
GROUPS WITH RELATIVELY FEW 
NON-LINEAR IRREDUCIBLE CHARACTERS 

I. M. ISAACS AND D. S. PASSMAN 

In (4), Seitz characterized those finite groups which have exactly one 
non-linear irreducible character (over the complex numbers) . In this paper 
we are concerned with the general question of wha t can be deduced about a 
finite group G if the number of its non-linear irreducible characters m{G) is 
given. In particular, does the assumption t h a t m(G) is in some sense small 
when compared with the order \G\ impose any restrictions on the s t ructure of 
G? We show t h a t if G is nilpotent and m{G) is small, then G must have class 
S 2 b u t t h a t non-nilpotent groups need not even be metabelian (although 
Seitz showed t h a t if m(G) = 1, then this mus t be the case). W e do show 
however, t h a t groups with small period and few non-linear characters when 
compared with the order must necessarily be nilpotent. 

1. In a group G, any two conjugate elements must lie in the same coset of 
G', and hence each such coset is a normal subset of G, i.e., a union of conjugacy 
classes. WTe shall denote the number of classes of G contained in a normal 
subset 5 by k(S). 

L E M M A 1.1. In a group G, m(G) = ^(k(Gfx) — 1), where the sum runs over 
all cosets of G' in G. In particular, at most m(G) cos et s fail to be single classes. 
Also, |Z(G) C\ G'\ ^ m{G) + 1 and if 1 < G C Z(G) , then |Z(G) | ^ 2m(G). 

Proof. We have t h a t J^k(Gx) = k(G) = [G : G'] + m(G) since the number 
of irreducible characters of G is equal to k(G). This yields 

m{G) = Xk(G'x) - [G : G'] = E ( £ ( G ' x ) - 1). 

Each G'x which is not a single class contributes a t least one to the sum, and 
thus the number of such cosets is S m (G). 

Now, k(G') ^ |Z(G) H G' | ; thus |Z(G) H G'| S m (G) + 1. Finally, if 
G Q Z(G) and z £ Z (G) , then Gz C Z(G) and k(Gz) = \G\. T h e number 
of cosets of G containing elements of Z(G) is [Z(G):G'] , and thus 
m(G) ^ (|G'| - l ) [Z(G) :G r ] . We then have t h a t 

| Z ( G ) | ^ ^ ^ ^ 2 m ( G ) 

since \G\ > 1. 
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We confine our attention to nilpotent groups for the remainder of this 
section. 

PROPOSITION 1.2. If G is nilpotent, then \G'\ ^ 2m^>. 

Proof. A series 1 = H0 < Hx < . . . < Hr = G can be found, where Ht A 
G and [H^Hi-i] = piy a prime for 1 ^ i rg r. Now, Hi/H^i is central in 
G/Hi^i and thus consists of pt classes of G/Ht-\. I t follows that 

k(Ht - H^) ^pt-1, 
and thus 

KG') è 1 + Z (Pi " 1) and m(G) §: *(G') - U Z ( f i - !)• 

We claim that for any set of integers pt ^ 2, 

and since |G'| = 11^-, this will yield the desired result. The function f(x) = 

xi/(z-i) i s monotone decreasing for x ^ 2 and / (2) = 2; thus x ^ 2X~1 for 
x ^ 2. Substituting ^ for x and multiplying yields the required inequality. 

Although \G'\ is bounded by a function of m(G) for nilpotent groups, there 
is no bound for solvable groups as is shown by the example of Theorem 3.1. 
Furthermore, \G\ is not bounded by a function of m(G) even for ^-groups as 
the abelian and extra-special ^-groups clearly show. (If G is an extra-special 
£>-group, then m(G) = p — 1.) The following theorem, however, yields a 
bound on \G\ when G is a ^?-group of class > 2. 

THEOREM 1.3. Let G be a p-group with m{G) < pe. If [G : G'] è P3e~2, then 
G has class ^ 2 and \Gf\ S. m(G) + 1. 

