GROUPS WITH RELATIVELY FEW NON-LINEAR IRREDUCIBLE CHARAGTERS

I. M. ISAACS AND D. S. PASSMAN

In (4), Seitz characterized those finite groups which have exactly one non-linear irreducible character (over the complex numbers). In this paper we are concerned with the general question of what can be deduced about a finite group G if the number of its non-linear irreducible characters $m(G)$ is given. In particular, does the assumption that $m(G)$ is in some sense small when compared with the order $|G|$ impose any restrictions on the structure of G ? We show that if G is nilpotent and $m(G)$ is small, then G must have class $\leqq 2$ but that non-nilpotent groups need not even be metabelian (although Seitz showed that if $m(G)=1$, then this must be the case). We do show however, that groups with small period and few non-linear characters when compared with the order must necessarily be nilpotent.

1. In a group G, any two conjugate elements must lie in the same coset of G^{\prime}, and hence each such coset is a normal subset of G, i.e., a union of conjugacy classes. We shall denote the number of classes of G contained in a normal subset S by $k(S)$.

Lemma 1.1. In a group $G, m(G)=\sum\left(k\left(G^{\prime} x\right)-1\right)$, where the sum runs over all cosets of G^{\prime} in G. In particular, at most $m(G)$ cosets fail to be single classes. Also, $\left|\mathbf{Z}(G) \cap G^{\prime}\right| \leqq m(G)+1$ and if $1<G^{\prime} \subseteq \mathbf{Z}(G)$, then $|\mathbf{Z}(G)| \leqq 2 m(G)$.

Proof. We have that $\sum k\left(G^{\prime} x\right)=k(G)=\left[G: G^{\prime}\right]+m(G)$ since the number of irreducible characters of G is equal to $k(G)$. This yields

$$
m(G)=\sum k\left(G^{\prime} x\right)-\left[G: G^{\prime}\right]=\sum\left(k\left(G^{\prime} x\right)-1\right) .
$$

Each $G^{\prime} x$ which is not a single class contributes at least one to the sum, and thus the number of such cosets is $\leqq m(G)$.

Now, $k\left(G^{\prime}\right) \geqq\left|Z(G) \cap G^{\prime}\right|$; thus $\left|Z(G) \cap G^{\prime}\right| \leqq m(G)+1$. Finally, if $G^{\prime} \subseteq \mathbf{Z}(G)$ and $z \in \mathbf{Z}(G)$, then $G^{\prime} z \subseteq \mathbf{Z}(G)$ and $k\left(G^{\prime} z\right)=\left|G^{\prime}\right|$. The number of cosets of G^{\prime} containing elements of $\mathbf{Z}(G)$ is $\left[\mathbf{Z}(G): G^{\prime}\right]$, and thus $m(G) \geqq\left(\left|G^{\prime}\right|-1\right)\left[\mathbf{Z}(G): G^{\prime}\right]$. We then have that

$$
|\mathbf{Z}(G)| \leqq \frac{m(G)\left|G^{\prime}\right|}{\left|G^{\prime}\right|-1} \leqq 2 m(G)
$$

since $\left|G^{\prime}\right|>1$.

Received June 5, 1967.

We confine our attention to nilpotent groups for the remainder of this section.

Proposition 1.2. If G is nilpotent, then $\left|G^{\prime}\right| \leqq 2^{m(G)}$.
Proof. A series $1=H_{0}<H_{1}<\ldots<H_{r}=G^{\prime}$ can be found, where $H_{i} \triangle$ G and $\left[H_{i}: H_{i-1}\right]=p_{i}$, a prime for $1 \leqq i \leqq r$. Now, H_{i} / H_{i-1} is central in G / H_{i-1} and thus consists of p_{i} classes of G / H_{i-1}. It follows that

$$
k\left(H_{i}-H_{i-1}\right) \geqq p_{i}-1,
$$

and thus

$$
k\left(G^{\prime}\right) \geqq 1+\sum_{i=1}^{r}\left(p_{i}-1\right) \quad \text { and } \quad m(G) \geqq k\left(G^{\prime}\right)-1 \geqq \sum\left(p_{i}-1\right)
$$

We claim that for any set of integers $p_{i} \geqq 2$,

$$
\Pi_{p_{i}} \leqq 2^{\Sigma\left(p_{i}-1\right)}
$$

and since $\left|G^{\prime}\right|=\Pi p_{i}$, this will yield the desired result. The function $f(x)=$ $x^{1 /(x-1)}$ is monotone decreasing for $x \geqq 2$ and $f(2)=2$; thus $x \leqq 2^{x-1}$ for $x \geqq 2$. Substituting p_{i} for x and multiplying yields the required inequality.

