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LOCAL WEAK LIMIT OF PREFERENTIAL ATTACHMENT RANDOM
TREES WITH ADDITIVE FITNESS
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Abstract

We consider linear preferential attachment trees with additive fitness, where fitness is
the random initial vertex attractiveness. We show that when the fitnesses are independent
and identically distributed and have positive bounded support, the local weak limit can
be constructed using a sequence of mixed Poisson point processes. We also provide a
rate of convergence for the total variation distance between the r-neighbourhoods of a
uniformly chosen vertex in the preferential attachment tree and the root vertex of the
local weak limit. The proof uses a Pólya urn representation of the model, for which
we give new estimates for the beta and product beta variables in its construction. As
applications, we obtain limiting results and convergence rates for the degrees of the
uniformly chosen vertex and its ancestors, where the latter are the vertices that are on
the path between the uniformly chosen vertex and the initial vertex.
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1. Introduction

There has been considerable interest in studying preferential attachment (PA) random
graphs ever since [2] used them to explain the power-law degree distribution observed in some
real-world networks, such as the World Wide Web. The primary feature of the stochastic mech-
anism consists of adding vertices sequentially over time, with some number of edges attached
to them, and then connecting these edges to the existing graph in such a way that vertices with
higher degrees are more likely to receive them. A general overview of PA random graphs can
be found in the books [19] and [20]. In the basic models, vertices are born with the same con-
stant ‘weight’ as their initial vertex attractiveness. To relax this assumption, [15] introduced
a class of PA graphs with additive fitness (referred to as Model A in [15]), where fitness is
defined as the random initial attractiveness. When the fitnesses are independent and identically
distributed (i.i.d.), this family is the subject of recent works such as [22] and [25], whose results
we discuss in Section 1.3.2. In this paper, we study the local weak limit of this family and pro-
vide a rate of convergence for the total variation distance between the local neighbourhoods of
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the PA tree and its local weak limit. The result extends that of [4], which considered PA graphs
with constant initial attractiveness. As applications, we obtain limiting results for the degree
distributions of the uniformly chosen vertex and its ancestors, where rates of convergence are
also provided. Another objective of this article is to present the arguments of [4] in more detail;
this is the main reason we consider the PA tree instead of the case where multiple edges are
possible.

Before we define the model, note that we view the edges as directed, with a newly born
vertex always sending a single outgoing edge to an existing vertex in the graph. We define the
weight of a vertex as its in-degree plus its fitness; each time a vertex receives an edge from
another vertex, its weight increases by one. As we mostly work conditionally on the fitness
sequence, we also introduce a conditional version of the model. Note that the seed graph is
a single vertex that has a non-random fitness, but as we explain in Section 1.3.1 below, the
choice of the seed graph and its fitness has no effect on the local weak limit. It is chosen purely
to streamline the argument.

Definition 1. ((x, n)-sequential model and PA tree with additive fitness.) Given a positive
integer n and a sequence x := (xi, i � 1), with x1 >−1 and xi > 0 for i � 2, we construct a
sequence of random trees (Gi, 1 � i � n) as follows. The seed graph G1 consists of vertex 1
with initial attractiveness x1 and degree 0. The graph G2 is constructed by joining vertex 2 and
vertex 1 by an edge, and equipping vertex 2 with initial attractiveness x2. For 3 � m � n, Gm is
constructed from Gm−1 by attaching one edge between vertex m and k ∈ [m − 1], and the edge
is directed towards vertex k with probability

D(in)
m−1,k + xk

m − 2 +∑m−1
j=1 xj

for 1 � k � m − 1,

where D(in)
m,k is the in-degree of vertex k in Gm, and D(in)

m,k = 0 whenever k � m. The mth attach-
ment step is completed by assigning vertex m the initial attractiveness xm. We call the resulting
graph Gn an (x, n)-sequential model, and its law is denoted by Seq(x)n. Taking X1 = x1, we
obtain the distribution PA(π, X1)n of the PA tree with additive fitness from mixing Seq(x)n

with the distribution of the i.i.d. fitness sequence (Xi, i � 2).

1.1. Local weak convergence

The concept of local weak convergence was independently introduced by [1] and [3]. Here,
we follow [20, Section 2.3 and 2.4], and also [3]. Informally, this involves exploring some
random graph Gn from vertex on, chosen uniformly at random from Gn, and studying the
distributional limit of the neighbourhoods of radius r rooted at on for each r<∞. We begin
with a few definitions. A rooted graph is a pair (G,o), where G = (V(G), E(G)) is a graph with
vertex set V(G) and edge set E(G), and o ∈ V(G) is the designated root in G. Next, let r be a
finite positive integer. For any (G,o), denote by Br(G, o) the rooted neighbourhood of radius r
around o. More formally, Br(G, o) = (V(Br(G, o))), E(Br(G, o))), where

V(Br(G, o)) = {u ∈ V(G) : the distance between u and o is at most r edges}, and

E(Br(G, o)) = {{u, v} ∈ E(G) : u, v ∈ V(Br(G, o))}.
We refer to Br(G, o) as the r-neighbourhood of vertex o, or simply as the local neighbourhood
of o when the reference to r is not needed. Finally, two rooted graphs (G,o) and (H,o′) are
isomorphic, for which we write (G, o) ∼= (H, o′), if there is a bijection ψ : V(G) → V(H) such
that ψ(o) = o′ and {u, v} ∈ E(G) if and only if {ψ(u), ψ(v)} ∈ E(H). Below we define the local
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Local weak limit of PA trees with additive fitness 787

weak convergence of a sequence of finite random graphs (Gn, n � 1) using a criterion given in
[20, Theorem 2.14].

Definition 2. (Local weak convergence.) Let (Gn, n � 1) be a sequence of finite random
graphs. The local weak limit of Gn is (G, o) if, for all finite rooted graphs (H, v) and all
finite r,

1

n

n∑
j=1

P[(Br(Gn, j), j) ∼= (H, v)]
n→∞−→ P[(Br(G, o), o) ∼= (H, v)]. (1.1)

The left-hand side of (1.1) is the probability that the r-neighbourhood of a randomly cho-
sen vertex is isomorphic to (H, v). Note that the convergence in (1.1) is equivalent to the
convergence of the expectations of all bounded and continuous functions with respect to an
appropriate metric on rooted graphs; see e.g. [20, Chapter 2].

1.2. Statement of the main results

In the main result, we fix X1 >−1 and assume that (Xi, i � 2) are i.i.d. positive bounded
variables with distribution π . We write μ := EX2 <∞ and

χ := μ

μ+ 1
. (1.2)

We first define the local weak limit of the PA tree with additive fitness, which is an infinite
rooted random tree that generalises the Pólya point tree introduced in [4]. Hence, we refer to it
simply as a π -Pólya point tree, with π being the fitness distribution of the PA tree. Denote this
random tree by (T , 0), so that 0 is its root. We begin by explaining the Ulam–Harris labelling
of trees that we use in the construction of (T , 0). Starting from the root 0, the children of
any vertex v̄ (if any) are generated recursively as (v̄, j), j ∈N, and we say that v̄ is the parent
of (v̄, j). With the convention B0(T , 0) = {0}, note that if v̄ := (0, v1, . . . , vr), then (v̄, i) ∈
∂Br+1 := V(Br+1(T , 0)) \ V(Br(T , 0)). Furthermore, each vertex v̄ ∈ V((T , 0)) has a fitness
Xv̄ and a random age av̄, where 0< av̄ � 1. We write av̄,i := a(v̄,i) for convenience. Apart from
the root vertex 0, there are two types of vertices, namely, type L (for ‘left’) and type R (for
‘right’). Vertex v̄ belongs to type L if av̄,i < av̄ for some i � 1, and to type R if av̄,i � av̄ for all
i � 1. There is exactly one type-L vertex in ∂Br for each r � 1, and the labels (0, 1, 1, . . . , 1)
are assigned to these vertices. For any vertex v̄, let

Rv̄ = the number of type-R children of v̄ in the (T , 0). (1.3)

We also label the type-R vertices in increasing order of their ages, so that if v̄ is the root or
belongs to type L, then av̄,1 � av̄ � av̄,2 � . . .� av̄,1+Rv̄ , while if v̄ belongs to type R, then
av̄ � av̄,1 � . . .� av̄,Rv̄ . See Figure 1 below for an illustration of (T , 0) and the vertex ages.
To understand how the vertex types and the ages above arise in the weak limit, consider the
r-neighbourhood of a uniformly chosen vertex k0 in Gn ∼ PA(π, X1)n. Observe that there is a
unique path from k0 to the initial vertex, unless k0 is itself the initial vertex. Apart from k0,
the vertices in the r-neighbourhood that belong to this path are called type-L vertices, and the
remaining vertices are referred to as type-R vertices. The ages in (T , 0) encode the (rescaled)
arrival times of the vertices in the r-neighbourhood of vertex k0, which determine their degree
distributions. A comparison of the 2-neighbourhoods of the PA tree and (T , 0) is given in
Figure 1.
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FIGURE 1. A comparison between the 2-neighbourhoods in (T , 0) (left) and the PA tree Gn rooted at
the uniformly chosen vertex k0 (right). We assign Ulam–Harris labels as subscripts (kv̄) to the vertices
in (Gn, k0) to better compare the 2-neighbourhoods. In both figures, the vertex location corresponds to
either its arrival time or its age. A vertex is a type-L (type-R) child if it lies on the dotted (solid) path. On
the left, R0 = 2, R0,1 = 2, R0,2 = 1, and R0,3 = 0. On the right, the dotted path starting from k0 leads to
the initial vertex. The 2-neighbourhoods are coupled so that they are isomorphic, and the vertex ages and
rescaled arrival times are close to each other. The unlabelled vertices and their respective edges (dashed
or dotted) are not coupled.

Definition 3. (π -Pólya point tree.) A π -Pólya point tree (T , 0) is defined recursively as fol-
lows. The root 0 has an age a0 = Uχ

0 , where U0 ∼ U[0, 1]. Assuming that v̄ ∈ ∂Br and av̄ have
been generated, we define its children (v̄, j) ∈ ∂Br+1 for j = 1, 2, . . . as follows. Independently
of all random variables generated before, let Xv̄ ∼ π and

Zv̄ ∼
{

Gamma(Xv̄, 1), if v̄ is the root or of type R;

Gamma(Xv̄ + 1, 1), if v̄ is of type L.

If v̄ is the root or of type L, let av̄,1|av̄ ∼ U[0, av̄] and (av̄,i, 2 � i � 1 + Rv̄) be the points of a
mixed Poisson point process on (av̄, 1] with intensity

λv̄(y)dy := Zv̄

μa1/μ
v̄

y1/μ−1dy.

If v̄ is of type R, then (av̄,i, 1 � i � Rv̄) are sampled as the points of a mixed Poisson process
on (av̄, 1] with intensity λv̄. We obtain (T , 0) by continuing this process ad infinitum.

Remark 1. When exploring the r-neighbourhood of the uniformly chosen vertex in the PA
tree, the type-L vertices are uncovered via the incoming edge it received from the probed
uniformly chosen vertex or type-L vertices. To account for the size-biasing effect of these
edges, the type-L gamma variables in the π -Pólya point tree thus have a unit increment in the
shape parameter.

We define the total variation distance between two probability distributions ν1 and ν2 as

dTV (ν1, ν2)= inf{P[V �= W] : (V,W) is a coupling of ν1 and ν2}. (1.4)
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When proving the local weak convergence, we couple the random elements (Br(Gn, k0), k0)
and (Br(T , 0), 0) in the space of rooted graphs (modulo isomorphisms) G so that they are
isomorphic with high probability (w.h.p.), thus bounding their total variation distance. In the
main theorem below, we emphasise that the convergence does not take into account the ages
and fitness of the π -Pólya point tree, but they are essential for the graph construction and are
used for the couplings later.

Theorem 1. Suppose that the fitness distribution π is supported on (0, κ] for some κ <∞. Let
Gn ∼ PA(π, X1)n, let k0 be a uniformly chosen vertex in Gn, and let (T , 0) be the π -Pólya point
tree. Then, given r<∞, there is a positive constant C := C(X1, μ, r, κ) such that

dTV (L((Br(Gn, k0), k0)),L((Br(T , 0), 0)) � C( log log n)−χ (1.5)

for all n � 3. This implies that the local weak limit of Gn is the π -Pólya point tree.

Next we state the limiting results for some degree statistics of the PA tree. The connection
of the following results to [4, 7, 20, 25, 30] is discussed in detail later in Section 8, where we
also give the probability mass functions of the limiting distributions. Recall that D(in)

n,j is the
in-degree of vertex j in Gn ∼ PA(π, X1)n. Define the degree of vertex j in Gn as

Dn,j := D(in)
n,j + 1, with D0

n := Dn,k0 , (1.6)

so that D0
n is the degree of the uniformly chosen vertex. Let L(i) be the Ulam–Harris labels

(0, 1, 1, . . . , 1) such that |(0, 1, . . . , 1)| = i + 1, so that kL[i] is the type-L vertex that is exactly
i edges away from k0. Type-L vertices are commonly known as the ancestors of k0 in fringe
tree analysis (see e.g. [21]), where their degrees are often of particular interest. Fixing r ∈N,
let D0

n be as in (1.6) and

Di
n = Dn,kL[i] if kL[i] �= 1 for all 1 � i � r;

and if kL[i] = 1 for some i � r, let

Dj
n = Dn,kL[j] for 1 � j< i and Dj

n = −1 for i � j � r.

