Theorem
5.4, (4). This contradicts that L., = 0. Hence % is indecomposable.

q.e.d.

Denote by &/, an OJA with unity satisfying the conditions (E.1),
(E.2) and ¢, the HSGLA coming from /.. Then, by Lemma 7.9 and
Theorem 7.5, (2), an HSGLA ¢, is indecomposable if and only if it satis-
fies either of the following:

(a) The Lie algebra underlying %, is simple.

(b) L., =0 for some .

The HSGLA ¢, is called simple if it satisfies (a) and is called almost
nilpotent if it satisfies (b). Note that ¢ <0 for an almost nilpotent
HSGLA #..

Fix a real number ¢ 0 and an integer r > 0. Let £ = (%o « - *»
(%,).,) be an object consisting of indecomposable HSGLA’s (¢,).,, 0 < i < s,
such that (i) Y%, 1/c; = 1/c, and (ii) the signature of the symmetric bili-
near form underlying @i, (<)), is (1, r) or (0, r 4+ 1) according as ¢ < 0
or ¢ > 0. Two objects £ = (%) -+, (Z)e), I = (F0)epp - - +» (%)c;) sat-
isfying the conditions (i), (i1), are said to be equivalent to each other if
s =t and there exists a permutation ¥ such that (%%).;.,, is equivalent
to (¢,)., for any i. Here we note that c%, = ¢; for any i.

Now let us define an object ¢, associated with an r-dimensional
complete totally real parallel submanifold M~ of M7(c). Let /5 (resp. ¥4)
be the OJA (resp. HSGLA) associated with the complete inverse M+ of M,
and (o p)eeg @ (Pj-1 (£ 2):) (resp. (Zg)aee D (Bi-(¥2))) the decomposition
of o5 (resp. ) given in Theorem 7.5. Denote by Eq, E,, 1 < i < s, the
unities of (o ¢)see (4); respectively and by ¢ Due { Di 1 =0 < s, the
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non-degenerate symmetric bilinear forms underlying (&) (#g); res-
pectively. Define real numbers ¢, 0 <i<s, by (Fuy Focxlae = 4/Cos
{E, E);= 4]c,, Then, since &/, satisfies the conditions (E,1), (E,2) by
Lemma 6.2, OJA’s («/g)ee and (/g), 1 < i < s, satisfy the conditions
(E,1), (E,2) and (E,1), (E,2) respectively, and moreover the object
(% 2)aeg> G a)s, - - -5 (Zg),) satisfies the conditions (i), (ii). We denote this
object by _Z,.

Conversely, let ¢ = ((%).,, * -, (%,).,) be an object satisfying the con-
ditions (i), (ii) and put ¢, = @i, (¢,).,. Then %, is the HSGLA coming
from an OJA /., with unity satisfying the conditions (E. 1), (E.2). For
simplicity, denote by M’ < M/(c) the complete totally real parallel sub-
manifold M;, C M} (c) associated with the HSGLA %..

THEOREM 7.10. (1) Let M" be an r-dimensional complete totally real
parallel submanifold of M'(c), ¢ = 0. Then M, C M} (c) is holomorphi-
cally congruent to M” < M(c).

(2) Let £ is an object satisfying the conditions (i), (ii). Then ¢ i, is
equivalent to f£.

(8) Let #, ¢ be objects satisfying the conditions (1), (ii). Then £ is
equivalent to #' if and only if M’, C M’(c) is holomorphically congruent
to My,  M3(c).

Proof. The claims (1), (2) are obvious by Theorem 6.3, (1), (2) res-
pectively and the claim (3) by Theorem 6.3, (3) and Theorem 7.5, (3).
qg.e.d.

Remark 7.11. Let £ = (%y)ey -+ > (%,).,) be an object satisfying the
conditions (i), (i1). Assume that ¢ > 0. Then all (%)), are simple and all
¢, are positive. Hence Theorem 7.10 is a reproduction of Theorem 3.1.

Assume that ¢ << 0. Then there exists an index i such that (%)), is
simple or almost nilpotent with ¢, <0 and that (¢))., j # i, are simple
with ¢, > 0.