Although $\left|G^{\prime}\right|$ is bounded by a function of $m(G)$ for nilpotent groups, there is no bound for solvable groups as is shown by the example of Theorem 3.1. Furthermore, $|G|$ is not bounded by a function of $m(G)$ even for p-groups as the abelian and extra-special p-groups clearly show. (If G is an extra-special p-group, then $m(G)=p-1$.) The following theorem, however, yields a bound on $|G|$ when G is a p-group of class >2.

Theorem 1.3. Let G be a p-group with $m(G)<p^{e}$. If $\left[G: G^{\prime}\right] \geqq p^{3 e-2}$, then G has class $\leqq 2$ and $\left|G^{\prime}\right| \leqq m(G)+1$.

Proof. The proof is by induction on $\left|G^{\prime}\right|$. If $\left|G^{\prime}\right|=1$, the result is trivial; thus, we assume that $G^{\prime}>1$, and hence we can find $U \triangle G$ with $U \subseteq G^{\prime}$ and $|U|=p$. Then $m(G / U) \leqq m(G)<p^{e}$ and $G^{\prime} / U=(G / U)^{\prime}$; thus, $\left[G / U:(G / U)^{\prime}\right]=\left[G: G^{\prime}\right] \geqq p^{3 e-2}$ and G / U satisfies the hypotheses. By the inductive hypothesis, G / U has class $\leqq 2$ and $\left|G^{\prime}\right| / p=\left|(G / U)^{\prime}\right| \leqq m(G / U)+1$. Since $U \subseteq G^{\prime}, U$ is not in the kernel of every non-linear irreducible character of G, and thus $m(G / U)<m(G)$. Thus $\left|G^{\prime}\right| / p \leqq m(G / U)+1 \leqq m(G)<p^{e}$ and $\left|G^{\prime}\right|<p^{e+1}$. Since $\left|G^{\prime}\right|$ is a power of p, we have that $\left|G^{\prime}\right| \leqq p^{e}$.

Since the product of an irreducible character with a linear character is irreducible, multiplication defines an action of the group C of linear characters of G on the set $\operatorname{Irr}(G)$ of irreducible characters of G. If $\chi \in \operatorname{Irr}(G)$ is nonlinear, then, clearly, the size of the orbit of χ under the action of C is $\leqq m(G)$. Therefore, C has a subgroup K with $[C: K] \leqq m(G)$ and $\lambda \chi=\chi$ for all $\lambda \in K$. Let $H=\cap\{\operatorname{ker} \lambda \mid \lambda \in K\}$. Each $\lambda \in K$ may be viewed as a linear character of G / H and therefore

$$
[G: H] \geqq|K| \geqq \frac{|C|}{m(G)}=\frac{\left[G: G^{\prime}\right]}{m(G)}>\frac{p^{3 e-2}}{p^{e}}=p^{2(e-1)}
$$

If $x \in G-H$, then $\lambda(x) \chi(x)=\chi(x)$ for all $\lambda \in K$. Since $x \notin H, \lambda(x) \neq 1$ for some $\lambda \in K$, and thus $\chi(x)=0$ and χ vanishes on $G-H$. Then

$$
[G: H][\chi, \chi]_{G}=[\chi|H, \chi| H]_{H} \leqq \chi(1)^{2}
$$

and thus $p^{2(e-1)}<[G: H] \leqq \chi(1)^{2}$. Therefore, $p^{e-1}<\chi(1)$ and since $\chi(1)$ must be a power of p, we have that $\chi(1) \geqq p^{e}$ for every non-linear irreducible character χ of G.