Proof. The proof is by induction on \G'\. If \Gf\ = 1, the result is trivial; 
thus, we assume that G' > 1, and hence we can find U AG with U £ G' 
and \U\ = p. Then m(G/U) ^ m(G) < pe and G'/U = (G/U)'; thus, 
[G/U: (G/U)'] = [G : G'] ^ £3*"2 and G/Z7satisfies the hypotheses. By the in
ductive hypothesis, G/U has class ^ 2 and |G'|/£ = \(G/U)'\ ^ m(G/U) + 1. 
Since Z7 C G', C7 is not in the kernel of every non-linear irreducible character 
of G, and thus m (G/U) < m(G). Thus |G'|/£ ^ m(G/U) + 1 ^ m(G) < £e 

and \Gr\ < pe+1. Since |G'| is a power of p, we have that \G'\ S pe-
Since the product of an irreducible character with a linear character is 

irreducible, multiplication defines an action of the group C of linear characters 
of G on the set Irr(G) of irreducible characters of G. If x € Irr(G) is non
linear, then, clearly, the size of the orbit of x under the action of C is ^ m(G). 
Therefore, C has a subgroup K with [C : K] ^ ra(G) and Xx = x for all 
X G K. Let H = C\ {kerX| X G X}. Each X Ç i£ may be viewed as a linear 
character of G/H and therefore 

3e-2 

1 ' m(G) w(G) £ 
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If x G G — H, then \(x)x(x) = x W for all \ (z K. Since x (? H, \(x) 9e l 
for some \ £ K, and thus x0*0 = 0 and x vanishes on G — H. Then 

[G:#][X,X]* = [ X | # , X | # ] H ^ X ( 1 ) 2 , 

and thus p2^ < [G : # ] g x(l)2. Therefore, ^e~x < x ( l ) and since x(l) 
must be a power of p, we have that x(l) = Pe for every non-linear irreducible 
character % of G. 

Iî y £ G is arbitrary, then G acts on the class of y by conjugation and since 
cl(y) Q Gfy} the degree of this permutation representation is g |G'| g pe. If 
$ is the character of this representation, then <j> is a sum of irreducible charac
ters of G, one of which must be the principal character. Thus, the sum of the 
remaining irreducible constituents of <£ has degree < pe and therefore <j> can 
have no non-linear irreducible constituents. It follows that G' is in the kernel 
of $, and thus acts trivially on c\{y) and y Ç C(G'). Since y was arbitrary, 
G' CI Z(G) and the nilpotence class of G is ^ 2. By Lemma 1.1 we have that 
\G'\ = \G' C\ Z(G)| g m (G) + 1 and the proof is complete. 

We give, as a corollary, an alternative statement of the theorem which does 
not involve the particular prime. 

COROLLARY 1.4. Let G be a p-group. If [G : Gf] > ra(G)3, then G has class 
g 2 and \G'\ ^ m{G) + 1. 

Proof. Let pe be the smallest power of p larger than m(G). Then m(G) ^p6"1; 
thus, [G : G'] < p^e~v and since [G : G'] is a power of p, we have that 
[G : G'] ^ £3 e - 2 and the hypotheses of the theorem are satisfied and the 
result follows. Applying this to arbitrary nilpotent groups we obtain the 
following corollary. 

COROLLARY 1.5. Let G be non-abelian and nilpotent and suppose that [G : Gf]> 
m(G)3. Then G = K X P , where P is a p-group of class 2, K is abelian, 
\K\ ^ m(G), and \Gf\ S m(G)/\K\ + 1. 

Proof. Choose a non-abelian Sylow ^-subgroup P of G and write G = 
K X P . We then have that 

(*) m(G) = m(P)[K : K'] + m(K)[P : Pf] + m(K)m(P). 