§8. Almost nilpotent HSGLA’s %,

Let o/, be an OJA with unity satisfying the conditions (E, 1), (E,2)
and ¢, the HSGLA coming from ./,. If ¢, is almost nilpotent, the Lie
algebra underlying ¢, is neither semi-simple nor solvable by Proposition
7.3, (3), the condition (SGL 4) and the property that id e (g.),.

Now Cahen-Parker [2] has studied indecomposable effective OSLA’s
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and HSLA’s such that the Lie algebras underlying them are neither semi-
simple nor solvable. We pick up some results which we need in this
section.

Let (g, p, ¢ >, be an OSLA. If the OSLA is effective and satisfies
that f = [p, p], the form { >, on p is uniquely extended into a non-degen-
erate symmetric bilinear form on g which is left invariant by p and which
ad(T), Teg, are skew symmetric for. We denote by { ) the bilinear
form on g.

Let (g, p) be an SLA. A subspace 3 of g is called p-invariant if o(3)
= 3. A p-invariant subspace 3 is decomposed into the sum of 3 N ¥, 8 N p.
These subspaces 3 N £, 3N p are denoted by 8,, 3, respectively. A Levi
decomposition of g into the sum of radical # and semi-simple subalgebra
& is called p-invariant if po(¥) = &. There always exists a p-invariant
Levi decomposition of g.

Lemma 8.1 (Cahen-Parker [2]). Let ¢ = (g, p, { >, be an indecom-
posable effective OSLA satisfying that

(0) t=Ip 1l

(i) g is neither semi-simple nor solvable,

(i1) ¢ underlies an HSLA,

(iii) the signature of { ), is (2,2r), r=1.
Let g = Z® & be a p-invariant Levi decomposition. Then,

(1) the radical Z is nilpotent and dim & = 3,

@ C(#) = {Xe¥; [X, &1 = {0}} = {0}.
Moreover,

(8) the nilpotent radical # is decomposed into the sum v @ % of
mutually orthogonal p-invariant &-modules v", ' such that

(a) &' is the center of # and dim ¥’ = 3,

(b) ¥ is orthogonal to &,

(o [, 7vics,

@ A% FI, 2> = {0}

Hereafter in this section we denote by %, = (@ =26, 0 J,, { D
the HSGLA coming from an OJA &, = (A4, { )) with the unity E satis-
fying the conditions (E, 1), (E.2), and assume that %, is almost nilpotent.
Then we note that £ = [p, ] and dim A=r+1>=2. Since ¢ <0, the
signature of ( > is (1,r) by (E.,1) and thus that of { ), is (2,2r).
Hence the OSLA (g, p, { ),) underlying %, satisfies the conditions (0),
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(i), (i), (iii). We apply Lemma 8.1 to this OSLA. Denote by Z the radical
of g and put & = {e_, = (%, 0,0), &, = (0,0, E), » = (0, —id, 0)}.

LemMa 82. (1) The subspace & is a p-invariant Lie subalgebra of
g isomorphic to sl(2, R) and g is the direct sum of %,, i.e., the direct
sum g = 2D & is a p-invariant Levi decomposition.

2) [Ty, Ty] =0 for X, Ye A.

Proof. (1) Put e = (K 0,E), ¢,=(E 0, —E), e, = p. Then we have
le,, e] = —es, e, e] = e, [e,e] =e. This implies that & is a Lie su-
balgebra of g isomorphic to sI(2, R). The claim that p(¥) = & is obvious
by the definition of p and the claim that g = Z ® & by the simplicity of
& and Lemma 8.1, (1).

(2) Since (0, [Ty, Tv], ® et and [(0, [Ty, T], 0), ] = {0}, we have
©, [Ty, Ty], 0) € C(¥), and thus [Ty, T}] = 0 by Lemma 8.1, (2). q.e.d.

let Z =¥ @ be the decomposition of # given in Lemma 8.1, (3).
Put

A, ={E}z, A, ={XeA; Ty is nilpotent.},
Ap={=19.tr, A4,={XeA,;; (X E)=0}.