If $y \in G$ is arbitrary, then G acts on the class of y by conjugation and since $\operatorname{cl}(y) \subseteq G^{\prime} y$, the degree of this permutation representation is $\leqq\left|G^{\prime}\right| \leqq p^{e}$. If ϕ is the character of this representation, then ϕ is a sum of irreducible characters of G, one of which must be the principal character. Thus, the sum of the remaining irreducible constituents of ϕ has degree $<p^{e}$ and therefore ϕ can have no non-linear irreducible constituents. It follows that G^{\prime} is in the kernel of ϕ, and thus acts trivially on $\operatorname{cl}(y)$ and $y \in \mathbf{C}\left(G^{\prime}\right)$. Since y was arbitrary, $G^{\prime} \subseteq \mathbf{Z}(G)$ and the nilpotence class of G is $\leqq 2$. By Lemma 1.1 we have that $\left|G^{\prime}\right|=\left|G^{\prime} \cap \mathbf{Z}(G)\right| \leqq m(G)+1$ and the proof is complete.

We give, as a corollary, an alternative statement of the theorem which does not involve the particular prime.

Corollary 1.4. Let G be a p-group. If $\left[G: G^{\prime}\right]>m(G)^{3}$, then G has class $\leqq 2$ and $\left|G^{\prime}\right| \leqq m(G)+1$.
Proof. Let p^{e} be the smallest power of p larger than $m(G)$. Then $m(G) \geqq p^{e-1}$; thus, $\left[G: G^{\prime}\right]<p^{3(e-1)}$ and since $\left[G: G^{\prime}\right]$ is a power of p, we have that $\left[G: G^{\prime}\right] \geqq p^{3 e-2}$ and the hypotheses of the theorem are satisfied and the result follows. Applying this to arbitrary nilpotent groups we obtain the following corollary.

Corollary 1.5. Let G be non-abelian and nilpotent and suppose that $\left[G: G^{\prime}\right]>$ $m(G)^{3}$. Then $G=K \times P$, where P is a p-group of class $2, K$ is abelian, $|K| \leqq m(G)$, and $\left|G^{\prime}\right| \leqq m(G) /|K|+1$.

Proof. Choose a non-abelian Sylow p-subgroup P of G and write $G=$ $K \times P$. We then have that

$$
\begin{equation*}
m(G)=m(P)\left[K: K^{\prime}\right]+m(K)\left[P: P^{\prime}\right]+m(K) m(P) \tag{}
\end{equation*}
$$

Since $m(G)^{3}<\left[G: G^{\prime}\right]=\left[K: K^{\prime}\right]\left[P: P^{\prime}\right]$, one of $\left[K: K^{\prime}\right]$ and $\left[P: P^{\prime}\right]$ must be $>m(G)$. Since $m(P)>0$, this yields a contradiction from $\left({ }^{*}\right)$ if $m(K)>0$, i.e., if K is non-abelian. Thus, K is abelian and $m(G)=|K| m(P)$; therefore, $|K| \leqq m(G)$ and

$$
\left[P: P^{\prime}\right]=\left[G: G^{\prime}\right] /|K|>m(G)^{3} /|K| \geqq(m(G) /|K|)^{3}=m(P)^{3}
$$

The result now follows from Corollary 1.4.
It is of interest to note that these results may be stated independently of character theory. Since $m(G)=k(G)-\left[G: G^{\prime}\right]$, the condition $\left[G: G^{\prime}\right]>$ $m(G)^{3}$ is equivalent to $k(G)<\left[G: G^{\prime}\right]^{1 / 3}+\left[G: G^{\prime}\right]$. We conclude this section with one further result.

Proposition 1.6. There exists a function B defined on the natural numbers such that if G is a non-abelian nilpotent group, then the period of G is $\leqq B(m)$).