As the probability that we see vertex 1 in the r-neighbourhood Br(Gn, k0) tends to zero as
n → ∞, (D0

1, . . . ,Dr
n) can be understood as the joint degree sequence of (k0, kL[1], . . . , kL[r]).

The next result concerning this joint degree sequence follows directly from Theorem 1.

Corollary 1. Retaining the notation above, assume that π is supported on (0, κ] for some κ <
∞. Define U0 ∼ U[0, 1], aL[0] = Uχ

0 , and given aL[i−1], let aL[i] ∼ U
[
0, aL[i−1]

]
for 1 � i � r.

Independently from
(
aL[i], 0 � i � r

)
, let XL[i] be i.i.d. random variables with distribution π ,

and let

ZL[i] ∼
{

Gamma(XL[i], 1) if i = 0,

Gamma(XL[i] + 1, 1) if 1 � i � r.

Writing L[0] = 0, let RL[i] be conditionally independent variables with RL[i] ∼
Po
(

ZL[i]

(
a−1/μ

L[i] − 1
))

. Define R
(r)

:= (R0 + 1, RL[1] + 2, . . . , RL[r] + 2) and D
(r)
n :=(

D0
n,D1

n, . . . ,Dr
n

)
. There is a positive constant C := C(X1, μ, r, κ) such that

dTV

(
L
(

D
(r)
n

))
,L
(
R

(r)))� C( log log n)−χ for all n � 3.
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We now state a convergence result for D0
n in (1.6). In view of Definition 2, the limiting

distribution of D0
n and the convergence rate can be read from Theorem 1. However, the theorem

below holds without the assumption of bounded fitness and has a much sharper rate. The
improvement in the rate can be understood as a consequence of the fact that k0 only needs
to be large enough so that w.h.p. it has a small degree, in contrast to having a small enough
r-neighbourhood for all r<∞, as required when proving Theorem 1. In the interest of article
length, we give the proof of this result only in the supplementary article [24].

Theorem 2. Assume that the pth moment of the distribution π is finite for some p> 4. Let R0 ∼
Po
(

Z0

(
a−1/μ

0 − 1
))

, where given X0 ∼ π , Z0 ∼ Gamma(X0, 1), and independently of Z0, U0 ∼
U[0, 1] and a0 := Uχ

0 . Writing ξ0 = R0 + 1, there are positive constants C := C(X1, μ, p) and
0< d<χ (1/4 − 1/(2p)) such that

dTV

(
L
(
D0

n

)
,L(ξ0)

)
� Cn−d for all n � 1. (1.7)

1.3. Possible extensions and related works

Below we discuss the possible ways of extending Theorem 1, although, to limit the length
of this article, we refrain from pursuing these directions. We also give an overview of recent
developments concerning PA graphs with additive fitness, and collect some results on the local
weak convergence of related PA models.

1.3.1. Possible extensions. The convergence rate in (1.5) roughly follows from the fact that
k0 � n( log log n)−1 with probability at least ( log log n)−1, and on this event, we can couple the
two graphs so that the probability that (Br(Gn, k0), k0) ∼= (Br(T , 0), 0) tends to one as n → ∞.
It is likely possible to improve the rate by optimising this and similar choices of thresholds,
as well as by making the dependence on the radius r explicit by carefully keeping track of the
coupling errors, but with much added technicality.

[10, Theorem 1] established that when Xi = 1 almost surely (a.s.) for all i � 2, the choice
of the seed graph has no effect on the local weak limit. This is because w.h.p., the local neigh-
bourhood does not contain any of the seed vertices. By simply replacing the seed graph in the
proof, we can show that Theorem 1 holds for more general seed graphs. With some straight-
forward modifications to the proof, we can also show that when the fitness is bounded, the
π -Pólya point tree is the local weak limit of the PA trees with self-loops, and when each vertex
in the PA model sends m � 2 outgoing edges, the limit is a variation of the π -Pólya point tree;
see e.g. [4] for the non-random unit fitness case.

By adapting the argument of the recent paper [17], it is possible to show that the weak
convergence in Theorem 1 holds for fitness distributions with finite pth moment for some
p> 1. The convergence rate should be valid for fitness distributions with at least exponen-
tially decaying tails, but the assumption of bounded fitness greatly simplifies the proof. The
i.i.d. assumption is only needed so that the fitness variables that we see in the local neigh-
bourhood are i.i.d., and for applying the standard moment inequality in Lemma 15. Hence,
we believe the theorem to hold at least for a fitness sequence X such that (1) Xi has the
same marginal distribution π for all i � 2, and (2) for some m � 1, the variables in the
collection (Xi, i ∈ A) are independent for any A such that {i, j ∈ A : |i − j|> 2m}. If, in the
limit, the vertex labels in the local neighbourhood are at least 2m apart from each other
w.h.p., then (1) and (2) ensure that these vertices have i.i.d. fitness, while (2) alone may
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be sufficient for proving a suitable analogue of the standard moment inequality, Lemma 15.
The weak convergence in Theorem 1 should hold in probability, meaning that as n → ∞,
1
n

∑n
j=1 1[(Br(Gn, j), j) ∼= (H, v)] → P[(Br(T , 0), 0) ∼= (H, v)]. This convergence is valid in the

case where the initial attractivenesses are equal a.s. [20, Chapter 5], and for certain PA mod-
els where each newly added vertex sends a random number of outgoing edges [17]. For the
PA tree with additive fitness, this could be proved by adapting the ‘second moment’ method
used in [17, 20], which involves establishing that the r-neighbourhoods of two independently,
uniformly chosen vertices in the PA tree are disjoint w.h.p.

1.3.2. Related works. The fitness variables were assumed to be i.i.d. in [5, 22, 25]. In [25], mar-
tingale techniques were used to investigate the maximum degree for fitness distributions with
different tail behaviours; the results are applicable to PA graphs with additive fitness that allow
for multiple edges. The authors also studied the empirical degree distribution (e.d.d.), whose
details we defer to Remark 4. The model is a special case of the PA tree considered in [22],
where vertices are chosen with probability proportional to a suitable function of their fitness
and degree at each attachment step. Using Crump–Mode–Jagers (CMJ) branching processes,
[22] studied the e.d.d. and the condensation phenomenon. The same method was applied in
[5] to investigate the e.d.d., the height, and the degree of the initial vertex, assuming that the
fitnesses are bounded. Note that these articles focused on ‘global’ results, which cannot be
deduced from the local weak limit.

As observed in [36], the model is closely related to the weighted random recursive trees
introduced in [9]. By the Pólya urn representation (Theorem 3 below), the PA tree with addi-
tive fitness can be viewed as a special case of this model class, where the weights of the

vertices are distributed as
(

S(X)
n,j − S(X)

n,j−1, 2 � j � n
)

with S(X)
n,0 = 0 and S(X)

n,n = 1, and with B(X)
j

and S(X)
n,j being the variables Bj and Sn,j in (1.8) and (1.9) mixed over the fitness sequence X.

For weighted random recursive trees, [9] studied the average degree of a fixed vertex and the
distance between a newly added vertex and the initial vertex. The joint degree sequence of
fixed vertices, the height, and the profile were investigated in [36], and a more refined result
on the height was given in [29]. For X a deterministic sequence satisfying a certain growth
condition, [36] and [29] showed that their results are applicable to the corresponding PA tree
with additive fitness.

We now survey the local weak limit results developed for PA graphs. When x1 = 0 and
xi = 1 for all i � 2, the (x, n)-sequential model is the pure ‘sequential’ model in [4] with no
multiple edges, and it is a special case of the model considered in [35], where the ‘weight’
function is the identity function plus one. Using the CMJ embedding method, [35] studied the
asymptotic distribution of the subtree rooted at a uniformly chosen vertex, which implies the
local weak convergence of the PA family considered in that work. The urn representation of
PA models was used in [4], [20, Chapter 5], [16, Chapter 4], and [17] to study local weak
limits. In particular, these works showed that the weak limit of several PA models with non-
random fitness and possibly random out-degrees is a variant of the Pólya point tree [4]. Again
using the CMJ method, it can be shown that the local weak convergence result of [18] for a
certain ‘continuous-time branching process tree’ implies that the PA tree with additive fitness
converges in the directed local weak sense. Finally, a different PA model was considered in
[5, 8, 11, 12], where the probability that a new vertex attaches to an existing vertex is propor-
tional to its fitness times its degree. Currently, there are no results concerning the local weak
convergence of this model class.
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FIGURE 2. An example of the (x, n)-Pólya urn tree for n = 5, where Ui ∼ U
[
0, Sn,i−1

]
for i = 2, . . . , 5

and an outgoing edge is drawn from vertices i to j if Ui ∈ [Sn,j−1, Sn,j
)
.

1.4. Proof overview

1.4.1. Pólya urn representation of the (x, n)-sequential model. In the proof of Theorem 1, the
key ingredient is an alternative definition of the (x, n)-sequential model in Definition 1, which
relies on the fact that the dynamics of PA graphs can be represented as embedded classical
Pólya urns. In a classical Pólya urn initially with a red balls and b black balls, a ball is chosen
randomly from the urn, and is returned to the urn along with a new ball of the same colour. It
is well-known that the a.s. limit of the proportion of red balls has the Beta(a,b) distribution;
see e.g. [27, Theorem 3.2, p.53]. Furthermore, by de Finetti’s theorem (see e.g. [27, Theorem
1.2, p.29]), conditional on β ∼ Beta(a, b), the indicators that a red ball is chosen at each step
are distributed as independent Bernoulli variables with parameter β. In the PA mechanism,
an existing vertex i can be represented by some colour i in an urn, and its weight is given by
the total weight of the balls in the urn. At each urn step, we choose a ball with probability
proportional to its weight, and if vertex i is chosen at some step j> i, we return the chosen
ball, an extra ball of colour i with weight 1, and a ball of new colour j with weight xj to
the urn. Classical Pólya urns are naturally embedded in this multi-colour urn; see [31]. The
attachment steps of the graph can therefore be generated independently when conditioned on
the associated beta variables.

Definition 4. ((x, n)-Pólya urn tree.) Given x and n, let Tj := ∑j
i=1 xi, and

(
Bj, 1 � j � n

)
be

independent random variables such that B1 := 1 and

Bj ∼ Beta
(
xj, j − 1 + Tj−1

)
for 2 � j � n. (1.8)

Moreover, let Sn,0 := 0, Sn,n := 1, and

Sn,j :=
n∏

i=j+1

(1 − Bi) for 1 � j � n − 1. (1.9)

We connect n vertices with labels [n] := {1, . . . , n} as follows. Let Ij =
[
Sn,j−1, Sn,j

)
for 1 �

j � n. Conditionally on
(
Sn,j, 1 � j � n − 1

)
, let (Uj, 2 � j � n) be independent variables such

that Uj ∼ U[0, Sn,j−1]. If j< k and Uk ∈ Ij, we attach an outgoing edge from vertex k to vertex
j. We say that the resulting graph is an (x, n)-Pólya urn tree and denote its law by PU(x)n.

An example of the (x, n)-Pólya urn tree is given in Figure 2. Note that 1 − Bj in Definition 4
is βj−1 in [36]. As we only work with Bj and Sn,j by fixing the sequence x, we omit x from
their notation throughout this article. The (x, n)-Pólya urn tree is related to the (x, n)-sequential
model via the following result of [36].

Theorem 3. ([36, Theorem 1.1].) Let Gn be an (x, n)-Pólya urn tree. Then Gn has the same

law as the (x, n)-sequential model; that is, PU(x)n
d= Seq(x)n.

From now on, we work with the (x, n)-Pólya urn tree in place of the (x, n)-sequential model.
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FIGURE 3. An illustration of the relationship between the Bernoulli sequence on ((k0/n)χ , 1] constructed
using (1[Uj ∈ Ik0 ], k0 + 1 � j � n) and the (x, n)-Pólya urn tree, where k0 is the uniformly chosen vertex,
and Uj and Ik0 are as in Definition 4. We put a point on (j/n)χ if vertex k0 receives the outgoing edge from
vertex j. Here the type-R children of k0 are j1, j2, and j3. The rescaled arrival times ((j/n)χ , k0 + 1 � j � n)
are later used to discretise the mixed Poisson process in the coupling step.

1.4.2. Coupling for the non-random fitness case. When proving Theorem 1, we couple the
(randomised) urn tree and the π -Pólya point tree so that for all positive integers r, the proba-
bility that their r-neighbourhoods are not isomorphic is of order at most ( log log n)−χ . To give
a brief overview of the coupling, below we suppose that Xi = 1 a.s. for i � 2 and only consider
the r = 1 case. We couple the children of the uniformly chosen vertex in the urn tree Gn and
the root in the π -Pólya point tree (T , 0) so that, w.h.p., they have the same number of children,
and the ages and the rescaled arrival times of these children are close enough. Note that for
non-random fitness, the urn tree is simply an alternative definition of the PA tree with additive
fitness. For Gn, we use the terms ‘age’ and ‘rescaled arrival times’ interchangeably.