LemMA 8.3. (1) The subspaces &, Z, S, ¥" are characterized by A,,
A, A, A, respectively as follows:

tg:{()QT'Y,Z)eQ’ X7 szeAy}y '%:‘{(X,TY,Z)GQ’ X’ Y,ZQAB,},
S (X, T Z)eq; X, Y, Ze A}, ¥ ={(X Ty Z)eg; X,Y,Ze A},

Q2 A=A,DA, A, = A, ®A, and dim A, =1, dim A, = r, dim
A, =r—1,dim A, = 1.

Proof. It is obvious by the definition of & that & is characterized
by A, as above.

Recall that g,, 4 = 0, 1, are characterized as eigen spaces of ad(v)
for eigen values p respectively, and note that v e . Then, since &, Z,
&, v are ¥-modules, we have

Q=Zﬂ'%ng#9 y'=2p5”'ﬂglu V=Z,,~Vﬂg,,,
. =%Ng,®ZNg,, ZNg="NgP®?Y Ng,, =0, +1.
Note that g, = {(0, Tx, 0); X e A} by Lemma 82, (2), and that ad(e)|g-,

(resp. ad(e;)|g,) is a linear isomorphism of g_, (resp. g,) onto-g, (resp. g,)
given in the following.

8.1 {
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(8.2) {ad (e)(X, 0, 0) = (1/2)(0, T, 0)

(resp. ad(g,)(0, T, 0) = (0, 0, X)) .

Define subspaces A,, A,, A, by Z N g_, = (A4,,0,0), ¥ N g_, = (4,,0,0),
+ N g.,=(4,,0,0). Then, since ¢ €., we have

2={XTy,2); X,Y,Zc A}, ¥ ={XTy,2);X Y ZcA,)},
vV ={X,Ty,2); X,Y,Ze A}

by (8.1), (8.2). Here note that dim A, =r, dim A, =1, dim A, =r —1
since dim & = dim &’ = 3 by Lemma 8.1.

To complete our proof, we may show that A,= A, A, = A,,
A, =A,.

Take an element Xe A,. Then we have (0, Ty, 0) € Z. Since Z is a
2-step nilpotent ideal by Lemma 8.1, we have

(T(Y), 0, 0) = ad ((0, T, 0))'(Y, 0, 0) € [%, [%, Z]] = {0}

for Ye A and thus T% = 0. This implies that Xe A,. Hence we have
A, A, Note that E¢ A, since T, = id is not nilpotent, and thus that
dim A, < r. Then we have A, = A, since dim 4, = r.

Next we show that A, = A,. Note that dim A, < r — 1. In fact,
we have pe€ A, since (r + )T, = L,,, by (7.9). Moreover we have

{, EY = (1/(r + 1){—ee + 2 ee, E)

8.3 = 1/(r + D){—=<en €y + > i<, e} =1

by (7.8), where {e,e,, - --, e,} denotes an orthonormal basis of A. Hence
we have p& A,. This implies that dim A, < r — 1. Take an element
XeA, c A, = A, Then we have (X,0, —X)e 7. Since ¥ is orthogonal
to & by Lemma 8.1, (3), (b), we have

(X, E) = (X,0, —X), (E, 0, —E),) = 0

and thus Xe A,. This implies that A, C A,. Since dim A, =r — 1, we
have A, = A,.
Finally we show that A, = A,. Note that

(8.4 <Ay” Ay = {0}.

In fact, take Xe A,, Ye A,. Then we have (0, Ty, 0) e %, (Y,0, Y) e %,
Hence we have
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O = <[(E9 07 _E)> (0; TX’ 0)], (Y> 0, Y)> = —<(0, TX9 0)’ [(Ea 0, _E)’ (Y; 0: Y)]>
= (0, Tk, 0), (0, T%, 0), = (X, Y)

by Lemma 8.1, (3), (d). This implies (8.4). Now, since (E, 4,.» # {0}, there
exists an element Ue A such that (E,U)=0,E+ Ue A,. Then we

have
(8.5) U, A, =10}, (U, U= —(4o),
(8.6) UU=—FE-2U.