Since m{GY < [G : G'] = [K : X'][P : P ' ] , one of [X : K'] and [P : P '] must 
be > w(G). Since m(P) > 0, this yields a contradiction from (*) if m(K) > 0, 
i.e., if K is non-abelian. Thus, K is abelian and m(G) = \K\m{P) ; therefore, 
\K\ S m (G) and 

[P : P '] = [G : G']/|iq > m(G)3/|i£| è (m(G)/|i£|)3 = m(P)3 . 

The result now follows from Corollary 1.4. 

I t is of interest to note that these results may be stated independently of 
character theory. Since m{G) = k(G) — [G : G'], the condition [G : Gf] > 
m(G)z is equivalent to k(G) < [G : G']1/3 + [G : G'}. We conclude this section 
with one further result. 
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PROPOSITION 1.6. There exists a function B defined on the natural numbers 
such that if G is a non-abelian nilpotent group, then the period of Gis ^ B (m (G) ). 

Proof. If [G : G'] ^ m(G)3, then since by Proposition 1.2 \G'\ ^ 2m^G\ we 
have that \G\ ^ 2w(G)ra(G)3, and hence the period of G is bounded by 
2m(G)m(G)s. We may therefore assume that [G : Gf] > m(G)3, and thus by 
Corollary 1.5, G has class 2 and 1 < G' C Z(G). By Lemma 1.1 we then have 
that |Z(G) | ^2m(G), \C\ ^ m ( G ) + l. Ifx, y 6 G, then [*,?]* = [xw, 3/] for any 
integer n, and thus 1 = [x, y]lG'1 = [x|G"', 3/] and since y is arbitrary, x|G?/| G 
Z(G). Therefore, a^'i iz«*>i = 1 and the order of x is g |G'| |Z(G)| ^ 
2m(G)(m(G) + 1). It follows that the function B{m) = max{2wm3, 
2m (m + 1 ) } has the desired properties. 

That Proposition 1.6 is not true if G is solvable but not nilpotent can be 
seen from the example of Theorem 3.1. 

2. Here we study not necessarily nilpotent groups for which m(G) is given. 

PROPOSITION 2.1. If p is a prime and pa\[G : C], where pa > m{G), then G 
has a normal p-complement. 

Proof. As in the proof of Theorem 1.3, the group C of linear characters of G 
acts on the set Irr(G) by multiplication and if x € Irr(G) is non-linear, then 
the orbit containing x has size ^ m(G) and the subgroup K = {X £ C | Xx = 
x} satisfies [C : K] ^ m{G) < p\ But pa | [G : G'] and \C\ = [G : Gr]; there
fore £ I |X|. Thus, there exists X Ç X, X ̂  1, Xp = 1 with Xx = x- If H = kerX, 
then HAG, [G : H] = p, and x vanishes on G — H. Thus [x|^> xl^TU = 
[G : m i x , * ] * = P. Since x | # = « E i ^ * and p = [X\H, X\H]H = 0% it 
follows that t — p, and thus£>|x(l). Thus, every non-linear irreducible character 
of G has degree divisible by p and it follows from Theorem 2.5 (i) of (2) that 
G has a normal ^-complement. 

LEMMA 2.2. Let w be a set of primes and let G'x be a ir-element of G/Gf. 
Suppose that G'x consists of a single class of G. Then x is a ir-element of G and 
CG'(x) is a w-group. 

Proof. We may write x = yz, where y and z are both powers of xt y is a 
^'-element, and z is a 7r-element. Now, G A (Gf, x) and (G, x)/G' is a 7r-group ; 
thus all ^'-elements of (G, x) are in G'. In particular, y £ G ; therefore 
z Ç G'x, and thus z is conjugate to x in G and therefore x is a 7r-element. 

If u Ç CG '(x) is a non-trivial ^'-element, then ux is not a 7r-element. Since 
w# G G'x, it is conjugate to x and this is a contradiction ; thus, C(?'(x) must be 
a 7T-group and the proof is complete. 