I. The ages of the roots. As mentioned before, the ages in (T , 0) encode the rescaled arrival
times in Gn. Since, for any vertex in either Gn or (T , 0), the number of its children and the ages
of its children depend heavily on its own age, we need to couple the uniformly chosen vertex
k0 in Gn and the root of (T , 0) so that their ages are close enough.

II. The type-R children and a Bernoulli–Poisson coupling. Using the urn representation in
Definition 4, the ages and the number of the type-R children of vertex k0 can be encoded in a
sequence of conditionally independent Bernoulli variables, where the success probabilities are
given in terms of the variables Bi and Sn,i in (1.8) and (1.9). See Figure 3 for an illustration. To
couple this Bernoulli sequence to a suitable discretisation of the mixed Poisson point process
in Definition 3, we use the beta–gamma algebra and the law of large numbers to approximate
Bi and Sn,i for large enough i. Once we use these estimates to swap the success probabilities
with simpler quantities, we can apply the standard Bernoulli–Poisson coupling.

III. The ages of the type-L children. It is clear that the number of type-L children of vertex
k0 and the number of type-L children of the root of (T , 0) differ only when k0 = 1, which
occurs with probability n−1. To couple their ages so that they are close enough, we use the
estimates for Bi and Sn,i to approximate the distribution of the type-L child of vertex k0. This
completes the coupling of the 1-neighbourhoods. We reiterate that although the closeness of
the ages is not part of the local weak convergence, we need to closely couple the ages of the
children of vertex k0 and of those of the root in (T , 0), as otherwise we cannot couple the
2-neighbourhoods when we prove the theorem for all finite radii.

1.4.3. Random fitness and the general local neighbourhood. Here we summarise the additional
ingredients needed for handling the random fitness and for coupling the neighbourhoods of any
finite radius. When x is a realisation of the fitness sequence X, Bi and Sn,i can be approximated
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in the same way as in the case of non-random fitness if, w.h.p., the sums
∑i

h=2 Xh are close
to (i − 1)μ for all i greater than some suitably chosen function φ(n). As X is i.i.d., we can
apply standard moment inequalities to show that this event occurs w.h.p. The remaining parts
of the coupling are similar to the above. When coupling general r-neighbourhoods, we use
induction over the neighbourhood radius. For any vertex in the neighbourhood other than the
uniformly chosen vertex, the distributions of its degree and the ages of its children cannot
be read from Definition 4, owing to the conditioning effects of the discovered edges in the
breadth-first search that we define later. However, these effects can be quantified when we
work conditionally on the fitness sequence. In particular, their distributions can be deduced
from an urn representation of the (x, n)-sequential model, conditional on the discovered edges.
Consequently, the coupling argument for the root vertex can be applied to these non-root
vertices as well.

1.5. Article outline

The approximation results for Bi and Sn,i in (1.8) and (1.9) are stated in Section 2 and proved
in Section 9. In Section 3, we define the tree exploration process, and we describe the offspring
distributions of the root and of any type-L or type-R parent in the subsequent generations of
the local neighbourhood in the (x, n)-Pólya urn tree, using the complementary result derived in
[24, Section 10]. We also introduce a conditional analogue of the π -Pólya point tree (T , 0) in
Section 4, which we need for coupling the urn tree and (T , 0). We couple the 1-neighbourhoods
in the urn tree and this analogue in Section 5, and their general r-neighbourhoods in Section 6.
In Section 7, to prove Theorem 1, we couple the analogue and (T , 0). Finally, in Section 8 we
discuss in more detail the connection of Corollary 1 and Theorem 2 to the previous works [4,
7, 20, 25].

2. Approximation of the beta and product beta variables

Let Bi and Sn,i be as in (1.8) and (1.9), where we treat x in Bi and Sn,i as a realisation of
the fitness sequence X := (Xi, i � 1). In this section, we state the approximation results for
Bi and Sn,i, assuming that X1 := x1 >−1 is fixed and (Xi, i � 2) are i.i.d. positive variables
with μ := EX2 <∞ andE

[
Xp

2

]
<∞ for some p> 2. These results are later used to derive the

limiting degree distribution of the uniformly chosen vertex of the PA tree and the corresponding
convergence rate, where the fitness is not necessarily bounded (Theorem 2). The proofs of the
upcoming lemmas are deferred to Section 9. For the approximations, we require that w.h.p., X
is such that

∑i
h=2 Xh is close enough to its mean (i − 1)μ for all i sufficiently large. So given

0<α < 1 and n, we define

Aα,n =
{ ∞⋂

i=	φ(n)


{∣∣∣∣∣
i∑

h=2

Xh − (i − 1)μ

∣∣∣∣∣� iα
}}
, (2.1)

where φ(n) =(nχ ), with χ as in (1.2). The first lemma is due to an application of standard
moment inequalities.

Lemma 1. Assume that E
[
Xp

2

]
<∞ for some p> 2. Given a positive integer n and 1/2 +

1/p<α < 1, there is a constant C := C(μ, α, p) such that P[Aα,n] � 1 − Cnχ [−p(α−1/2)+1].

In the remainder of this article, we mostly work with a realisation x of X such that Aα,n
holds, which we denote (abusively) by x ∈ Aα,n. Below we write Px and Ex to indicate the
conditioning on a specific realisation of the fitness sequence x. The next lemma, which extends
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[4, Lemma 3.1], states that Sn,k ≈ (k/n)χ for large enough k and n when x ∈ Aα,n. The proof
relies on the fact that we can replace Ex[Sn,k] with (k/n)χ when x ∈ Aα,n, and approximate
Sn,k with Ex[Sn,k] using a martingale argument. As Aα,n occurs w.h.p., the result allows us to
substitute these Sn,k with (k/n)χ when we construct a coupling for the (x, n)-Pólya urn tree
(Definition 4).

Lemma 2. Given a positive integer n and 1/2<α < 1, assume that x ∈ Aα,n. Then there are
positive constants C := C(x1, μ, α) and c := c(x1, μ, α) such that

Px

[
max

	φ(n)
�k�n

∣∣∣∣Sn,k −
(

k

n

)χ ∣∣∣∣� δn

]
� 1 − εn, (2.2)

where φ(n) =(nχ ), δn := Cn−χ (1−α)/4, and εn := cn−χ (1−α)/2.

Remark 2. For vertices whose arrival time is of order at most nχ , the upper bound δn in
Lemma 2 is meaningful only when χ > (α+ 3)/4, as otherwise δn is of order greater than
(k/n)χ . However, the bound is still useful for studying the local weak limit of the PA tree, as
w.h.p. we do not see vertices with arrival times that are o(n) in the local neighbourhood of the
uniformly chosen vertex.

The last lemma is an extension of [4, Lemma 3.2]. It says that on the event Aα,n, we can con-
struct the urn tree by generating suitable gamma variables in place of Bj in (1.8). These gamma
variables are comparable to Zv̄ in the construction of the π -Pólya point tree (Definition 3),
after assigning Ulam–Harris labels to the vertices of the urn tree. To state the result, we
recall a distributional identity. Independently of Bj, let

((
Zj, Z̃j−1

)
, 2 � j � n

)
be condition-

ally independent variables such that Zj ∼ Gamma(xj, 1) and Z̃j ∼ Gamma(Tj + j, 1), where

Tj := ∑j
i=1 xi. Then by the beta–gamma algebra (see e.g. [26]),

(
Bj, Z̃j−1 +Zj

)
=d

(
Zj

Zj + Z̃j−1
, Z̃j−1 +Zj

)
for 2 � j � n,

where the two random variables on the right-hand side are independent. Using the law of large
numbers, we prove the following.

Lemma 3. Given a positive integer n and 1/2<α < 3/4, let Zj and Z̃j be as above. Define
the event

Eε,j :=
{∣∣∣∣∣ Zj

Zj + Z̃j−1
− Zj

(μ+ 1)j

∣∣∣∣∣� Zj

(μ+ 1)j
ε

}
for 2 � j � n. (2.3)

When x ∈ Aα,n, there is a positive constant C := C(x1, α, μ) such that

Px

[
n⋂

j=	φ(n)

Eε,j

]
� 1 − C(1 + ε)4ε−4nχ (4α−3), (2.4)

where φ(n) =(nχ ). In addition,

Px

[
n⋂

j=	φ(n)


{
Zj � j1/2

}]
� 1 −

n∑
j=	φ(n)


j−2
3∏
�=0

(xj + �), (2.5)
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and if xi ∈ (0, κ] for all i � 2, then there is a positive constant C such that

Px

[
n⋂

j=	φ(n)


{
Zj � j1/2

}]
� 1 − Cκ4n−χ . (2.6)

3. Offspring distributions of the type-L and type-R parents in the urn tree

Recall that a vertex in the local neighbourhood of the uniformly chosen vertex k0 in the
PA tree is a type-L parent if it lies on the path from the uniformly chosen vertex to the initial
vertex; otherwise it is a type-R parent. In this section, we state two main lemmas for the (x, n)-
Pólya urn tree (Definition 4). In Lemma 5, for the root k0 or any type-L or type-R parent in
the subsequent generations of the local neighbourhood, we encode its type-R children in a
suitable Bernoulli sequence that we introduce later. In Lemma 6, we construct the distribution
of the type-L children of the uniformly chosen vertex and any type-L parent in the subsequent
generations. For vertex k0, these results follow immediately from the urn representation in
Definition 4 and Theorem 3. For the non-root vertices, these lemmas cannot be deduced from
Definition 4. Instead, we need an urn representation that accounts for the conditioning effects
of the edges uncovered in the neighbourhood exploration. For more detail on this variant, we
refer to the supplementary article [24, Section 10].

3.1. Breadth-first search

To construct the offspring distributions, we need to keep track of the vertices that we dis-
cover in the local neighbourhood. For this purpose, we have to precisely define the exploration
process. We start with a definition.

Definition 5. (Breadth-first order.) Write w̄<UH ȳ if the Ulam–Harris label w̄ is smaller than
ȳ in the breadth-first order. This means that either |w̄|< |ȳ|, or when w̄ = (0,w1, . . . ,wq) and
ȳ = (0, v1, . . . , vq), wj < vj for j = min{l : vl �= wl}. If w̄ is either smaller than or equal to ȳ in
the breadth-first order, then we write w̄ �UH ȳ.

As examples, we have (0, 2, 3)<UH (0, 1, 1, 1) and (0, 3, 1, 5)<UH (0, 3, 4, 2). We run a
breadth-first search on the (x, n)-Pólya urn tree Gn as follows.

Definition 6. (Breadth-first search (BFS).) A BFS of Gn splits the vertex set V(Gn) = [n] into
the random subsets (At,Pt,Nt)t�0 as follows, where the letters respectively stand for active,
probed, and neutral. We initialise the search with

(A0,P0,N0) = ({k0},∅, V(Gn) \ {k0}),
where k0 is uniform in [n]. Given (At−1,Pt−1,Nt−1), where each vertex in At−1 ∪Pt−1
already receives an additional Ulam–Harris label of the form w̄, (At,Pt,Nt) is generated
as follows. Let v[1] = k0, and let v[t] ∈N be the vertex in At−1 that is the smallest in the
breadth-first order:

v[t] = kȳ ∈At−1 if ȳ<UH w̄ for all kw̄ ∈At−1 \ {kȳ}. (3.1)

Note that the Ulam–Harris labels appear as subscripts. Denote by Dt the set of vertices in Nt−1
that either receive an incoming edge from v[t] or send an outgoing edge to v[t]:

Dt := {j ∈Nt−1 : {j, v[t]} or {v[t], j} ∈ E(Gn)},
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where {i, j} is the edge directed from vertex j to vertex i< j. Then in the tth exploration step,
we probe vertex v[t] by marking the neutral vertices attached to v[t] as active. That is,

(At,Pt,Nt) = (At−1 \ {v[t]} ∪Dt,Pt−1 ∪ {v[t]},Nt−1 \Dt), (3.2)

and if v[t] = kȳ, we use the Ulam–Harris scheme to label the newly active vertices as kȳ,j :=
k(ȳ,j), j ∈N, in increasing order of their vertex arrival times, so that kȳ,i < kȳ,j for any i< j. If
At−1 =∅, we set (At,Pt,Nt) = (At−1,Pt−1,Nt−1).

The characterisation of the BFS above is standard, and more details can be found in works
such as [19, Chapter 4] and [23]. The vertex labelling v[t] is very useful for the construction
here, as the offspring distribution of v[t] depends on the vertex partition (At−1,Pt−1,Nt−1),
whereas the vertex arrival times are helpful for identifying a type-L vertex in the BFS (see
Lemma 4 below) and constructing the offspring distributions. On the other hand, we shall use
the Ulam–Harris labels to match the vertices when we couple Gn and in the π -Pólya point tree
(Definition 3). Hereafter we ignore the possibility that v[t] = 1, because when t (or equivalently
the number of discovered vertices) is not too large, the probability that v[t] = o(n) tends to zero
as n → ∞. For t � 1, let v(op)[t] (resp. v(oa)[t]) be the vertex in Pt−1 (resp. At−1) that has the
earliest arrival time, where op and oa stand for oldest probed and oldest active. That is,

v(op)[t] := min{j : j ∈Pt−1} and v(oa)[t] := min{j : j ∈At−1}. (3.3)

3.2. Construction of the offspring distributions

To distinguish the urn tree Gn from the other models, we apply Ulam–Harris labels of the
form k(u)

ȳ to its vertices; the superscript (u) stands for ‘urn’. An example is given in Figure 4.
Define

R(u)
ȳ = the number of type-R children of k(u)

ȳ in the (x, n)-Pólya urn tree, (3.4)

noting that R(u)
0 is the in-degree of the uniformly chosen vertex k(u)

0 in Gn. Before we proceed
further, we prove a simple lemma to help us identify when v[t] in (3.1) is a type-L vertex, which
will be useful for constructing the offspring distributions later. The result can be understood
as a consequence of the facts that in the tree setting, we uncover a new active type-L vertex
immediately after we probe an active type-L vertex, and that the oldest probed vertex cannot
be rediscovered as a child of another type-R vertex in the subsequent explorations.