Proof. If $\left[G: G^{\prime}\right] \leqq m(G)^{3}$, then since by Proposition $1.2\left|G^{\prime}\right| \leqq 2^{m(G)}$, we have that $|G| \leqq 2^{m(G)} m(G)^{3}$, and hence the period of G is bounded by $2^{m(G)} m(G)^{3}$. We may therefore assume that $\left[G: G^{\prime}\right]>m(G)^{3}$, and thus by Corollary 1.5, G has class 2 and $1<G^{\prime} \subseteq \mathbf{Z}(G)$. By Lemma 1.1 we then have that $|\mathbf{Z}(G)| \leqq 2 m(G),\left|G^{\prime}\right| \leqq m(G)+1$. If $x, y \in G$, then $[x, y]^{n}=\left[x^{n}, y\right]$ for any integer n, and thus $1=[x, y]^{\left|G^{\prime}\right|}=\left[x^{\left|\sigma^{\prime}\right|}, y\right]$ and since y is arbitrary, $x^{\left|G^{\prime}\right|} \in$ $\mathbf{Z}(G)$. Therefore, $x^{\left|G^{\prime}\right||\mathbf{Z}(G)|}=1$ and the order of x is $\leqq\left|G^{\prime}\right||\mathbf{Z}(G)| \leqq$ $2 m(G)(m(G)+1)$. It follows that the function $B(m)=\max \left\{2^{m} m^{3}\right.$, $2 m(m+1)\}$ has the desired properties.

That Proposition 1.6 is not true if G is solvable but not nilpotent can be seen from the example of Theorem 3.1.
2. Here we study not necessarily nilpotent groups for which $m(G)$ is given.

Proposition 2.1. If p is a prime and $p^{a} \mid\left[G: G^{\prime}\right]$, where $p^{a}>m(G)$, then G has a normal p-complement.

Proof. As in the proof of Theorem 1.3, the group C of linear characters of G acts on the set $\operatorname{Irr}(G)$ by multiplication and if $\chi \in \operatorname{Irr}(G)$ is non-linear, then the orbit containing χ has size $\leqq m(G)$ and the subgroup $K=\{\lambda \in C \mid \lambda \chi=$ $\chi\}$ satisfies $[C: K] \leqq m(G)<p^{a}$. But $p^{a} \mid\left[G: G^{\prime}\right]$ and $|C|=\left[G: G^{\prime}\right]$; therefore $p \| K \mid$. Thus, there exists $\lambda \in K, \lambda \neq 1, \lambda^{p}=1$ with $\lambda \chi=\chi$. If $H=\operatorname{ker} \lambda$, then $H \triangle G,[G: H]=p$, and χ vanishes on $G-H$. Thus $[\chi|H, \chi| H]_{H}=$ $[G: H][\chi, \quad \chi]_{G}=p$. Since $\chi \mid H=a \sum_{1}{ }^{t} \theta_{i}$ and $p=[\chi|H, \quad \chi| H]_{H}=a^{2} t$, it follows that $t=p$, and thus $p \mid \chi(1)$. Thus, every non-linear irreducible character of G has degree divisible by p and it follows from Theorem 2.5 (i) of (2) that G has a normal p-complement.

Lemma 2.2. Let π be a set of primes and let $G^{\prime} x$ be a π-element of G / G^{\prime}. Suppose that $G^{\prime} x$ consists of a single class of G. Then x is $a \pi$-element of G and $\mathbf{C}_{G^{\prime}}(x)$ is a π-group.

Proof. We may write $x=y z$, where y and z are both powers of x, y is a π^{\prime}-element, and z is a π-element. Now, $G^{\prime} \triangle\left\langle G^{\prime}, x\right\rangle$ and $\left\langle G^{\prime}, x\right\rangle / G^{\prime}$ is a π-group; thus all π^{\prime}-elements of $\left\langle G^{\prime}, x\right\rangle$ are in G^{\prime}. In particular, $y \in G^{\prime}$; therefore $z \in G^{\prime} x$, and thus z is conjugate to x in G and therefore x is a π-element.

If $u \in \mathbf{C}_{G^{\prime}}(x)$ is a non-trivial π^{\prime}-element, then $u x$ is not a π-element. Since $u x \in G^{\prime} x$, it is conjugate to x and this is a contradiction; thus, $\mathbf{C}_{G^{\prime}}(x)$ must be a π-group and the proof is complete.