PROPOSITION 2.3. Let P C G, w/zere G w ^0^ nilpotent and P is an abelian 
p-subgroup of period ^ n. Then [PC : G'} ^ nm(G). 

Proof. If [PC : G'] ^ m{G), nothing remains to be shown; thus, we may 
assume that [PC : C] > m(G), and thus Proposition 2.1 applies and G has a 
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normal ^-complement K. Let H = G C\ K. If H = 1, then K C Z(G), G is 
a ^?-group, and thus G is nilpotent, contrary to our assumption. Thus H > 1 
and we can find an elementary abelian g-subgroup Q of H on which P acts. 
We may assume that Q is irreducible under this action, and thus, if L Ç P is 
the kernel of the action, we see that P/L is cyclic, and thus [P : L] S n. Now 
let Po = P r\ G. We have that [L : L n P0] = [L : L r\ G] = [LG' : G']-
Each coset of G in LG' has a power of £ as its order in G/G and contains an 
element of L which centralizes the non-trivial //-subgroup Qoî G. By Lemma 
2.2, none of these cosets can consist of a single class of G, and thus by Lemma 
1.1 there are at most m(G) such cosets and \LG : G] ^ m(G). Thus 

[PG : G] = [P :Pr\ G] = [P : P0] ^ 
[P : Po H L] = [P : L][L : A H L ^ »m(G). 

This establishes the proposition. 

PROPOSITION 2.4. Le£ P be a non-abelian Sylow p-subgroup of a non-nilpotent 
group G. Then [PG : G] ^ F(m{G)) for a suitably chosen function F, inde
pendent of G. 

Proof. Choose F(m) ^ w s o that we may assume that \PG : G] > w(G) 
and G has a normal ^-complement by Proposition 2.1. If K is the complement, 
then P^G/K; therefore m{P) ^ m(G). Thus, P has period g B{m(P)) 
S B*(m(G)), where B is the function whose existence is guaranteed by 
Proposition 1.6 and B*(m) = max{B(n)\ n tkm\. Choose a self-centralizing 
normal subgroup A of Pand apply Proposition 2.3 to conclude that [AG' : G] S 
B*(m(G))m(G). Now, \P'\ S 2m<P) ^ 2m^> by Proposition 1.2, and since G 
has a normal ^-complement, Pf = P C\ G ; therefore \P C\ G\ g 2m^G\ Thus 

[41 = [A : i4 H G'] \A r\ G\ S [AG : G] \P H G'| ^ B*(m(G))m(G)2m<G>. 

Since P/^4 is isomorphic to a subgroup of Aut(.4), its order is bounded by a 
function of \A\ and this yields a bound on \P\ and the result follows. 

We shall need the following result of Landau (3) which is stated here as a 
lemma. 

LEMMA 2.5. There exists a function L defined on the natural numbers such 
that if G is a finite group and k(G) g n, then \G\ ^ L(n). 

THEOREM 2.6. For each natural number n, there exists a function fn such that 
if G is a finite group, then either 

(1) G is abelian, 
(2) [G : G] èfn(m(G)) and \G\ S L(m(G) + fn(m(G)), 
(3) G = K X P , where K is abelian, \K\ ^ m(G), P is a p-group of class 2, 

and \G\ ^ m(G)/\K\ + 1, or 
(4) G = G A, where G C\ A = 1, A contains an {abelian) Sylow p-subgroup 

P of G with period > n, and at most m(G) elements of A have non-trivial central-
izers in G. 
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Proof. Since k(G) = m(G) + [G : G'], the second part of (2) follows from 
the first by Lemma 2.5. If we takefn(m) ^ mz for each n, then if G is nilpotent 
and does not satisfy (1) or (2), we have that [G : G'] > jfn(w(G)) ^ m(G)3 and 
by Corollary 1.5, G satisfies (3). We may therefore restrict our attention to 
non-nilpotent groups. 