Lemma 4. Assume that At−1 ∪Pt−1 does not contain vertex 1. If t = 2, then v(op)[2] = k(u)
0 and

v(oa)[2] = k(u)
0,1, while if 2< i � t, then v(op)[i] and v(oa)[i] are type-L children, where v(oa)[i] is

the only type-L child in Ai−1, and it receives an incoming edge from v(op)[i].

Proof. We prove the lemma by induction on 2 � i � t. The base case is clear, since
P1 = {k(u)

0

}
and A1 consists of its type-L and type-R children. Assume that the lemma holds

for some 2 � i< t. If we probe a type-L child at time i, then v[i] = v(oa)[i], and there is a ver-
tex u ∈Ni−1 that receives the incoming edge emanating from v[i]. Hence, vertex u belongs
to type L and v(oa)[i + 1] = u. Furthermore, v(op)[i + 1] = v[i], as v(op)[i] sends an outgoing
edge to v[i] by assumption, implying v[i]< v(op)[i]. If we probe a type-R vertex at time i, then
v[i]> v(oa)[i] and we uncover vertices in Ni−1 that have later arrival times than v[i]. Setting
Pi =Pi−1 ∪ {v[i]}, we have v(op)[i + 1] = v(op)[i] and v(oa)[i + 1] = v(oa)[i], which are of
type L. �
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FIGURE 4. Each level corresponds to each time step of the BFS (x, n)-Pólya urn tree Gn. The vertices are
arranged from left to right in increasing order of their arrival times. The small and large dots correspond to
the probed and active vertices, respectively. The densely dotted path joins the uniformly chosen vertex and

the discovered type-L vertices. Here, P3 =
{

k(u)
0 , k(u)

0,1, k(u)
0,2

}
, A3 =

{
k(u)

0,3, k(u)
0,1,1, k(u)

0,1,2, k(u)
0,1,3, k(u)

0,2,1

}
,

v[4] = k(u)
0,3, v(op)[4] = k(u)

0,1, and v(oa)[4] = k(u)
0,1,1.

To construct the offspring distributions for each parent in the local neighbourhood, we also
need to define some notation and variables. Let E0 =∅, and for t � 1, let Et be the set of edges
connecting the vertices in At ∪Pt. Given a positive integer m, denote the set of vertices and
edges in Pt and Et whose arrival time in Gn is earlier than that of vertex m by

Pt,m =Pt ∩ [m − 1] and Et,m = {{h, i} ∈ Et : i<m}, (3.5)

noting that {h, i} is the edge directed from i to h< i, and (A0,P0,N0) = ({k0},∅, V(Gn) \
{k0}) and E0 =∅. Below we use [t] in the notation to indicate the exploration step, and omit x
for simplicity. Let

((
Zi[t], Z̃i[t]

)
, 2 � i � n, i �∈Pt−1

)
be independent variables, where

Zi[1] ∼ Gamma(xi, 1) and Z̃i[1] ∼ Gamma(Ti−1 + i − 1, 1), (3.6)

with Ti := ∑i
j=1 xj. Now, suppose that t � 2. Because of the size-bias effect of the edge

{v(op)[t], v(oa)[t]} ∈ Et−1, we define

Zi[t] ∼ Gamma
(
xi + 1

[
i = v(oa)[t]

]
, 1
)
, i ∈At−1 ∪Nt−1, (3.7)

so that the initial attractiveness of the type-L child v(oa)[t] is xv(oa)[t] + 1. The shape parameter
of Z̃i[t] defined below is the total weight of the vertices in At−1 ∪Nt−1 whose arrival time is
earlier than the ith time step. This is because when a new vertex is added to the (x, n)-sequential
model conditional on having the edges Et−1, the recipient of its outgoing edge cannot be a
vertex in Pt−1, and it is chosen with probability proportional to the current weights of the
vertices in At−1 ∪Nt−1 that arrive before the new vertex. Hence, define

Z̃i[t] ∼

⎧⎪⎪⎨⎪⎪⎩
Gamma(Ti−1 + i − 1, 1), if 2 � i � v(oa)[t];

Gamma(Ti−1 + i, 1), if v(oa)[t]< i< v(op)[t];

Gamma
(

Ti−1 + i −∑h∈Pt−1,i
xh − |Et−1,i|, 1

)
, if v(op)[t]< i � n.

(3.8)
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Let B1[t] := 1 and Bi[t] := 0 for i ∈Pt−1, as the edges attached to Pt−1 are already determined.
Furthermore, define

Bi[t] := Zi[t]

Zi[t] + Z̃i[t]
for i ∈At−1 ∪Nt−1. (3.9)

Let Sn,0[t] := 0, Sn,n[t] := 1, and

Sn,i[t] :=
n∏

j=i+1

(
1 − Bj[t]

)= n∏
j=i+1;j �∈Pt−1

(
1 − Bj[t]

)
for 1 � i � n − 1, (3.10)

where the second equality is true because Bi[t] = 0 for i ∈Pt−1. Observe that by the beta–
gamma algebra, (Bi[1], 1 � i � n) =d (Bi, 1 � i � n) and (Sn,i[1], 1 � i � n) =d (Sn,i, 1 � i �
n), where Bi and Sn,i are as in (1.8) and (1.9). For t � 2, (Bi[t], 1 � i � n) are the beta vari-
ables in the urn representation of the (x, n)-sequential model, conditional on having the edges
Et−1; see [24, Section 10] for details. We construct a Bernoulli sequence that encodes the
type-R children of vertex v[t] as follows. For j ∈Nt−1 and v[t] + 1 � j � n, let 1R[j → v[t]]
be an indicator variable that takes value one if and only if vertex j sends an outgoing edge to
v[t]; for j �∈Nt−1, let 1R[j → v[t]] = 0 with probability one, since the recipient of the incom-
ing edge from vertex j is already in Pt−1. Note that if v[t] = k(u)

ȳ , then R(u)
ȳ in (3.4) is equal

to
∑n

j=v[t]+1 1R[j → v[t]]. We also assume Nt−1 �=∅, because for large n, w.h.p. the local
neighbourhood of vertex k0 does not contain all the vertices of Gn. To state the distribution of
(1R[j → v[t]], v[t] + 1 � j � n), we use (3.9) and (3.10) to define

Pj→v[t] :=
⎧⎨⎩

Sn,v[t][t]
Sn,j−1[t] Bv[t][t], if j ∈ {v[t] + 1, . . . , n} ∩Nt−1;

0, if j ∈ {v[t] + 1, . . . , n} \Nt−1.
(3.11)

Definition 7. Given (At−1,Pt−1,Nt−1) and (Bj[t], v[t] � j � n), let Yj→v[t], v[t] + 1 � j � n
be conditionally independent Bernoulli variables, each with parameter Pj→v[t]. Define this
Bernoulli sequence by the random vector

Y(v[t],n)
Be := (Y(v[t]+1)→v[t], Y(v[t]+2)→v[t], . . . , Yn→v[t]

)
.

With the preparations above, we are ready to state the main results of this section. For t � 2,
the following lemmas are immediate consequences of the urn representation of the (x, n)-
sequential model conditional on the discovered edges; see [24, Section 10]. For t = 1, they
follow directly from Theorem 3. The first lemma states that we can encode the type-R children
of the uniformly chosen vertex (the root) or a non-root parent in the local neighbourhood in a
Bernoulli sequence; see Figure 3 in the case of the root.

Lemma 5. Assume that Nt−1 �=∅ and At−1 ∪Pt−1 does not contain vertex 1. Then given(
At−1,Pt−1,Nt−1

)
, the random vector

(
1R[j → v[t]], v[t] + 1 � j � n

)
is distributed as

Y(v[t],n)
Be .

Remark 3. When |Et−1| = o(n) for some t � 2, Pj→v[t] in (3.11) is approximately distributed
as
(
Sn,v[t]/Sn,j−1

)
Bv[t] for n sufficiently large, with Bj and Sn,j as in (1.8) and (1.9). As we shall

see later in the proof, |Et−1| = o(n) indeed occurs w.h.p.
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The next lemma states that when v[t] is the uniformly chosen vertex or a type-L parent, we
can use the beta variables in (3.9) to obtain the distribution of the type-L child of v[t]. Observe
that (Bj[t], 2 � j � v[t] − 1) does not appear in Definition 7, but is required for this purpose.

Lemma 6. Assume that Nt−1 �=∅, At−1 ∪Pt−1 does not contain vertex 1, and v[t] is either
the uniformly chosen vertex or of type L. Given (At−1,Pt−1,Nt−1), let Sn,j[t] be as in (3.10),
and U ∼ U[0, Sn,v[t]−1[t]]. For 1 � j � v[t] − 1, the probability that vertex j receives the only
incoming edge from v[t] is given by the probability that Sn,j−1[t] � U < Sn,j[t].

4. An intermediate tree for graph couplings

As the π -Pólya point tree (T , 0) in Definition 3 does not have vertex labels that are compa-
rable to the vertex arrival times of the (x, n)-Pólya urn tree Gn, we define a suitable conditional
analogue of the π -Pólya point tree. We call this analogue the intermediate Pólya point tree
(Tx,n, 0), where vertex 0 is its root, and the subscripts are the parameters corresponding to x
and n of Gn. All the variables of (Tx,n, 0) have the superscript (i) (for ‘intermediate’). Each ver-
tex of (Tx,n, 0) has an Ulam–Harris label v̄, an age a(i)

v̄ , and a type (except for the root), which
are defined similarly as in Section 1.2 for (T , 0). Moreover, vertex v̄ has an additional PA label
k(i)

v̄ , which determines its initial attractiveness by taking x
k(i)

v̄
. The distributions of the PA labels

are constructed using gamma variables similar to (3.6), (3.7), and (3.8), and as we remark after
the definition, the k(i)

v̄ are approximately distributed as the vertices (or equivalently the arrival

times) k(u)
v̄ in the local neighbourhood in Gn. Define

R(i)
v̄ = the number of type-R children of vertex v̄ in (Tx,n, 0), (4.1)

which is analogous to Rv̄ in (1.3) and R(u)
v̄ in (3.4). Finally, recall χ in (1.2) and w̄ �UH v̄

whenever the Ulam–Harris label w̄ is smaller than v̄ in the breadth-first order (Definition 5).

Definition 8. (Intermediate Pólya point tree.) Given n and x, (Tx,n, 0) is constructed recur-
sively as follows. The root 0 has an age a(i)

0 = Uχ
0 and an initial attractiveness x

k(i)
0

, where

U0 ∼ U[0, 1] and k(i)
0 = 	nU0
. Assume that

((
a(i)

w̄ , k(i)
w̄

)
, w̄ �UH v̄

)
and
((

R(i)
w̄ , a(i)

w̄,j, k(i)
w̄,j

)
,

w̄<UH v̄
)

have been generated, so that k(i)
w̄ > 1 for w̄ �UH v̄. If vertex v̄ is the root or belongs

to type L, we generate
((

a(i)
v̄,j, k(i)

v̄,j

)
, 1 � j � 1 + R(i)

v̄

)
as follows:

1. We sample the age of its type-L child (v̄, 1) by letting Uv̄,1 ∼ U[0, 1] and a(i)
v̄,1 = a(i)

v̄ Uv̄,1.

2. Next we choose the PA label k(i)
v̄,1. Suppose that t = |{w̄ : w̄ �UH v̄}|, so that t = 1 if v̄ =

0. We define the conditionally independent variables
((

Z (i)
j [t], Z̃ (i)

j [t]
)
, 2 � j � n, j �∈{

k(i)
w̄ : w̄<UH v̄

})
as follows. Let Tj := ∑j

�=1 x�. When v̄ = 0, let

Z (i)
j [1] ∼ Gamma(xj, 1) and Z̃ (i)

j [1] ∼ Gamma(Tj−1 + j − 1, 1);

when v̄ = (0, 1, 1, . . . , 1), let Z (i)
j [t] ∼ Gamma

(
xj + 1[j = k(i)

v̄ ], 1
)
, and

Z̃ (i)
j [t] ∼

⎧⎪⎨⎪⎩
Gamma(Tj−1 + j − 1, 1), 2 � j � k(i)

v̄ ,

Gamma(Tj−1 + j, 1), k(i)
v̄ < j< k(i)

v̄′ ,

Gamma
(
Tj−1 + j + 1 − |v̄| − Wv̄,j, 1

)
, k(i)

v̄′ < j � n,
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where
Wv̄,j :=

∑{
k(i)

w̄ <j:w̄<UHv̄
}
{

x
k(i)

w̄
+ R(i)

w̄

}
,

and v̄′ = (0, 1, 1, . . . , 1) with |v̄′| = |v̄| − 1. For either the root or the type-L parent,
define B(i)

1 [t] := 1, B(i)
j [t] := 0 for j ∈ {k(i)

w̄ : w̄<UH v̄
}

and

B(i)
j [t] := Z (i)

j [t]

Z (i)
j [t] + Z̃ (i)

j [t]
for j ∈ [n] \ {k(i)

w̄ : w̄<UH v̄
}
; (4.2)

then let S(i)
n,0[t] := 0, S(i)

n,n[t] := 1, and S(i)
n,j[t] := ∏n

�=j+1

(
1 − B(i)

� [t]
)

for 1 � j � n − 1.