Proposition 2.3. Let $P \subseteq G$, where G is not nilpotent and P is an abelian p-subgroup of period $\leqq n$. Then $\left[P G^{\prime}: G^{\prime}\right] \leqq n m(G)$.

Proof. If $\left[P G^{\prime}: G^{\prime}\right] \leqq m(G)$, nothing remains to be shown; thus, we may assume that $\left[P G^{\prime}: G^{\prime}\right]>m(G)$, and thus Proposition 2.1 applies and G has a
normal p-complement K. Let $H=G^{\prime} \cap K$. If $H=1$, then $K \subseteq \mathbf{Z}(G), G^{\prime}$ is a p-group, and thus G is nilpotent, contrary to our assumption. Thus $H>1$ and we can find an elementary abelian q-subgroup Q of H on which P acts. We may assume that Q is irreducible under this action, and thus, if $L \subseteq P$ is the kernel of the action, we see that P / L is cyclic, and thus $[P: L] \leqq n$. Now let $P_{0}=P \cap G^{\prime}$. We have that $\left[L: L \cap P_{0}\right]=\left[L: L \cap G^{\prime}\right]=\left[L G^{\prime}: G^{\prime}\right]$. Each coset of G^{\prime} in $L G^{\prime}$ has a power of p as its order in G / G^{\prime} and contains an element of L which centralizes the non-trivial p^{\prime}-subgroup Q of G^{\prime}. By Lemma 2.2, none of these cosets can consist of a single class of G, and thus by Lemma 1.1 there are at most $m(G)$ such cosets and $\left[L G^{\prime}: G^{\prime}\right] \leqq m(G)$. Thus

$$
\begin{aligned}
{\left[P G^{\prime}: G^{\prime}\right]=\left[P: P \cap G^{\prime}\right]=} & {\left[P: P_{0}\right] \leqq } \\
& {\left[P: P_{0} \cap L\right]=[P: L]\left[L: P_{0} \cap L\right] \leqq n m(G) . }
\end{aligned}
$$

This establishes the proposition.
Proposition 2.4. Let P be a non-abelian Sylow p-subgroup of a non-nilpotent group G. Then $\left[P G^{\prime}: G^{\prime}\right] \leqq F(m(G))$ for a suitably chosen function F, independent of G.

Proof. Choose $F(m) \geqq m$ so that we may assume that $\left[P G^{\prime}: G^{\prime}\right]>m(G)$ and G has a normal p-complement by Proposition 2.1. If K is the complement, then $P \cong G / K$; therefore $m(P) \leqq m(G)$. Thus, P has period $\leqq B(m(P))$ $\leqq B^{*}(m(G))$, where B is the function whose existence is guaranteed by Proposition 1.6 and $B^{*}(m)=\max \{B(n) \mid n \leqq m\}$. Choose a self-centralizing normal subgroup A of P and apply Proposition 2.3 to conclude that $\left[A G^{\prime}: G^{\prime}\right] \leqq$ $B^{*}(m(G)) m(G)$. Now, $\left|P^{\prime}\right| \leqq 2^{m(P)} \leqq 2^{m(G)}$ by Proposition 1.2 , and since G has a normal p-complement, $P^{\prime}=P \cap G^{\prime}$; therefore $\left|P \cap G^{\prime}\right| \leqq 2^{m(G)}$. Thus

$$
|A|=\left[A: A \cap G^{\prime}\right]\left|A \cap G^{\prime}\right| \leqq\left[A G^{\prime}: G^{\prime}\right]\left|P \cap G^{\prime}\right| \leqq B^{*}(m(G)) m(G) 2^{m(G)}
$$

Since P / A is isomorphic to a subgroup of $\operatorname{Aut}(A)$, its order is bounded by a function of $|A|$ and this yields a bound on $|P|$ and the result follows.

We shall need the following result of Landau (3) which is stated here as a lemma.

Lemma 2.5. There exists a function L defined on the natural numbers such that if G is a finite group and $k(G) \leqq n$, then $|G| \leqq L(n)$.