Let G be non-nilpotent and suppose that G does not satisfy (4). If p is a 
prime dividing [G \ G'] and P is an abelian S^-subgroup of G, then the p-p&rt of 
[G : G'] is [PG' : G']. If [PG' : G']> m(G), then G has a normal ^-complement 
K by Proposition 2.1 and G = XP . Since P was assumed to be abelian, 
G' Q K and each element of P is in a distinct coset of G'. By Lemma 1.1, at 
most m(G) of them are in cosets which are not a single class of G. Since \P\ > 
m(G), we have that G'x is a class for some x £ P , and hence |C(x)| = [G : G']. 
By Lemma 2.2, CG'(x) is a ^-group but since G' Ç X, we have that CG '(#) 
= 1. Therefore, if A — C(x), we have that i H f f = 1 ; thus A is abelian and 
since \A\ \G'\ = |G|, we see that G = G'A. lî y £ A with C<-(;y) > 1, then 
C(?(y) > 4̂ and [G : C(y)] < \Gf\ ; thus G';y is no ta single class of G. Since each 
y Ç A is in a distinct coset of G', there can be at most m(G) such y with 
CG7 (y) > 1. Since wre have assumed that (4) does not hold, it follows that the 
period of P is ^ n, and thus by Proposition 2.3, the ^>-part of [G : G'} is 
^ nm(G). We see then that this is true for all primes dividing [G : Gf] for 
which a Sylow subgroup of G is abelian. 

Suppose now that p\[G : G'] and that P is a non-abelian 5P-subgroup of G. 
Then the £-part of [G : Gf] is [PG; : G'] S F {m {G)) by Proposition 2.4. Thus, 
the contribution of each prime divisor to [G \ Gf] is ^ M = max{wm(G), 
F(m(G))}. In particular, if ^>|[G : G;], then p ^ M, and hence there are at most 
ir(M) distinct prime divisors of [G : G'], where ir(M) is the number of primes 
^ AT. Therefore, [G : G'] ^ Af^^ and if we choose fn(m) = max{m3, M ' ^ } , 
where ilf = max jwm, F(m)}, G will satisfy (2) if it does not satisfy (1), (3), 
or (4) and the theorem is proved. 

3. As has already been noted in §1, extra-special /?-groups provide examples 
of arbitrarily large groups satisfying m(G) = p — 1 for a fixed prime p, and 
thus they yield examples of groups which satisfy only (3) of Theorem 2.6. 

In this section we construct a series of groups for each prime which will 
yield examples where only (4) holds in Theorem 2.6. They also provide 
counter-examples to Corollary 1.5 for non-nilpotent groups. In fact, they 
show that there is no function h such that if [G : G'] > h(m(G)), then G' is 
abelian. What these groups definitely do not provide is a counter-example to 
the statement that there exists a function h such that if [G : G'\ > h(m(G)), 
then G is solvable. In fact, by Theorem 2.6, this statement would follow if the 
conjecture that a group having a fixed point-free automorphism of prime 
power order is necessarily solvable were true. 

The construction given below is modeled on G, Higman's construction of 
the Suzuki 2-group A (n, 6) in (1). 

https://doi.org/10.4153/CJM-1968-146-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-146-3


NON-LINEAR IRREDUCIBLE CHARACTERS 1457 

THEOREM 3.1. Let p be a prime and n ^ 3 an odd integer. Then there exists a 
p-group H = HntP satisfying 

(1) \H\ = p2n, \H'\ = pn, H' = Z(H), 
(2) there exists cyclic A C Aut(i ï) with CH(a) = 1 for all a 9e 1 in A. 

Also, \A\ = 2~t(pn — 1), where t is defined by p — 1 = 2 V, r being odd, 
(3) k(H) = 1 + (pn - l)(p+ I), and 
(4) if G is the split extension of H by A, then k{G) = 2\p + 1) + 2~\pn - 1) 

and m(G) = 2l(p + 1) < £2 and m(G) is independent of n. 