Momentarily define b := k(i)
v̄ and c := k(i)

v̄,1; we choose the PA label c so that S(i)
n,c−1[t] �

Uv̄,1S(i)
n,b−1[t]< S(i)

n,c[t].

3. We generate the ages and the PA labels of the type-R children. Let
(

a(i)
v̄,j, 2 � j � 1 +

R(i)
v̄

)
be the points of a mixed Poisson process on

(
a(i)

v̄ , 1
]

with intensity

λ
(i)
v̄ (y)dy := Z (i)

b [t]

μ
(
a(i)

v̄

)1/μ y1/μ−1dy. (4.3)

Then choose k(i)
v̄,j, 2 � j � 1 + R(i)

v̄ , such that((
k(i)

v̄,j − 1
)
/n
)χ
< a(i)

v̄,j �
(
k(i)

v̄,j/n
)χ . (4.4)

If v̄ is of type R, let Zb[t] ∼ Gamma(xb, 1) and apply Step 3 only to obtain
((

a(i)
v̄,j, k(i)

v̄,j

)
, 1 �

j � R(i)
v̄

)
. We build (Tx,n, 0) by iterating this process, and terminate the construction whenever

there is some vertex v̄ such that b = 1.

We now discuss the distributions of the PA labels above. Clearly, k(i)
0 is uniform in [n].

Observe that t above is essentially the number of breadth-first exploration steps in (Tx,n, 0),
starting from the root 0. Suppose that we have completed t − 1 exploration steps in Gn, starting
from its uniformly chosen vertex k(u)

0 , and the resulting neighbourhood is coupled to that of ver-

tex 0 ∈ V((Tx,n, 0)) so that they are isomorphic and k(i)
w̄ = k(u)

w̄ for all w̄ in the neighbourhoods.

If v[t] = k(u)
v̄ , a moment’s thought shows that the total weight of the vertices

{
k(i)

w̄ < j : w̄<UH v̄
}

and the vertex set Pt−1,j satisfy

Wv̄,j + |v̄| − 1 =
∑

h∈Pt−1,j

xh + |Et−1,j|,

where Pt−1,j and Et−1,j are as in (3.5). Hence, recalling the gammas in (3.7) and (3.8), it follows

that Zj[t] =d Z (i)
j [t] and Z̃j[t] =d Z̃ (i)

j [t] for any j. So by Lemma 6, k(i)
v̄ =d k(u)

v̄ if v̄ is a type-L

child. However, k(i)
v̄ is only approximately distributed as k(u)

v̄ if v̄ is of type R. The discretised
Poisson point process that generates these PA labels will be coupled to the Bernoulli sequence
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in Lemma 5 that encodes the type-R children of k(u)
v̄ . When k(i)

v̄ = 1, it must be the case that

v̄ = 0 or v̄ = (0, 1, . . . , 1). We stop the construction in this case to avoid an ill-defined Z (i)
1 [t]

when −1< x1 � 0 and k(i)
0 = 1, and also because vertex 1 cannot have a type-L neighbour,

so Steps 1 and 2 are unnecessary in this case. Nevertheless, for r<∞ and any vertex v̄ in
the r-neighbourhood of vertex 0 ∈ V((Tx,n, 0)), the probability that k(i)

v̄ = 1 tends to zero as
n → ∞.

5. Proof of the base case

Recall that, as in Section 3.2, k(u)
v̄ are the vertices in the local neighbourhood of the uni-

formly chosen vertex k(u)
0 of the (x, n)-Pólya urn tree Gn in Definition 4. Let χ be as in

(1.2), and let (Tx,n, 0) be the intermediate Pólya point tree in Definition 8, with k(i)
v̄ and a(i)

v̄

being the PA label and the age of vertex v̄ in the tree. Here, we couple
(
Gn, k(u)

0

)
and (Tx,n, 0)

so that with probability tending to one, (B1
(
Gn, k(u)

0

)
, k(u)

0 ) ∼= (B1(Tx,n, 0), 0),
(
k(u)

0,j/n
)χ ≈ a(i)

0,j,

and k(u)
0,j = k(i)

0,j. For convenience, we also refer to the rescaled arrival time (k/n)χ of vertex k

in Gn simply as its age. Let U0 ∼ U[0, 1], a(i)
0 = Uχ

0 , and k(u)
0 = 	nU0
, where a(i)

0 is the age of

vertex 0. By a direct comparison to Definition 8, a(i)
0 ≈ (k(u)

0 /n
)χ and the initial attractiveness

of vertex 0 is x
k(u)

0
. Under this coupling we define the event

H1,0 = {a(i)
0 > ( log log n)−χ

}
, (5.1)

which guarantees that we choose a vertex of low degree in Gn. To prepare for the cou-
pling, let

((
Zj[1], Z̃j[1]

)
, 2 � j � n

)
and

(
Sn,j[1], 1 � j � n

)
be as in (3.6) and (3.10). We

use
(
Sn,j[1], 1 � j � n

)
to construct the distribution of the type-R children of k(u)

0 , and for
sampling the initial attractiveness of vertex (0, 1) ∈ V((Tx,n, 0)). Furthermore, let the ages(

a(i)
0,j, 1 � j � 1 + R(i)

0

)
and R(u)

0 be as in Definition 8 and (3.4). Below we define a coupling of(
Gn, k(u)

0

)
and (Tx,n, 0), and for this coupling we define the events that the children of k(u)

0 have
low degrees, the 1-neighbourhoods are isomorphic and of size at most ( log n)1/r, and the ages
are close enough as

H1,1 =
{

a(i)
0,1 > ( log log n)−2χ

}
,

H1,2 =
{

R(u)
0 = R(i)

0 , for v̄ ∈ V(B1(Tx,n, 0)), k(u)
v̄ = k(i)

v̄ ,

∣∣∣∣a(i)
v̄ −

(
k(u)

v̄

n

)χ ∣∣∣∣� C1b(n)

}
,

H1,3 =
{

R(i)
0 < ( log n)1/r

}
, (5.2)

where R(i)
0 and R(u)

0 are as in (3.4) and (4.1), b(n) := n− χ
12 ( log log n)χ , and C1 := C1(x1, μ)

will be chosen in the proof of Lemma 8 below. Because the initial attractivenesses of the ver-
tices (0,j) and k(u)

0,j match and their ages are close enough on the event H1,2, we can couple
the Bernoulli and the mixed Poisson sequences that encode their type-R children, and hence
the 2-neighbourhoods. The event H1,1 ensures that the local neighbourhood of k(u)

0 grows
slowly, and on the event H1,3, the number of vertex pairs that we need to couple for the 2-
neighbourhoods is not too large. So by a union bound argument, the probability that any of the
subsequent couplings fail tends to zero as n → ∞. The aim of this section is to show that when

https://doi.org/10.1017/apr.2023.54 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.54


Local weak limit of PA trees with additive fitness 803

∑j
i=2 xi ≈ (j − 1)μ for all j sufficiently large, we can couple the two graphs so that

⋂3
i=0 H1,i

occurs w.h.p. Thus, let An := A2/3,n be as in (2.1) with α= 2/3; this α is chosen to simplify the
calculation, and can be chosen under the assumption of bounded fitness. Recall that Px indi-
cates the conditioning on a specific realisation of the fitness sequence x. The main result is the
lemma below; it serves as the base case when we inductively prove an analogous result for the
general radius r<∞. Because B1(Tx,n, 0) approximately distributes as the 1-neighbourhood
of the π -Pólya point tree after randomisation of x, and Lemma 1 says that P[Ac

n] = O
(
n−b
)

for
some b> 0, it follows from the lemma below and (1.4) that (1.5) of Theorem 1 holds for r = 1.

Lemma 7. Assume that xj ∈ (0, κ] for j � 2 and x ∈ An. Let H1,j, j = 0, . . . , 3, be as in (5.1)

and (5.2). Then there is a coupling of
(
Gn, k(u)

0

)
and (Tx,n, 0), with a positive constant C :=

C(x1, μ, κ) such that

Px

[(
3⋂

j=0

H1,j

)c]
� C( log log n)−χ for all n � 3. (5.3)

The proof of Lemma 7 consists of several lemmas, which we now develop. From the defi-
nitions of a(i)

0 and a(i)
0,1, it is obvious that the probabilities of the events H1,0 and H1,1 tend to

one as n → ∞, and by Chebyshev’s inequality, we can show that this is also true for the event
H1,3. We take care of H1,2 in the lemma below, whose proof is the core of this section.

Lemma 8. Retaining the assumptions and the notation of Lemma 7, there is a coupling of(
Gn, k(u)

0

)
and (Tx,n, 0), with a positive constant C := C(x1, μ, κ) such that

Px
[
H1,0 ∩H1,1 ∩Hc

1,2

]
� Cn−β ( log log n)1−χ for all n � 3,

where 0< γ <χ/12 and β = min{χ/3 − 4γ, γ }.
Given that the vertices k(u)

0 ∈ V
((

Gn, k(u)
0

))
and 0 ∈ V((Tx,n, 0)) are coupled, we prove

Lemma 8 as follows. Note that v[1] = k(u)
0 , where v[t] is as in (3.1). We first couple Y(v[1],n)

Be in
Definition 7 and a discretisation of the mixed Poisson process that encodes the ages and the PA
labels that are of type R. Then we couple the type-L vertices k(u)

0,1 and (0, 1) ∈ V((Tx,n, 0)) so

that on the event H1,0 ∩H1,1, we have k(i)
0,1 = k(u)

0,1 and
(
k(u)

0,1/n
)χ ≈ a(i)

0,1 w.h.p. For the means
of the discretised Poisson process, we define

λ
[1]
v[1]+1 :=

∫ ( v[1]+1
n

)χ
a(i)

0

Zv[1][1](
a(i)

0

)1/μ
μ

y1/μ−1dy and λ
[1]
j :=

∫ ( j
n

)χ
(

j−1
n

)χ Zv[1][1](
a(i)

0

)1/μ
μ

y1/μ−1dy

(5.4)

for v[1] + 2 � j � n, where Zv[1][1] is the gamma variable in (3.6).

Definition 9. Given v[1] = k(u)
0 , a(i)

0 , and Zv[1][1], let Vj→v[1], v[1] + 1 � j � n, be conditionally

independent Poisson random variables, each with parameter λ[1]
j as in (5.4). Define this Poisson

sequence by the random vector

V(v[1],n)
Po := (V(v[1]+1)→v[1], V(v[1]+2)→v[1], . . . , Vn→v[1]

)
.

Next, we define the events that ensure that Pj→v[1] is close enough to λ[1]
j . Let φ(n) =(nχ ),

and let C� := C�(x1, μ) be a positive constant such that (2.2) of Lemma 2 holds with δn =
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C�n− χ
12 . Let Zj[1], Bj[1], and Sj[1] be as in (3.6), (3.9), and (3.10). Given 0< γ <χ/12,

define the events

F1,1 =
{

max
	φ(n)
�j�n

∣∣∣∣Sn,j[1] −
(

j

n

)χ ∣∣∣∣� C�n− χ
12

}
,

F1,2 =
n⋂

j=	φ(n)


{∣∣∣∣Bj[1] − Zj[1]

(μ+ 1)j

∣∣∣∣� Zj[1]n−γ

(μ+ 1)j

}
,

F1,3 =
n⋂

j=	φ(n)


{
Zj[1] � j1/2

}
.

(5.5)

The next lemma is the major step towards proving Lemma 8, as it implies that we can couple
the ages and the initial attractivenesses of the type-R children of the uniformly chosen vertex
k(u)

0 := v[1] ∈ V
(
Gn, k(u)

0

)
and those of the root 0 ∈ V(Tx,n, 0).

Lemma 9. Retaining the assumptions and the notation in Lemma 8, let Y(v[1],n)
Be and V(v[1],n)

Po
be as in Definitions 7 and 9, and let F1,i, i = 1, 2, 3, be as in (5.5). Then we can couple the
random vectors so that there is a positive constant C := C(x1, μ, κ) such that

Px

[{
Y(v[1],n)

Be �= V(v[1],n)
Po

}
∩

3⋂
i=1

F1,i ∩H1,0

]
� Cn−γ ( log log n)1−χ for all n � 3.

Sketch of proof. We summarise the proof here and defer the details to [24]. On the event
F1,1 ∩ F1,2 ∩H1,0, a little calculation shows that the Bernoulli success probability Pj→v[1] in
(3.11) is close enough to

P̂j→v[1] :=
(

v[1]

j

)χ Zv[1][1]

(μ+ 1)v[1]
, (5.6)

while the event F1,3 ensures that P̂j→v[1] � 1. The Poisson mean λ
[1]
j ≈ P̂j→v[1] as a(i)

0 ≈
(v[1]/n)χ . Hence, we use P̂j→v[1] in (5.6) as means of constructing two intermediate Bernoulli
and Poisson random vectors, and then explicitly couple the four processes. It is enough to con-
sider the coupling under the event

⋂3
j=1 F1,j ∩H1,0, because when x ∈ An, Lemmas 2 and 3

imply that F1,1, F1,2, and F1,3 occur with probability tending to one as n → ∞. �

Below we use Lemmas 2, 3, and 9 to prove Lemma 8.