Theorem 2.6. For each natural number n, there exists a function f_{n} such that if G is a finite group, then either
(1) G is abelian,
(2) $\left[G: G^{\prime}\right] \leqq f_{n}(m(G))$ and $|G| \leqq L\left(m(G)+f_{n}(m(G))\right.$,
(3) $G=K \times P$, where K is abelian, $|K| \leqq m(G), P$ is a p-group of class 2 , and $\left|G^{\prime}\right| \leqq m(G) /|K|+1$, or
(4) $G=G^{\prime} A$, where $G^{\prime} \cap A=1, A$ contains an (abelian) Sylow p-subgroup P of G with period $>n$, and at most $m(G)$ elements of A have non-trivial centralizers in G^{\prime}.

Proof. Since $k(G)=m(G)+\left[G: G^{\prime}\right]$, the second part of (2) follows from the first by Lemma 2.5. If we take $f_{n}(m) \geqq m^{3}$ for each n, then if G is nilpotent and does not satisfy (1) or (2), we have that $\left[G: G^{\prime}\right]>f_{n}(m(G)) \geqq m(G)^{3}$ and by Corollary $1.5, G$ satisfies (3). We may therefore restrict our attention to non-nilpotent groups.

Let G be non-nilpotent and suppose that G does not satisfy (4). If p is a prime dividing [$G: G^{\prime}$] and P is an abelian S_{p}-subgroup of G, then the p-part of [$\left.G: G^{\prime}\right]$ is $\left[P G^{\prime}: G^{\prime}\right]$. If $\left[P G^{\prime}: G^{\prime}\right]>m(G)$, then G has a normal p-complement K by Proposition 2.1 and $G=K P$. Since P was assumed to be abelian, $G^{\prime} \subseteq K$ and each element of P is in a distinct coset of G^{\prime}. By Lemma 1.1, at most $m(G)$ of them are in cosets which are not a single class of G. Since $|P|>$ $m(G)$, we have that $G^{\prime} x$ is a class for some $x \in P$, and hence $|\mathbf{C}(x)|=\left[G: G^{\prime}\right]$. By Lemma $2.2, \mathbf{C}_{G^{\prime}}(x)$ is a p-group but since $G^{\prime} \subseteq K$, we have that $\mathbf{C}_{G^{\prime}}(x)$ $=1$. Therefore, if $A=\mathbf{C}(x)$, we have that $A \cap G^{\prime}=1$; thus A is abelian and since $|A|\left|G^{\prime}\right|=|G|$, we see that $G=G^{\prime} A$. If $y \in A$ with $\mathbf{C}_{G^{\prime}}(y)>1$, then $\mathbf{C}_{G}(y)>A$ and $[G: \mathbf{C}(y)]<\left|G^{\prime}\right| ;$ thus $G^{\prime} y$ is not a single class of G. Since each $y \in A$ is in a distinct coset of G^{\prime}, there can be at most $m(G)$ such y with $\mathbf{C}_{G^{\prime}}(y)>1$. Since we have assumed that (4) does not hold, it follows that the period of P is $\leqq n$, and thus by Proposition 2.3, the p-part of $\left[G: G^{\prime}\right]$ is $\leqq n m(G)$. We see then that this is true for all primes dividing [$\left.G: G^{\prime}\right]$ for which a Sylow subgroup of G is abelian.

Suppose now that $p \mid\left[G: G^{\prime}\right]$ and that P is a non-abelian S_{p}-subgroup of G. Then the p-part of $\left[G: G^{\prime}\right]$ is $\left[P G^{\prime}: G^{\prime}\right] \leqq F(m(G))$ by Proposition 2.4. Thus, the contribution of each prime divisor to $\left[G: G^{\prime}\right]$ is $\leqq M=\max \{n m(G)$, $F(m(G))\}$. In particular, if $p \mid\left[G: G^{\prime}\right]$, then $p \leqq M$, and hence there are at most $\pi(M)$ distinct prime divisors of $\left[G: G^{\prime}\right]$, where $\pi(M)$ is the number of primes $\leqq M$. Therefore, $\left[G: G^{\prime}\right] \leqq M^{\pi(M)}$ and if we choose $f_{n}(m)=\max \left\{m^{3}, M^{\pi(M)}\right\}$, where $M=\max \{n m, F(m)\}, G$ will satisfy (2) if it does not satisfy (1), (3), or (4) and the theorem is proved.
3. As has already been noted in $\S 1$, extra-special p-groups provide examples of arbitrarily large groups satisfying $m(G)=p-1$ for a fixed prime p, and thus they yield examples of groups which satisfy only (3) of Theorem 2.6.