In fact, we have
{0} =<KE+ U A,)=UA,)
and
0=((E+UE+U)=(EE)+ (U U)=4/c+ (U U)

by (8.4). These imply (8.5). Since %’ is the center of # by Lemma 8.1,
(3), (a), we have

(E+ U)(E+ U),0,0) = [0, Ts.r, 0), (E+ U, 0,0] e [&, 5] = {0}

and thus (E + U)-(E + U) = 0. This implies (8.6). Put e, = (v —c/2)E,
e, = (V—c/2)U and let {e, ---,e,} be an orthonormal basis of A,. Then
{ey, €1 - - -, €,} is an orthonormal basis of A by (8.5). Note that

(ez"eb 0’ 0) = [(0’ Tei, 0)’ (ei’ O; O)] € [IV, V] c
for i = 2 by Lemma 8.1, (3), (c), and thus e,-e;€ A,, i = 2. Then we have

r+ 1)” = —ey;e +e-e+ Dise e
=(/2(E+ U) + i .e-ec A~y'
by (8.6). This implies that A, c A,. Since 7+ 0 and dim A, = 1, we
have A, = 4,. g.e.d.

LemMA 8.4. The Jordan product - on A and the non-degenerate sym-
metric bilinear form { ) on A are given in the following.

EX=XE=X for Xe A,
8.7 72 Y=Y.5p=0 for Ye A,,
Z-W=W-Z=(Z, W)y for Z, We A, ,

and
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®38) {<E’E>=4/°" Eqy=1, (EAY={0},

<77’ 77> =0, <7], A7’> = {O} .
Proof. Since &’ is the center of %, we have
(77 Y’ O: 0) = [(09 Tm 0)’ (Y’ 07 0)] € [y/’ g] = {0}

for Ye A, and thus »-Y = 0.
Let Z, We A,. Since [v", ¥'] € %', we have

(Z W7 0: 0) = [(0’ TZ’ 0)7 (W: 0, 0)] e
and thus Z-We A,. Put Z-W = A(Z, W);y. Then we have
(Z-W, EY = XZ, W)y, B> = X2, W)

by (8.3) and thus A(Z, W) = (Z, W). This implies that Z- W = (Z, W.
The other equations of (8.7) are obvious. In the equations of (8.8)

the first is clear by (E.2), the second by (8.3), the third by the definition

of A,, the forth and the fifth by (8.4). g.e.d.

Fix an integer r > 1 and a negative number ¢. Let # = (P,{ ) be
an object consisting of (r — 1)-dimensional real vector space P and posi-
tive definite inner product {( » on P. Let E, 5 be elements. Define an
(r + 1)-dimensional real vector space A by A=R-E®R-y@®P. And
define a product - on A by (8.7) and extend the inner product ( > on P
into a symmetric bilinear form on A by (8.8). This symmetric bilinear
form on A will be also denoted by { ». We denote this object (4, { )
by #(r, ¢, ?, E, p).

THEOREM 8.5. (1) The object </(r,c, P, E, 9)is an OJA with the unity
E satisfying the conditions (E 1), (E,2), such that 7,4, 5 5 =7 More-
over the HSGLA %(r,c,?, E, ) coming from </(r,c, ?, E, ) is almost nil-
potent.

(2) Let (r,c,?, E, 1), L(',c, 7, E,y) be OJA’s consiructed as
above. Then A(r, ¢, ?, E, 1) is equivalent to s/(r', ¢/, 7', E’, v') if and only
if r=r"and ¢ =¢.

(B) Let o7/, =(A,{ D) be an OJA with the unity E satisfying the
conditions (E,1), (E,2). Assume that the HSGLA %, coming from <, is
almost nilpotent. Then 7, is equivalent to </(r, ¢, #, E, n), where r = dim
A—1land = (A,,{ > A.

(4) Let %, be asin (3). Then the submanifold M;;‘l is flat, and thus
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so is the submonifold Mj,.

Proof. The claim (1) is proved straightforwardly. The claim (2) is
clear from the construction of objects and the claim (3) by Lemma 8.4.

We show the claim (4). Let &/ ar+1 be the OJA associated with M;:l.
Then o ar+: is equivalent to 7, by Theorem 6.3, (2). Hence the curvature
endomorphisms R(X, Y), X, Ye T,(W;"), of M; are identified with [T,
T,), X, Ye A. Hence M;" is flat by Lemma 8.2, (2). q.e.d.