Proof of Lemma 8. We bound the right-hand side of

Px
[
Hc

1,2 ∩H1,1 ∩H1,0
]

� Px

[
3⋂

j=1

F1,j ∩
1⋂

j=0

H1,j ∩Hc
1,2

]
+ Px

[(
3⋂

j=1

F1,j

)c]

� Px

[
3⋂

j=1

F1,j ∩
1⋂

j=0

H1,j ∩Hc
1,2

]
+ Px

[
Fc

1,3

]+ Px
[
Fc

1,2

]+ Px
[
Fc

1,1

]
, (5.7)
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under a suitable coupling of
(
Gn, k(u)

0

)
and (Tx,n, 0). We start by handling the last three terms.

First, apply (2.6) of Lemma 3 to obtain

Px
[
Fc

1,3

]= Px

[
n⋃

j=φ(n)

{
Zj[1] � j1/2

}]
� Cκ4n−χ , (5.8)

where C is a positive constant. Since x ∈ An, we can apply (2.4) of Lemma 3 (with ε= n−γ ,
0< γ <χ/12, and α= 2/3) and Lemma 2 to deduce that

Px
[
Fc

1,2

]= Px

[
n⋃

j=	φ(n)


{∣∣∣∣Bj[1] − Zj[1]

(μ+ 1)j

∣∣∣∣� Zj[1]n−γ

(μ+ 1)j

} ]
� Cn4γ− χ

3 ,

Px
[
Fc

1,1

]
� Px

[
max

	φ(n)
�k�n

∣∣∣∣Sn,k[1] −
(

k

n

)χ ∣∣∣∣� C�n− χ
12

]
� cn− χ

6 , (5.9)

where C := C(x1, γ, μ) and c := c(x1, μ). Note that Px
[
Fc

1,2

]→ 0 as n → ∞ thanks to
our choice of γ . Next, we give the appropriate coupling to bound the first probability of
(5.7). Let the vertices k(u)

0 ∈ V
(
Gn, k(u)

0

)
and 0 ∈ V(Tx,n, 0) be coupled as in the beginning

of this section. Assume that they are such that the event H1,0 occurs, and the variables((
Zj[1], Z̃j[1]

)
, 2 � j � n

)
are such that

⋂3
j=1 F1,j holds. We first argue that under the event⋂3

j=1 F1,j ∩H1,0, their type-R children can be coupled so that w.h.p., R(u)
0 = R(i)

0 and k(u)
0,j = k(i)

0,j

for j = 2, . . . , 1 + R(i)
0 . In view of Definitions 4 and 8, this follows readily from Lemma 9.

It remains to prove that under this coupling,
∣∣(k(u)

0 /n)χ − a(i)
0

∣∣ and
∣∣a(i)

0,j − (k(u)
0,j/n)χ

∣∣ are suffi-

ciently small. Since k(u)
0 =

⌈
n
(

a(i)
0

)1/χ⌉
, and for j = 2, . . . , 1 + R(i)

0 , k(u)
0,j satisfies k(u)

0,j > k(u)
0

and
((

k(u)
0,j − 1

)
/n
)χ
< a(i)

0,j �
(

k(u)
0,j/n

)χ
, it is enough to bound (�/n)χ − ((�− 1)/n)χ for

k(u)
0 + 1 � �� n. For such �, we use the fact that k(u)

0 > n( log log n)−1 on the event H1,0 and
the mean value theorem to obtain

1[H1,0]

[(
�

n

)χ
−
(
�− 1

n

)χ]
� 1[H1,0]

χ

n

(
n

�− 1

)1−χ
� χ ( log log n)1−χ

n
. (5.10)

Next, we couple the type-L child of k(u)
0 ∈ V

(
Gn, k(u)

0

)
and 0 ∈ V(Tx,n, 0) so that k(u)

0,1 = k(i)
0,1 and(

k(u)
0,1/n

)χ ≈ a(i)
0,1. Independently from a(i)

0 , let U0,1 ∼ U[0, 1] and a(i)
0,1 = U0,1a(i)

0 . Recalling

v[2] = k(u)
0,1 in the BFS, it follows from Definitions 4 and 8 that we can define k(u)

0,1 to satisfy

Sn,v[2]−1[1] � U0,1Sn,v[1]−1[1]< Sn,v[2][1],

or equivalently,

Sn,v[2]−1[1] �
a(i)

0,1

a(i)
0

Sn,v[1]−1[1]< Sn,v[2][1], (5.11)

and take k(u)
0,1 = k(i)

0,1. Now we show that under this coupling, a(i)
0,1 ≈ (k(u)

0,1/n
)χ on the ‘good’

event H1,0 ∩H1,1 ∩ F1,1. Observe that Sn,v[2][1] =
(
( log log n)−3χ

)
on the good event,

because for n large enough,

Sn,v[2][1] � U0,1Sn,v[1]−1[1] � ( log log n)−2χ
[(

v[1] − 1

n

)χ
− C�n− χ

12

]
� ( log log n)−2χ [( log log n)−χ − 2C�n− χ

12
]
.
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Since Sn,j[1] increases with j, the last calculation implies that |Sn,j[1] − (j/n)χ |� C�n− χ
12 for

j = k(u)
0,1, k(u)

0,1 − 1. Furthermore, a little calculation shows that on the event H1,0 ∩ F1,1, there is
a constant c := c(x1, μ) such that∣∣∣(Sn,v[1]−1[1]/a(i)

0

)
− 1
∣∣∣= cn− χ

12 ( log log n)χ .

Swapping
(

Sn,v[1]−1[1]/a(i)
0

)
, Sn,v[2][1], and Sn,v[2]−1[1] in (5.11) for one, (v[2]/n)χ , and

((v[2] − 1)/n)χ at the costs above, we conclude that there exists Ĉ := Ĉ(x1, μ) such that on
the good event,

∣∣a(i)
0,1 − (k(u)

0,1/n
)χ ∣∣� Ĉn− χ

12 ( log log n)χ . Hence, we can take C1 := Ĉ ∨ χ for
the event H1,2 and apply Lemma 9 to obtain

Px

[
3⋂

j=1

F1,j ∩Hc
1,2 ∩H1,1 ∩H1,0

]
= Px

[{
Y(v[1],n)

Be �= V(v[1],n)
Po

}
∩

3⋂
j=1

F1,j ∩
1⋂

j=0

H1,j

]

� Px

[{
Y(v[1],n)

Be �= V(v[1],n)
Po

}
∩

3⋂
j=1

F1,j ∩H1,0

]
� Cn−γ ( log log n)1−χ , (5.12)

where C := C(x1, μ, κ) is as in Lemma 9. The lemma is proved by applying (5.8), (5.9), and
(5.12) to (5.7). �

Before proving Lemma 7, we require a final result that says that under the graph coupling,
the event that vertex k(u)

0 has a low degree occurs w.h.p. The next lemma is proved in [24] using
Chebyshev’s inequality. Recall that An := A2/3,n is the event in (2.1) with α= 2/3.

Lemma 10. Assume that xi ∈ (0, κ] for i � 2 and x ∈ An. Let H1,i, 0, . . . , 3, be as in (5.2).
There is a coupling of

(
Gn, k(u)

0

)
and (Tx,n, 0), with a positive integer p and a positive constant

C := C(p, κ) such that

Px

[
2⋂

i=0

H1,i ∩Hc
1,3

]
� C( log n)−

p
r ( log log n)

p
μ+1 for all n � 3.

We now complete the proof of Lemma 7 by applying Lemmas 8 and 10.

Proof of Lemma 7. The lemma follows from bounding the right-hand side of

Px

[(
3⋂

i=0

H1,i

)c]
= Px

[
Hc

1,0

]+ 3∑
i=1

Px

[
i−1⋂
j=0

H1,j ∩Hc
1,i

]
,

under the coupling in the proof of Lemma 8. To bound Px
[
Hc

1,0

]
and Px

[
H1,0 ∩Hc

1,1

]
,

recall that a(i)
0 = Uχ

0 and a(i)
0,1 = U0,1a(i)

0 , where U0 and U0,1 are independent standard uniform
variables. Hence,

Px
[
H1,0 ∩Hc

1,1

]=E[1[H1,0
]
Px

[
U0,1 �

(
a(i)

0

)−1( log log n)−2χ |U0

]]
� Px

[
U0,1 � ( log log n)−χ

]
= ( log log n)−χ , (5.13)

and Px
[
Hc

1,0

]= Px
[
U0 � ( log log n)−1

]= ( log log n)−1. Bounding the remaining probabili-
ties using Lemmas 8 and 10 completes the proof. �
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6. Proof of the general case

Recall the definitions of k(u)
w̄ , a(i)

w̄ , and k(i)
w̄ in the beginning of Section 3.2 and Definition 8.

In this section, we inductively couple the uniformly rooted Pólya urn graph
(
Gn, k(u)

0

)
and the

intermediate Pólya point tree (Tx,n, 0) in Definition 8 so that w.h.p.,
(

Br
(
Gn, k(u)

0

)
, k(u)

0

)∼=
(Br(Tx,n, 0), 0), and for k(u)

w̄ ∈ V
(

Br
(
Gn, k(u)

0

))
and w̄ ∈ V(Br(Tx,n, 0), their ages are close

enough
((

k(u)
w̄ /n

)χ ≈ a(i)
w̄

)
and their PA labels and arrival times match

(
k(i)

w̄ = k(u)
w̄

)
. Given

a positive integer r, let L[q] := (0, 1, . . . , 1) and |L[q]| = q + 1 for 2 � q � r, so that
L[q] and k(u)

L[q] are the type-L children in ∂Bq := V(Bq(Tx,n, 0)) \ V(Bq−1(Tx,n, 0)) and

∂Bq := V
(

Bq
(
Gn, k(u)

0

)) \ V
(

Bq−1
(
Gn, k(u)

0

))
. Let χ/12 := β1 >β2 > · · ·>βr > 0, so that

n−βq > n−βq−1 ( log log n)qχ for n large enough. To ensure that we can couple the (q + 1)-
neighbourhoods for 1 � q � r − 1, we define the coupling events analogous to H1,i, i = 1, 2, 3,
in (5.2):

Hq,1 =
{

a(i)
L[q] > ( log log n)−χ (q+1)

}
,

Hq,2 =
{(

Bq
(
Gn, k(u)

0

)
, k(u)

0

)∼= (Bq(Tx,n, 0), 0), with k(u)
v̄ = k(i)

v̄

and

∣∣∣∣a(i)
v̄ −

(
k(u)

v̄

n

)χ ∣∣∣∣� Cqn−βq for v̄ ∈ V(Bq(Tx,n, 0))

}
,

Hq,3 =
{

R(i)
v̄ < ( log n)1/r for v̄ ∈ V(Bq−1(Tx,n, 0))

}
, (6.1)

where R(i)
v̄ is as in (4.1) and Cq := Cq(x1, μ) will be chosen in the proof of Lemma 12

below. Let An := A2/3,n be the event in (2.1), and let Px indicate the conditioning on a spe-
cific realisation of the fitness sequence x. The next lemma is the key result of this section; it

essentially states that if we can couple
(
Gn, k(u)

0

)
and (Tx,n, 0) so that

(
Bq
(
Gn, k(u)

0

)
, k(u)

0

)∼=
(Bq(Tx,n, 0), 0) w.h.p., then we can achieve this for the (q + 1)-neighbourhoods too.

Lemma 11. Let Hq,i, 1 � q � r − 1, i = 1, 2, 3, be as in (5.2) and (6.1). Assume that xi ∈ (0, κ]

for i � 2 and x ∈ An. Given r<∞ and 1 � q � r − 1, if there is a coupling of
(
Gn, k(u)

0

)
and

(Tx,n, 0), with a positive constant C := C(x1, μ, κ, q) such that

Px

[(
3⋂

i=1

Hq,i

)c]
� C( log log n)−χ for all n � 3,

then there is a coupling of
(
Gn, k(u)

0

)
and (Tx,n, 0), with a positive constant C′ :=

C′(x1, μ, κ, q) such that

Px

[(
3⋂

i=1

Hq+1,i

)c]
� C′( log log n)−χ for all n � 3.

Since Lemma 7 implies that such a graph coupling exists for r = 1, combining Lemmas 7
and 11 yields the following corollary, which is instrumental in proving Theorem 1.
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Corollary 2. Retaining the assumptions and the notation in Lemma 11, there is a coupling of(
Gn, k(u)

0

)
and (Tx,n, 0), with a positive constant C := C(x1, μ, κ, r) such that

Px

[(
3⋂

i=1

Hr,i

)c]
� C( log log n)−χ for all n � 3.

The proof of Lemma 11 is in the same vein as that of Lemma 7. Fixing 1 � q � r − 1, we
may assume that the two graphs are already coupled so that the event

⋂3
i=1 Hq,i has occurred.