In this section we construct a series of groups for each prime which will yield examples where only (4) holds in Theorem 2.6. They also provide counter-examples to Corollary 1.5 for non-nilpotent groups. In fact, they show that there is no function h such that if $\left[G: G^{\prime}\right]>h(m(G))$, then G^{\prime} is abelian. What these groups definitely do not provide is a counter-example to the statement that there exists a function h such that if $\left[G: G^{\prime}\right]>h(m(G))$, then G is solvable. In fact, by Theorem 2.6, this statement would follow if the conjecture that a group having a fixed point-free automorphism of prime power order is necessarily solvable were true.

The construction given below is modeled on G, Higman's construction of the Suzuki 2 -group $A(n, \theta)$ in ($\mathbf{1}$).

Theorem 3.1. Let p be a prime and $n \geqq 3$ an odd integer. Then there exists a p-group $H=H_{n, p}$ satisfying
(1) $|H|=p^{2 n},\left|H^{\prime}\right|=p^{n}, H^{\prime}=\mathbf{Z}(H)$,
(2) there exists cyclic $A \subseteq \operatorname{Aut}(H)$ with $\mathbf{C}_{H}(a)=1$ for all $a \neq 1$ in A. Also, $|A|=2^{-t}\left(p^{n}-1\right)$, where t is defined by $p-1=2^{t} r, r$ being odd,
(3) $k(H)=1+\left(p^{n}-1\right)(p+1)$, and
(4) if G is the split extension of H by A, then $k(G)=2^{t}(p+1)+2^{-t}\left(p^{n}-1\right)$ and $m(G)=2^{t}(p+1)<p^{2}$ and $m(G)$ is independent of n.

Proof. Let $F=\mathrm{GF}\left(p^{n}\right)$ and let H be the subset of $\mathrm{GL}(3, F)$ consisting of matrices of the form

$$
\left[\begin{array}{ccc}
1 & \alpha & \xi \\
0 & 1 & \alpha^{p} \\
0 & 0 & 1
\end{array}\right]=(\alpha, \xi)
$$

where the ordered pair notation is used as a shorthand for the matrix. Note that $(\alpha, \xi)(\beta, \eta)=\left(\alpha+\beta, \xi+\eta+\alpha \beta^{p}\right)$, and thus H is a group, $1=(0,0)$, $|H|=p^{2 n}$, and $Z=\{(0, \xi)\}$ is a subgroup with $|Z|=p^{n}$. Clearly, (α, ξ) and (β, η) commute with each other if and only if $\alpha \beta^{p}=\beta \alpha^{p}$, i.e., if and only if $\beta=0$ or $\alpha / \beta=(\alpha / \beta)^{p}$. Since $n>1$, it follows that $Z=\mathbf{Z}(H)$, and since $x \rightarrow x^{p}$ is an automorphism of F which generates the Galois group of F over its prime field, $\alpha / \beta=(\alpha / \beta)^{p}$ if and only if $\alpha / \beta \in \mathrm{GF}(p)$, i.e., $\alpha=s \beta, 0 \leqq s<$ p. If $\alpha=s \beta$, then $(\beta, \eta)^{s}=(\alpha, \zeta)=(\alpha, \xi)(0, \zeta-\xi)$, and thus $\mathbf{C}((\alpha, \xi))=$ $\langle Z,(\alpha, \xi)\rangle$ if $\alpha \neq 0$. Now $(\alpha, \xi)^{p} \in Z$; thus, if $\alpha \neq 0,|\mathbf{C}((\alpha, \xi))|=p^{n+1}$ and the class containing each non-central element of H has size p^{n-1}. Thus

$$
k(H)=|Z|+\frac{|H|-|Z|}{p^{n-1}}=p^{n}+\left(p^{2 n}-p^{n}\right) / p^{n-1}=1+\left(p^{n}-1\right)(p+1)
$$