§9. Simple HSGLA’s 2,

Let o7, = (A, { )) be an OJA with the unity E satisfying the condi-
tions (E,1), (E.2) and ¢, = (@ = >0, 0, J,, { »,) the HSGLA coming
from /.. Assume that %, is simple. Then g is a simple Lie algebra of
non-compact type.

Assume that ¢ > 0. Then ( ) is positive definite by (E, 1), and thus
so is ¢ ),. This HSGLA ¢, is constructed from an object (D, c) of irre-
ducible symmetric bounded domain D of tube type and positive number
¢ (See Naitoh-Takeuchi [10] for the construction).

In this section we study simple HSGLA’s %, such that ¢ < 0. Such
an HSGLA ¢, has the following properties:

1) (@, p J,, { ») is an HSLA such that the signature of { ), is
2,2r), r=0.

(2 g=>.g,1s a GLA such that g,, = 0, 1, are eigen spaces of
ad (v) for eigen values p respectively.

) 2 dimg_, = dim p.

Now Berger [1] has classified SLA’s (g, p) with simple Lie algebra g
of non-compact type and moreover has pointed out SLA’s underlying
HSLA’s among them. Let (g, p) be an SLA with simple Lie algebra g and
let g =f@®p be the canonical decomposition of g by the involution p.
Then the restriction B, of the Killing form B of g is a non-degenerate
symmetric bilinear form on p (See Berger [1]). We list up Lie algebras
g, Lie subalgebras f, and signatures of B, for SLA’s (g, p) underlying
HSLA’s in the following, (Table I).

Now let g be a simple Lie algebra of non-compact type and e an
element of g such that the eigen values of ad(e) are 0, 1. Kobayashi-
Nagano [6] has classified all such pairs (g, ¢). Denote by g_, the (—1)-
eigen space of ad(e). We list up Lie algebras g and dim g_, for pairs
(g, e) in the following, (Table II).

https://doi.org/10.1017/5002776300002047X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002047X

COMPLEX SPACE FORMS 143

Table I.

)

t

signature of B,

3k, C)
312k, R)
8u4%(2k)

su(p, q)

802k, C)
so(k, C)
a0*(2k)
30*(2k)
$0(2p, 2q)
2o(p+2, Q)
sp(k, C)
ap(k, R)
(D, q)

Ef

Ej

£}

E;

E;

B}

EY

E;

E;

E;

Ej

E;

E;

|
|
1

8l(j, YDk —j,O)DC
3k, C)® R
sk, C) D R

(i, Do -1, ¢—HNDOR

3k, C)D C
ok —2,C)DC
su(j, k—)HER
8%k — 2) ® R
su(p, ) DR
20(p, Q) DR
sk, C)®C
su(j, k~HDER
su(p, ) DR
30(10, C)® C
50*(10) ® R
204, 6) ® R
30(10) ® R
30(2, 8) D R
30%(10) ® R
EfoC
EXDR
EEDR
EEDR
E,DR
EE®R

@itk — 7), 2§(k — 7))
(ke — 1), k(k: 4+ 1))
(k(ke + 1), k(k — 1))

@2i(p — D + 2j(¢ — D, 2{@ + DE+ D
@+ —ip—1—ig— DY

k(e — 1), k(k — 1))

2k — 4,2k — 4)

@ik — D, k(k — 1) — 2j(k — 7))
@2k — 2,2k — 2)

@+ ¢ —®+ 0, 2pg9)

@p, 29)

(ke + 1), k(k + 1)

@ik — 9, k(k + 1) — 2j(k — 7
@+ ¢+ (p + @), 2pg)

32, 32)
12, 20)
e, 16)
0, 32)
(16, 16)
(20, 12)
(54, 54)
(24, 30)
22, 32)
(80, 24)
©, 59
(32, 22)
(26, 28)

Note: Lie algebras g are not necessarily simple.

Lemma 9.1. Let Mj, C M;(c) be the complete totally real parallel
submanifold associated with the simple HSGLA %, ¢ < 0. Then the fol-
lowing three cases are possible:

(a) The submanifold M:, is isometric to the real hyperbolic space
S0, r)/SO(r) of constant sectional curvature c/4 and is totaly geodesic in

M; (o).

(b) r=1,1e, M}, is a curve in M}(c).
() r=0,ie, M} = M(c) is a point.
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Table II.