On the event Hq,1, it is clear from the definitions of a(i)
L[q+1] and Hq+1,1 that Hq+1,1 occurs

w.h.p., while on the event Hq,1 ∩Hq,3, we can easily show that Hq+1,3 occurs w.h.p. So for
most of the proof, we handle the event Hq+1,2. To couple the graphs so that Hq+1,2 occurs

w.h.p., we consider the vertices of ∂Bq and ∂Bq in the breadth-first order, and couple k(u)
w̄ ∈ ∂Bq

and w̄ ∈ ∂Bq so that w.h.p., the numbers of children they have are the same and not too large,

and the children’s ages are close enough. Recall the definition of v[t] in (3.1). If v[t] = k(u)
w̄ , the

associated events are as follows:

Kt,1 =
{

R(u)
w̄ = R(i)

w̄ , and for 1 � j � 1 + R(i)
w̄ ,

k(i)
w̄,j = k(u)

w̄,j and

∣∣∣∣a(i)
w̄,j −

(k(u)
w̄,j

n

)χ ∣∣∣∣� Cq+1n−βq+1

}
, (6.2)

Kt,2 =
{

R(i)
w̄ < ( log n)1/r

}
,

where R(u)
w̄ and R(i)

w̄ are as in (3.4) and (4.1), and Cq+1 and βq+1 are as in the event Hq+1,2.
Below we only consider the coupling of the type-L children in detail, because the type-R case
can be proved similarly. Observe that for n large enough, there must be a type-L child in ∂Bq

on the event
⋂3

j=1 Hq,j. Define v[τ [q]] = k(u)
L[q], so that

τ [1] = 2 and τ [q] =
∣∣∣V(Bq−1

(
Gn, k(u)

0

))∣∣∣+ 1 for 2 � q � r − 1

are the exploration times of the type-L children. Noting that(
Aτ [q]−1,Pτ [q]−1,Nτ [q]−1

)= (∂Bq, V
(

Bq−1
(
Gn, k(u)

0

))
, V(Gn) \ V

(
Bq
(
Gn, k(u)

0

)))
,

we let ((
Zj[τ [q]], Z̃j[τ [q]]

)
, j ∈Aτ [q]−1 ∪Nτ [q]−1

)
and

(
Sn,j[τ [q]], 1 � j � n

)
be as in (3.7), (3.8), and (3.10). For convenience, we also define

ζq := Zv[τ [q]][τ [q]], so that ζq ∼ Gamma(xv[τ [q]] + 1, 1). (6.3)

We use (Sn,j[τ [q]], 1 � j � n) to generate the children of vertex v[τ [q]], and let
(

a(i)
L[q],j, 2 �

j � 1 + R(i)
L[q]

)
be the points of the mixed Poisson process on

(
a(i)

L[q], 1
]

with intensity

ζq

μ
(

a(i)
L[q]

)1/μ
y1/μ−1dy, (6.4)
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and a(i)
L[q],1 ∼ U

[
0, a(i)

L[q]

]
. In the sequel, we develop lemmas analogous to Lemmas 8 and 10 to

show that on the event
⋂3

j=1 Hq,j, we can couple the vertices v[τ [q]] ∈ ∂Bq and τ [q] ∈ ∂Bq so
that the events Kτ [q],1 and Kτ [q],2 occur w.h.p. As in the 1-neighbourhood case, the difficult
part is proving the claim for Kτ [q],1. From now on we write

Hq,l :=
3⋂

j=1

Hq,j ∩
{|∂Bq| = l

}
for all l � 1. (6.5)

Lemma 12. Retaining the assumptions and the notation in Lemma 11, let βq, Kτ [q],1, and Hq,l

be as in (6.1), (6.2), and (6.5). Then there is a coupling of
(
Gn, k(u)

0

)
and (Tx,n, 0), with a

positive constant C := C(x1, μ, κ, q) such that

Px

(
Hq,l ∩Hq+1,1 ∩Kc

τ [q],1

)
� Cn−d( log log n)q+1( log n)q/r for all n � 3 andl � 1,

where 0< γ <χ/12 and d := min
{
χ/3 − 4γ, γ, 1 − χ, βq

}
.

Similar to Lemma 8, the key step is to couple the type-R children of vertex k(u)
L[q]. Let the

Bernoulli sequence Y(v[τ [q]],n)
Be be as in Definition 7, which by Lemma 5 encodes the type-R

children of vertex k(u)
L[q]. Additionally, define

ML[q] := min
{

j ∈ [n] : (j/n)χ � a(i)
L[q]

}
. (6.6)

We want to use the bins
(

a(i)
L[q], ((j/n)χ )n

j=ML[q]

)
to construct the discretised mixed Poisson

process that encodes the ages and the PA labels, i.e.
((

a(i)
L[q],j, k(i)

L[q],j

)
, 2 � j � 1 + R(i)

L[q]

)
.

However, it is possible that ML[q] �= v[τ [q]] + 1, in which case the numbers of Bernoulli and

Poisson variables do not match and a modification of Y(v[τ [q]],n)
Be is needed. If ML[q] � v[τ [q]],

define Yj→v[τ [q]], ML[q] � j � v[τ [q]], as Bernoulli variables with means Pj→v[τ [q]] := 0, and

concatenate the vectors
(
Yj→v[τ [q]],ML[q] � j � v[τ [q]]

)
and Y(v[τ [q]],n)

Be . This corresponds to

the fact that vertex j cannot send an outgoing edge to vertex v[τ [q]] in
(
Gn, k(u)

0

)
. If ML[q] �

v[τ [q]] + 1, let Y(v[τ [q]],n)
Be be as in Definition 7. Saving notation, we redefine

Y(v[τ [q]],n)
Be :=

(
YM̃L[q]→v[τ [q]], Y(M̃L[q]+1)→v[τ [q]], . . . , Yn→v[τ [q]]

)
, (6.7)

where
M̃L[q] := min

{
ML[q], v[τ [q]] + 1

}
. (6.8)

We also make the following adjustment so that the upcoming Poisson random vector is a dis-
cretisation of the mixed Poisson point process on

(
a(i)

L[q], 1
]
, and is still comparable to the

modified Y(v[τ [q]],n)
Be . When ML[q] � v[τ [q]] + 1, define the Poisson means

λ
[τ [q]]
ML[q]

:=
∫ (ML[q]

n

)χ
a(i)

L[q]

ζq

μ
(
a(i)

L[q]

)1/μ y1/μ−1dy, λ
[τ [q]]
j :=

∫ ( j
n

)χ
(

j−1
n

)χ ζq

μ
(
a(i)

L[q]

)1/μ y1/μ−1dy (6.9)

https://doi.org/10.1017/apr.2023.54 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.54


810 T. Y. Y. LO

for ML[q] + 1 � j � n. When ML[q] � v[τ [q]] + 2, we let

λ
[τ [q]]
j := 0 for v[τ [q]] + 1 � j<ML[q], (6.10)

in addition to (6.9), so that there are no Poisson points outside the interval
(
a(i)

L[q], 1
]
.

Definition 10. Given k(u)
L[q], a(i)

L[q], and ζq defined in (6.3), let M̃L[q] be as in (6.8); for M̃L[q] +
1 � j � n, let Vj→v[τ [q]] be conditionally independent Poisson random variables, each with

parameters λ[τ [q]]
j given in (6.9) and (6.10). Define this (mixed) Poisson sequence by the

random vector

V(v[τ [q]],n)
Po :=

(
VM̃L[q]→v[τ [q]], V(M̃L[q]+1)→v[τ [q]], . . . , Vn→v[τ [q]]

)
.

We proceed to define the events analogous to F1,j, j = 1, 2, 3, in (5.5). On these events,

Pj→v[τ [q]] in (3.11) and λ[τ [q]]
j are close enough for most j, and so we can couple the point

processes as before. Let φ(n) =(nχ ), 0< γ <χ/12, Zj[τ [q]], Bj[τ [q]], and Sn,j[τ [q]] be as
in (3.7), (3.9), and (3.10), and let C�q := C�q(x1, μ) be a positive constant that we specify later.
Define

Fτ [q],1 =
{

max
	φ(n)
�j�n

∣∣∣∣Sn,j[τ [q]] −
(

j

n

)χ ∣∣∣∣� C�qn− χ
12

}
,

Fτ [q],2 =
n⋂

j=	φ(n)
;j �∈Pτ [q]−1

{∣∣∣∣Bj[τ [q]] − Zj[τ [q]]

(μ+ 1)j

∣∣∣∣� Zj[τ [q]]n−γ

(μ+ 1)j

}
,

Fτ [q],3 =
n⋂

j=	φ(n)
;j �∈Pτ [q]−1

{
Zj[τ [q]] � j1/2

}
. (6.11)

The following analogue of Lemma 9 is the main ingredient for proving Lemma 12.

Lemma 13. Retaining the assumptions and the notation in Lemma 12, let Y(v[τ [q]],n)
Be ,

V(v[τ [q]],n)
Po , and Fτ [q],i, i = 1, 2, 3, be as in Definition 7, Definition 10, and (6.11). Then we

can couple the random vectors so that there is a positive constant C = C(x1, μ, κ, q) such
that

Px

[{
Y(v[τ [q]],n)

Be �= V(v[τ [q]],n)
Po

}
∩

3⋂
i=1

Fτ [q],i ∩Hq,l

]
� Cn−d( log log n)q+1( log n)q/r

for all n � 3, where d := min{βq, γ, 1 − χ}.
Sketch of proof. We only highlight the main steps here, leaving the details to [24]. As in

the proof of Lemma 9, we construct a Bernoulli and a Poisson sequence using suitable means
P̂j→v[τ [q]], M̃L[q] � j � n, with M̃L[q] as in (6.8). Then we couple the four processes. However,
this time we need to handle the cases where we couple a Bernoulli variable with mean zero and
a Poisson variable with positive mean, or vice versa. We take care of these cases by choosing

the appropriate P̂j→v[τ [q]]. First we observe that on the event
(⋂3

j=1 Fτ [q],j

)
∩
(⋂3

j=1 Hq,j

)
,

Pj→v[τ [q]] is close enough to

P̂j→v[τ [q]] :=
(

v[τ [q]]

j

)χ ζq

(μ+ 1)v[τ [q]]
� 1 (6.12)
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TABLE 1. Combinations of means for M̃L[q] � j � max{ML[q], k(u)
L[q] + 1}. Note that j = k(u)

L[q] + 1 when

ML[q] = k(u)
L[q] + 1, and in that case, the coupling is the same as that of Lemma 9.

ML[q] � k(u)
L[q] ML[q] � k(u)

L[q] + 2 ML[q] = k(u)
L[q] + 1

Pj→v[τ [q]] 0 as in (3.11) as in (3.11)

λ
[τ [q]]
j as in (6.9) 0 as in (6.9)

P̂j→v[τ [q]] 0 as in (6.12) as in (6.12)

for j ∈ {v[τ [q]] + 1, . . . , n} \ V
(

Bq
(
Gn, k(u)

0

))
, whereas for max{ML[q], v[τ [q]] + 1}� j � n,

we have
λ

[τ [q]]
j ≈ P̂j→v[τ [q]]

because a(i)
L[q] ≈ (v[τ [q]]/n)χ on the event Hq,2. Hence, we can couple Yj→v[τ [q]] and

Vj→v[τ [q]] for j ∈ {max{ML[q], v[τ [q]] + 1}, . . . , n} \ V
(

Bq
(
Gn, k(u)

0

))
as in Lemma 9. When

j ∈ V
(

Bq
(
Gn, k(u)

0

))
, the Bernoulli variable Yj→v[τ [q]] has mean zero, and we couple it to a

Bernoulli variable with mean (6.12) as in Lemma 9. By a little computation,

|∂Bj|< 1 + j( log n)j/r,

∣∣∣V(Bj
(
Gn, k(u)

0

))∣∣∣< 1 + j + j2( log n)j/r (6.13)

for 1 � j � q on the event Hq,3. Because the P̂j→v[τ [q]] are sufficiently small and there are at
most O(( log n)q/r) such pairs of Bernoulli variables, we can use a union bound to show that
the probability that Yj→v[τ [q]] �= Vj→v[τ [q]] for any such j tends to zero as n → ∞. We now

consider the coupling of Yj→v[τ [q]] and Vj→v[τ [q]] for M̃L[q] � j � max
{

ML[q], k(u)
L[q] + 1

}
. In

Table 1 below, we give the possible combinations of the Bernoulli and Poisson means, and our
choice of intermediate means. As indicated in the table, we choose P̂j→v[τ [q]] > 0 whenever
Pj→v[τ [q]] > 0. When ML[q] � v[τ [q]], we couple Vj→v[τ [q]] and a Poisson variable with mean
zero, while when ML[q] � v[τ [q]] + 2, Vj→v[τ [q]] := 0 by construction, and it is coupled with
a Poisson variable with mean (6.12). However, the number of these pairs is small because
ML[q] ≈ v[τ [q]] + 1 when a(i)

L[q] ≈ (v[τ [q]]/n)χ . Consequently, another union bound argument
shows that the probability that any of these couplings fail tends to zero as n → ∞. �

We are now ready to prove Lemma 12.