Proof. Let i7 = GF(pn) and let i7 be the subset of GL(3, F) consisting of 
matrices of the form 

~1 a £ 
O l a 2 ' 
0 0 1 

= (« ,{ ) , 

where the ordered pair notation is used as a shorthand for the matrix. Note 
that (a, £)(0, iy) = (a + 0, ? + 77 + a/S*), and thus if is a group, 1 = (0, 0), 
\H\ = p2n, and Z = {(0, £)} is a subgroup with |Z| = pn. Clearly, (a, £) and 
(j3, 77) commute with each other if and only if a/3p = /3ap, i.e., if and only if 
£ = 0 or a/P = (a/$)p. Since n > 1, it follows that Z = Z(iJ), and since 
x —> xp is an automorphism of T7 which generates the Galois group of F over 
its prime field, a/fi = (a/P)p if and only if a/(3 G GF(p), i.e., a = s/3,0 ^ s < 
p.Iia = s(3, then (0, T;)S = (a, f) = (a, 0 ( 0 , f - £), and thus C((a, £)) = 
(Z, (a, J)) if a ?* 0. Now (a, f)p € Z; thus, if a ^ 0, |C((a, £))| = £w+1 and the 
class containing each non-central element of H has size pn~1. Thus 

k(H) = \Z\ + ^ 7 = ^ = Pn + ( ^ - p " ) / * - 1 = 1 + (Pn - l)(p + 1). 
P 

If we set p — 1 = 2V for odd r, then 2*|(£>w — 1) since 

pn - 1 = (p - i ) ( i + £ + £2 + # _ + pn-iy 

Since w is odd, there is an odd number of terms in the second factor which 
must therefore be odd and 2t+1(pn — 1). Let X be a generator of the multi
plicative group of F and set y = \2t. Since X has order pn — 1, the order of 
M is 2-\pn - 1). Define the mapping a: H -> H by (a, £)* = («M, £MP+1). Then 
a is a group automorphism and (a, £)am = (a/xm, ^ m ( p + 1 ) ) . If o-m fixes (a, £) for 
0 < m < 2~'Ow - 1), then since \xm ^ 1, we have that a = 0. If /x

w^+1> = 1, 
then 2~\pn — \)\m{j) + 1). We claim, however, that 2~\pn - 1) and p + 1 
are relatively prime, for if q is a prime, g|(£ + 1), then p = — 1 mod g; thus 
£tt = - 1 mod g. If g|2-*(£w - 1), then 0 = pn - 1 = - 2 mod g; thus 
g = 2. However, 2 \ 2~\pn — 1), and this establishes the claim. Thus, 
2-\pn - 1) \m(p + 1) contradicts 0 < m < 2~\pn - 1) and iim^v+l) ^ 1 and 
^ = 0. This establishes (2) of the theorem if A = (a). 

Clearly, H/Z is abelian; thus H' Ç Z and |i? r | = ^?s ^ ^ . Since H' admits 
^ , w e h a v e t h a t 2 - f ( ^ w - l ) | ( ^ s - 1). Since 2'dividesp s - land2"'(/>n - 1) 
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is odd, we have that (pn - l)\(ps - 1) ; thus pn ^ ps, and therefore H' = Z 
and (1) follows. 

Finally, since no a £ A, a 9e 1 can fix any class of H except {1}, it follows 
that the number of classes of G that are contained in H is 

l + (pn- l)(p + 1)/\A\ = 1 + 2\p + 1). 

It is clear that every coset of H ( =Gf) in G except for H itself is a single class 
and there are 2~t(pn — 1) — 1 such cosets. This yields 

k(G) = 2\p + 1) + 2-\pn - 1) 
and 

m(G) = k(G) - [G : G'] = 2\p + 1) ^ (p - l)(p + 1) < p2 

and the proof is complete. 
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