8 : dim g, 8 } dim g,
sl(p + g, R) j pq 3p(n, n) 2n2 +n
8 + g, C) o 2pg 2, R) - m+1/2
3u*(2p + 29) : 4pq 3(n, C) ' n?

3o(n, n) : nn — 1)/2 3p(n, n) 20 +n
3020, C) ? nm—1) E: 16
80*(dn) - m@n -1 E¢ ; 32
wp+1L,g+1) | p+g E ! 16
P +q+2,0) | 2p+9) B o
8o(n, n) | n(n — 1)/2 Ef \ 54
3u(n, 1) g ne ’ B | 27

Proof. Since %, is effective and f = [p, p], the form { ), is extented
into a non-degenerate symmetric bilinear form {( > on g which ad(7T),
Teg, are skew-symmetric for. Assume that the complexification g¢ of g
is complex simple. Then we have { , > = «B for some a # 0 by Shur’s
lemma. Assume that g¢ is not complex simple. Then the real Lie algebra
g is isomorphic to the complexification §¢ of a compact simple Lie algebra
§. Denote by B, the Killing form of §j. Since ad(T), T'eg, are skew-
symmetric for { , ), there exist real numbers a, b such that

(X + VTIY, X’ + VZ1Y) = of B(X, X') — B(Y, )}
+ b{B(X, Y') + B(X’, V)}

for X, X’,Y, Y €. The involution p commutes with a Cartan involution
of g (Berger [1]) and moreover the subalgebra ¥ is a complex Lie algebra
for g of this type contained in Table I. Hence we have p =5 N p@D+/—1}
N p. Since B, is negative definite, the signature of ( ), is (dim ) N p, dim
5 N p) by the above expression of { , >.

Now we pick up all possible cases satisfying the conditions (1), (2),
(3) by using Table I, II. Then we can see that the Lie subalgebra f is
isomorphic to one of the following:

s80(1, Y@ R(r=2), C, R.

The tangent space at v of M;j ! is identified with the subspace m =
{(X,0,X); Xe A} of . Then we note that f = [m, m]@ m. Put p ==, (v)
e M;, and it = T,(M;). Denote by f, the holonomy algebra of curvature
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endomorphisms R, (X, Y), X, Yem. The direct sum f = f @it is a Lie
algebra with the following product [ 1:

[T,8]=T-S—8S-T, [T,X]=—[X,T]=T(X), [X Y]l=—-R(X,7)

for T, Sef, X, Yem. Then we can easily see that [m, m] ® m is isomo-
rphic to £ @ R and thus f is isomorphic to £ @ R.

Assume that f is isomorphic to 30(1,r) ® R. Then f is isomorphic to
30(1, r). Hence M}, is locally isometric to the riemannian symmetric space
SO(1, r)/SO(r) by Proposition 4.2. Then the submanifold M7 is totally
geodesic in M (c) (See the proof of Proposition 4.2). This implies that
M7, is globally isometric to the real hyperbolic space of constant sectional
curvature c/4.

Assume that f is isomorphic to either C or R. Then we have dim
M;jl = 1,2 and thus r =0, 1. q.e.d.

Now we study OJA’s &/, and HSGLA’s ¢, for cases (a), (b), (¢c) res-
pectively.

Case (a). Assume that M, is totally geodesic in M} (c). Let A = {E},
@ H be the orthogonal decomposition of A for { ». Identify the tangent
space T(M 751 with the subspace (g, ®g,) N p of p. Then, since J,(v) =
(E, 0, —E), the horizontal space H,(M;;”), the vertical space Vu(M;c“) at
v eM;j‘ are given by

HOM;:) = {(X,0, —X); Xe H}, VM) = {(E, 0, —E)}y
respectively. Denote by ¢ the second fundamental form at » of the sub-

manifold M;j‘ in the pseudo-Hermitian space Fj}' = (p, J,, { >,). Then,
since M7, is totally geodesic in M (c), we have

G((X’ 07 —X)y (Y9 0> '_ Y)) = —(C/4)<X, Y>”

for X, Ye H by (4.1), (4.6). On the other hand, the second fundamental
form ¢ is also given by

9.1 o((X,0, —X), (Y,0, —Y)) = (0, Tx.\,, 0)

for X, Ye A (See the proof of Theorem 6.3, (1)). Hence we have Ty, =
(c/4XX, YYT, for X, Ye H. This implies that X.Y = (c/4XX, Y)E for
X, YeH.