If we set $p-1=2^{t} r$ for odd r, then $2^{t} \mid\left(p^{n}-1\right)$ since

$$
p^{n}-1=(p-1)\left(1+p+p^{2}+\ldots+p^{n-1}\right)
$$

Since n is odd, there is an odd number of terms in the second factor which must therefore be odd and $2^{t+1}\left(p^{n}-1\right)$. Let λ be a generator of the multiplicative group of F and set $\mu=\lambda^{2 t}$. Since λ has order $p^{n}-1$, the order of μ is $2^{-t}\left(p^{n}-1\right)$. Define the mapping $\sigma: H \rightarrow H$ by $(\alpha, \xi)^{\sigma}=\left(\alpha \mu, \xi \mu^{p+1}\right)$. Then σ is a group automorphism and $(\alpha, \xi)^{\sigma m}=\left(\alpha \mu^{m}, \xi \mu^{m(p+1)}\right)$. If σ^{m} fixes (α, ξ) for $0<m<2^{-t}\left(p^{n}-1\right)$, then since $\mu^{m} \neq 1$, we have that $\alpha=0$. If $\mu^{m(p+1)}=1$, then $2^{-t}\left(p^{n}-1\right) \mid m(p+1)$. We claim, however, that $2^{-t}\left(p^{n}-1\right)$ and $p+1$ are relatively prime, for if q is a prime, $q \mid(p+1)$, then $p \equiv-1 \bmod q$; thus $p^{n} \equiv-1 \bmod q$. If $q \mid 2^{-t}\left(p^{n}-1\right)$, then $0 \equiv p^{n}-1 \equiv-2 \bmod q$; thus $q=2$. However, $2 \nmid 2^{-t}\left(p^{n}-1\right)$, and this establishes the claim. Thus, $2^{-t}\left(p^{n}-1\right) \mid m(p+1)$ contradicts $0<m<2^{-t}\left(p^{n}-1\right)$ and $\mu^{m(p+1)} \neq 1$ and $\xi=0$. This establishes (2) of the theorem if $A=\langle\sigma\rangle$.

Clearly, H / Z is abelian ; thus $H^{\prime} \subseteq Z$ and $\left|H^{\prime}\right|=p^{s} \leqq p^{n}$. Since H^{\prime} admits A, we have that $2^{-t}\left(p^{n}-1\right) \mid\left(p^{s}-1\right)$. Since 2^{t} divides $p^{s}-1$ and $2^{-t}\left(p^{n}-1\right)$
is odd, we have that $\left(p^{n}-1\right) \mid\left(p^{s}-1\right)$; thus $p^{n} \leqq p^{s}$, and therefore $H^{\prime}=Z$ and (1) follows.

Finally, since no $a \in A, a \neq 1$ can fix any class of H except $\{1\}$, it follows that the number of classes of G that are contained in H is

$$
1+\left(p^{n}-1\right)(p+1) /|A|=1+2^{t}(p+1)
$$

It is clear that every coset of $H\left(=G^{\prime}\right)$ in G except for H itself is a single class and there are $2^{-t}\left(p^{n}-1\right)-1$ such cosets. This yields

$$
k(G)=2^{t}(p+1)+2^{-t}\left(p^{n}-1\right)
$$

and

$$
m(G)=k(G)-\left[G: G^{\prime}\right]=2^{t}(p+1) \leqq(p-1)(p+1)<p^{2}
$$

and the proof is complete.

References

1. G. Higman, Suzuki 2-groups, Illinois J. Math. 7 (1963), 79-96.
2. I. M. Isaacs and D. S. Passman, A characterization of groups in terms of the degrees of their characters. II, Pacific J. Math., 24 (1968), 467-510.
3. E. Landau, Über die Klassenzahl der binären quadratischen Formen von negativer Discriminante, Math. Ann. 56 (1903), 671-676.
4. G. Seitz, Finite groups having only one irreducible representation of degree greater than one, Proc. Amer. Math. Soc. 19 (1968), 459-461.

University of Chicago,
Chicago, Illinois;
Yale University,
New Haven, Connecticut