Fix an integer r > 1 and a negative number ¢. Let # = (P, { )) be
an object of r-dimensional real vector space P and positive definite inner
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product { ) on P. And let E be an element. Then put A = {E},® P
and define a product - on A by

9.2) X.Y=(c/aAXX,Y)E, ZE=EZ=2Z

for X, Ye P, Ze A and moreover extend the inner product ( ) on P into
a non-degenerate symmetric bilinear form ( > on A by

9.3) (E,P)={0}, (E E)=4dc.

Then the object «(r,c,?,E) = (A,{ )) is an OJA with the unity E
satisfying the conditions (E,1), (E,2). Moreover such two OJA’s «/(r,c,
2,E), A(r',c/,?, E’) are equivalent to each other if and only if r = r’
and ¢ =c¢. Our OJA ./, is equivalent to /(r,c, o, E), where r = dim
A—1, #=(H{ ).

Denote by 4(r, ¢, o, E) the HSGLA coming from the OJA (r, ¢, o7, E).
Then ¢, is equivalent to %(r,c, #, E). We show that the Lie algebra g
underlying %(r, ¢, 5, E) is isomorphic to 3o(r + 2,1). Let {e, ---,e,} be
an orthonormal basis of H and put e, = (v —c/2)E. Then {e,e, ---,¢,} is
an orthonormal basis of A. Define a matrix &(F) = («(F),;) € M, . ,(R) for
FeL by Fle,) = >, a(F),e;, 0 < i < r, and put

BEF) = a(F) + (F(ey), €)1,

where 1,,, denotes the unit matrix of degree r 4+ 1. Then we can see
that p(F)e so(r + 1) by (9.2). Put

X X,
X)) =|:1|, TX)=|"%
x, —x,

for X = >, x,e;€ A. Define a linear mapping @ of g onto 3o(r + 2, 1) by

r+1
0 (V=cl9(Z(X) + ‘Z(T)) (Flen), €0y
¥X,F, Y) = | (V=c/HE(X) + Z(T)) —B(F) W=c/&X) - Z) |pr 41
(Fles), ey V—c/)(%(X) - "E(T)) 0

€ 30(r+2,1)

for (X, F, Y)eg. Then we can see that @ is a Lie algebra isomorphism
by (9.2). Hence g is isomorphic to 3o(r + 2, 1).
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Various objects underlying the HSGLA 9(r, ¢, #, E) may be expressed
explicitly through the isomorphism &.

Case (b). Assume that r =1, i.e., M} is a curve in M.(c). Since
the curve M}, is parallel in M} (c), it is a Frenet curve of osculating
rank 0 or 1. Denote by £ = £, = 0 the Frenet curvature of M} and by
oy the second fundamental form of Mi C M.(c). Then, since M}, is
totally real, we have

94 ou(X, X) = | X|Jg(X)

for a tangent vector field X of M}, where Jj; denotes the complex struc-
ture of M} (c) and |*| denotes the length of . Let A = {E}; @ H be the
orthogonal decomposition of A for ( ». Then the horizontal space
H,(MZC), the vertical space Vv(Mic) at » are given as in the case (a).
Denote by o the second fundamental form at » of M;c C Fi,. Then we
have o(X, X) = (0, £| X | Ty + (c/4XX, X ) id, 0) for X e H by (4.1), (4.6), (9.4).
Hence we have Ty.y = | X|Ty + (c/AKX, X)T, for Xe¢ H by (9.1). This
implies that X.- X = £|X|X + (¢/4X, XDE for Xe H.

Fix a negative number ¢ and a non-negative number r. Let & =
(P, < 5) be an object of 1-dimensional real vector space P and positive
definite inner product { » on P. Then put A = {E}, ® P and define a
product - on A by

(9.5) X-X=r|X|X+ (4(X,X)E, YE=EY=Y

for Xe P, Ye A, and moreover extend the inner product ( > on P into
a non-degenerate symmetric bilinear form {( ) on A by

(9.6) (E,Py=1{0}, <(E E)=4c.

Then the object /(c,x, #, E) = (A, ») is an OJA with the unity E
satisfying the conditions (E.1), (E.2). Moreover such two OJA’s #(c, &,
Z,E), 2, k,#, E') are equivalent to each other if and only if ¢ = ¢
and £ = x’. Our OJA &, is equivalent to /(c, £, #, E), where £ denotes
the Frenet curvature of M}, and o = (H,{ >lp).

Denote by %(c, x, o, E) the HSGLA coming from «/(c, , #, E) and
by g the Lie algebra underlying %(c, &, #, E). Let e, be a unit vector
of H and put e, = (y/—c/2)E. Then {e, e} is an orthonormal basis of A.
The matrix representation D(y) of T, for this basis is given by
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c/4 v =ck/4 )

Dl = (—«/':Ex/4, c/4 + 122

by (9.5), (9.6). Then we consider separately the following three cases (i),
(ii), (iii).

(i &= +/—c: In this case the eigen values of D(y) are zero and
thus 7, is nilpotent. This implies that the HSGLA %(c, ¥ —c, #, E) is
equivalent to the almost nilpotent HSGLA %(2, ¢, {0}, E, 7).

(i) &> +/—c: In this case the matrix D(y) has two distinct nonzero
real eigen values 2,1 =1,2. Let A, i=1,2, be eigen spaces of T, for
eigen values 1, respectively. Since A is spanned over R by the vectors
E, 5, the subspaces A, are ideals of A by (9.5), and thus A is decomposed
into the sum A, ® A, of ideals A,. Since T, is non-degenerate on A, the
decomposition of A induces a decomposition 7, @ o7, of the OJA (e, &,
#, E) by Lemma 7.2. Hence the HSGLA ¥%(c, &, #, E) is decomposed
into the sum %, @ %, of two simple HSGLA’s ¢, These HSGLA’s 2,
will be studied in the case (c).

(i) 0< k< +—c: Define a complex structure j, on A by

{js(eo) = (1/‘/er — £°)(—xe, + 1/:261) s
jde) = (1/1/“‘0 - "72)(_‘/:—630 + ke,

and denote by C, the 1l-dimensional complex linear space (4,j.). More-
over identify C, with the complex space C by

C.o xe, + yjle) «—> (v —c/2)(x + yi) e C.

Then the Jordan product - on C, corresponds with the canonical product -
on C under this identification by (9.5). Hence the R-linear endomorphisms
FeL are C-linear endomorphisms on C. Let «(F) be a complex number
such that F(Z) = a(F)-Z for Ze C. Define a linear mapping @, of g onto
3l(2, C) by

0.(2, F, W)) — (—“(F) 2 =W 2)

Z/2 a(F)/2
for (Z, F, W)eg. Then we can easily see that @, is a Lie algebra iso-
morphism. Hence g is isomorphic to 3((2, C).

Various objects underlying %(c, k, ##, E) may be expressed explicitly
through the isomorphism @, .

https://doi.org/10.1017/5002776300002047X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002047X

COMPLEX SPACE FORMS 149

Finally we note that %(c, 0, 2#, E) is equivalent to the HSGLA %(1, c,
Z, E) in the case (a).

Case (c). Assume that r = 0. Then we have A = {E}; and (E, E)
=4fc. Let & ,=(A4, —< D) and 4., =@ =2>.8,p0 5, —C >,). Then
o _, (resp. _.) is equivalent to the OJA (resp. HSGLA) corresponding to
the object (D', —c), where D' denotes the 1-dimensional symmetric bounded
domain of tube type. Particularly, g is isomorphic to 3[(2, R). This OJA
o, (resp. HSGLA ¢,) will be denoted by «/(c, E) (resp. %(c, E)).

Summing up the above cases, we have the following

THEOREM 9.2. Let %, be the HSGLA coming from an OJA </, with
the unity E satisfying the conditions (E. 1), (E.2). Assume that ¢ <0 and
Y, is simple. Then %, is equivalent to one of the following HSGLA’s:

4(r,c, ?, E) (r=1) in Case (a), ¥(c,x, ?, E) (0 <r <+ —c)
in Case (b), (iii), and %(c, E) in Case (c).
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