Proof of Lemma 12. Recall the definition of Hq,l in (6.5). We bound the right-hand side of

Px

[
Hq,l ∩Hq+1,1 ∩Kc

τ [q],1

]
� Px

[
Hq,l ∩

3⋂
j=1

Fτ [q],j ∩Hq+1,1 ∩Kc
τ [q],1

]
+ Px

[
Hq,l ∩

(
3⋂

j=1

Fτ [q],j

)c]

� Px

[
Hq,l ∩

3⋂
j=1

Fτ [q],j ∩Hq+1,1 ∩Kc
τ [q],1

]
+

3∑
j=1

Px

[
Hq,l ∩ Fc

τ [q],j

]
, (6.14)
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starting from the last three terms. Using (6.13), a computation similar to that for Lemma 2
shows that there are positive constants C�q = C�q(x1, μ) and c� = c�(x1, μ, q) such that

Px

[
Hq,l ∩

{
max

	φ(n)
�j�n

∣∣∣∣Sn,j[τ [q]] −
(

j

n

)χ ∣∣∣∣� C�qn− χ
12

}]
� c�n−χ6 , (6.15)

which bounds Px

[
Hq,l ∩ Fc

τ [q],1

]
. Combining (6.13) and the argument of Lemma 3 also yields

Px

[
Hq,l ∩ Fc

τ [q],3

]
� Cκ4n−χ and Px

[
Hq,l ∩ Fc

τ [q],2

]
� C′n4γ−χ3 , (6.16)

for some positive constants C := C(q), C′ = C′(x1, γ, μ, q), and 0< γ < χ/12. Next, we
bound the first term under a suitable coupling of the vertices k(u)

L[q] ∈ ∂Bq and L[q] ∈ ∂Bq,
starting from their type-R children. Assume that((

k(u)
w̄ , k(i)

w̄ , a(i)
w̄

)
, w̄ ∈ V

(
Bq(Tx,n, 0)

))
,
((

R(u)
w̄ , R(i)

w̄

)
, w̄ ∈ V(Bq−1(Tx,n, 0))

)
,((

Zj[τ [q]], Z̃j[τ [q]]
)
, j ∈ [n] \ V(Bq−1(Tx,n, 0))

)
are coupled so that Eq := ⋂3

j=1 Hq,j ∩⋂3
j=1 Fτ [q],j occurs. In view of Definitions 8 and 7,

it follows from Lemma 13 that on the event Eq, there is a coupling such that R(u)
L[q] = R(i)

L[q]

and k(u)
L[q],j = k(i)

L[q],j for 2 � j � 1 + R(i)
L[q] w.h.p. Note that kL[q],j � ML[q] when Y(v[τ [q]],n)

Be and

V(v[τ [q]],n)
Po are coupled. Thus, using ML[q] � n(a(i)

L[q])
1/χ , a little calculation shows that there is

a constant ĉ := ĉ(μ) such that

1

[ 2⋂
i=1

Hq,i

] [(
j

n

)χ
−
(

j − 1

n

)χ]
� ĉ( log log n)(1+q)(1−χ )

n
, ML[q] � j � n,

implying that the ages of the type-R children are close enough. We proceed to couple the type-
L child of k(u)

L[q] ∈ ∂Bq and L[q] ∈ ∂Bq on the event Eq ∩Hq+1. Independently from all the
variables generated so far, let UL[q],1 ∼ U[0, 1]. Set

a(i)
L[q],1 := a(i)

L[q+1] = UL[q],1a(i)
L[q],

so that a(i)
L[q],1 is the age of vertex (L[q], 1) ∈ ∂Bq+1. Temporarily defining f := k(u)

L[q] and g :=
k(u)

L[q],1, we define g to satisfy

Sn,g−1[τ [q]] � UL[q],1Sn,f −1[τ [q]]< Sn,g[τ [q]]. (6.17)

In light of Definition 8 and Lemma 6, k(i)
L[q],1 = g. To establish a(i)

L[q],1 ≈ (g/n)χ , we first
show that we can substitute Sn,j[τ [q]] with (j/n)χ for j = g − 1, g at a small enough cost. A
straightforward computation shows that on the event Eq ∩Hq+1,1,

UL[q],1 � ( log log n)−(q+2)χ and f � n( log log n)−(q+1) − Cqn1−βq/χ ,
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where Cq is the constant in the event Hq,2. Consequently, there is a constant C := C(x1, μ, q)
such that on the event Eq ∩Hq+1,1,

Sn,g[τ [q]] � UL[q],1Sn,f −1[τ [q]] � ( log log n)−(q+2)χ
[(

f − 1

n

)χ
− C�qn− χ

12

]
� C( log log n)−(2q+3)χ . (6.18)

This implies that g =(nχ ), and so |Sn,j[τ [q]] − (j/n)χ |� C�qn−χ/12 for j = g − 1, g.
Additionally, a direct calculation yields∣∣∣(Sn,f −1[τ [q]]/a(i)

L[q]

)
− 1
∣∣∣� C̃n−βq ( log log n)(q+1)χ

for some C̃ := C̃(x1, μ, q). By replacing Sn,j[τ [q]], j = g − 1, g, in (6.17) with a(i)
L[q] and (j/n)χ

at the costs above, and using βq+1 <βq, we conclude that, on the event Eq ∩Hq+1,1, there is

a constant Ĉ := Ĉ(x1, μ, q) such that |a(i)
L[q],1 − (g/n)χ |� Ĉn−βq+1 . Now, pick Cq+1 := Ĉ ∨ ĉ

for the event Kτ [q],1 and Hq+1,2. By Lemma 13, there is a positive constant C := C(x1, μ, κ, q)
such that

Px

[
Hq,l ∩

3⋂
j=1

Fτ [q],j ∩Hq+1,1 ∩Kc
τ [q],1

]
� Px

[{
Y(v[τ [q]],n)

Be �= V(v[τ [q]],n)
Po

}
∩

3⋂
j=1

Fτ [q],j ∩Hq,l

]
� Cn−d( log log n)q+1( log n)q/r, (6.19)

where d = min{βq, γ, 1 − χ}. The lemma follows from applying (6.15), (6.16), and (6.19) to
(6.14). �

The following analogue of Lemma 10 shows that under the graph coupling, w.h.p. v[τ [q]]
has at most ( log n)1/r children. We omit the proof as it is similar to that of Lemma 10.

Lemma 14. Retaining the assumptions and the notation in Lemma 11, let Kτ [q],j and Hq,j be
as in (6.2) and (6.5). Then, given positive integers r<∞ and q< r, there is a coupling of(
Gn, k(u)

0

)
and (Tx,n, 0), with an integer p> 0 and a constant C := C(κ, p)> 0 such that

Px

[
Hq,l ∩Kq,1 ∩Kc

q,2

]
� C( log n)−

p
r ( log log n)

p(q+1)
μ+1 for all n � 3.

We now apply Lemmas 12 and 14 to prove Lemma 11.

Proof of Lemma 11. We begin by stating the type-R analogues of Lemmas 12 and 14.
Suppose that

(
Gn, k(u)

0

)
and (Tx,n, 0) are coupled so that for a type-R child v[t] = k(u)

w̄ ∈ ∂Bq,
the event

Hq+1,1 ∩Jq,l,t := Hq+1,1 ∩Hq,l ∩
⋂

{s<t : v[s]∈∂Bq}
(Ks,1 ∩Ks,2) (6.20)

has occurred for some l � 2, where Hq+1,1, Hq,l, Ks,1, and Ks,2 are as in (6.1), (6.5), and

(6.2). Let
((

Zj[t], Z̃j−1[t]
)
, j ∈At−1 ∪Nt−1

)
and
(
Sn,j[t], 1 � j � n

)
be as in (3.7), (3.8), and

(3.10). We use these variables to generate the type-R children of k(u)
w̄ , and to sample the points
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(
a(i)

w̄,i, 1 � i � R(i)
w̄

)
of the mixed Poisson process with intensity (6.4), where ζq and a(i)

L[q] are

replaced with Z
k(i)

w̄
[t] ∼ Gamma

(
x

k(i)
w̄
, 1
)

and a(i)
w̄ . Note that v[t]> k(u)

L[q], and on the event Jq,l,t,

the number of discovered vertices up to time t can be bounded as

|At−1 ∪Pt−1|� 2 + q + (q + 1)2( log n)(q+1)/r,

as implied by (6.13). Hence, we can proceed similarly as for Lemmas 12 and 13. In particular,
there is a coupling of

(
Gn, k(u)

0

)
and (Tx,n, 0), with positive constants C := C(x1, μ, κ, q) and

c := c(κ, p) such that for n � 3,

Px
[
Kc

t,1 ∩Jq,l,t
]
� Cn−d( log log n)q+1( log n)

q+1
r ,

Px
[
Kc

t,2 ∩Kt,1 ∩Jq,l,t
]
� c( log n)−

p
r ( log log n)

p(q+1)
μ+1 , (6.21)

where d = min{χ/3 − 4γ, 1 − χ, γ, βq}. Define H̃q := ⋂3
j=1 Hq,j. To bound Px

[
H̃c

q+1

]
using

Lemma 12, Lemma 14, and (6.21), we use

Px
[(
H̃q+1

)c]� Px

[
H̃c

q+1 ∩ H̃q

]
+ Px

[
H̃c

q

]
= Px

[(
3⋂

j=2

Hq+1,j

)c

∩Hq+1,1 ∩ H̃q

]
+ Px

[
Hc

q+1,1 ∩ H̃q

]
+ Px

[
H̃c

q

]
= Px

[( ⋂
{s : v[s]∈∂Bq}

(Ks,1 ∩Ks,2)

)c

∩Hq+1,1 ∩ H̃q

]
(6.22)

+ Px

[
H̃q ∩Hc

q+1,1

]
+ Px

[
H̃c

q

]
, (6.23)

where the last equality follows from(
3⋂

j=2

Hq+1,j

)c

∩ H̃q =
( ⋂

{s : v[s]∈∂Bq}
(Ks,1 ∩Ks,2)

)c

∩ H̃q.

The lemma is proved once we show that the probabilities in (6.22) and (6.23) are of order at
most ( log log n)−χ . By assumption, there is a constant C := C(x1, μ, κ, q) such that Px

[
H̃c

q

]
�

C( log log n)−χ . Recall that a(i)
L[q],1 = UL[q],1a(i)

L[q], where UL[q],1 ∼ U[0, 1] is independent of

a(i)
L[q]. Thus, similarly to (5.13),

Px

[
H̃q ∩Hc

q+1,1

]
� ( log log n)−χ .

For (6.22), define

K̃q,s,j =K∣∣∣V(Bq

(
Gn,k

(u)
0

))∣∣∣+s,j
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for j = 1, 2 and 1 � s � |∂Bq|. Note that |∂Bq|� c[n, q] := �1 + q( log n)
q
r � on the event Hq,3,

and so

Px

[( ⋂
{s : v[s]∈∂Bq}

(Ks,1 ∩Ks,2)

)c

∩Hq+1,1 ∩ H̃q

]

= Px

⎡⎣c[n,q]⋃
l=1

⎧⎨⎩{|∂Bq| = l} ∩
(

l⋂
s=1

(
K̃q,s,1 ∩ K̃q,s,2

))c
⎫⎬⎭∩Hq+1,1 ∩ H̃q

⎤⎦ .

By a union bound, and recalling the definition of Hq,l in (6.5), the probability above is at most

c[n,q]∑
l=1

{
Px

[
K̃c

q,1,2 ∩ K̃q,1,1 ∩Hq+1,1 ∩Hq,l

]
+ Px

[
K̃c

q,1,1 ∩Hq+1,1 ∩Hq,l

]

+
l∑

s=2

Px

[
K̃c

q,s,2 ∩ K̃q,s,1 ∩Hq+1,1 ∩Jq,l,s

]
+ Px

[
K̃c

q,s,1 ∩Hq+1,1 ∩Jq,l,s

]}
. (6.24)

We bound (6.24) using (6.21), Lemma 12, and Lemma 14, where we choose p> 2(r − 1) in
Lemma 14 so that

c[n,q]∑
l=1

l∑
s=2

Px

[
K̃c

q,s,2 ∩ K̃q,s,1 ∩Jq,l,s

]
→ 0

as n → ∞. It follows that there is a constant C := C(x1, μ, κ, q) such that (6.24) is bounded
by C( log log n)−χ . �

7. Completion of the local weak limit proof

Equipped with Corollary 2, we can prove Theorem 1.

Proof of Theorem 1. In view of (1.1), it is enough to establish (1.5) of Theorem 1. Let
G′

n ∼ PA(π, X1)n (Definition 1), let k0 be its randomly chosen vertex, let (TX,n, 0) be the inter-
mediate Pólya point tree (Tx,n, 0) randomised over X, and let (T , 0) be the π -Pólya point tree
in Definition 3. By the triangle inequality for the total variation distance, for any r<∞ we
have

dTV
(
L
((

Br
(
G′

n, k0
)
, k0
))
,L ((Br(T , 0), 0))

)
� dTV

(
L
((

Br
(
G′

n, k0
)
, k0
))
,L
((

Br(TX,n, 0), 0
)))

+ dTV
(
L
((

Br(TX,n, 0), 0
))
,L ((Br(T , 0), 0))

)
.

Let An := A2/3,n be as in (2.1). Applying Jensen’s inequality to the total variation distance, the
above is bounded by

E
[
dTV
(
L
((

Br
(
G′

n, k0
)
, k0
) |X) ,L ((Br(TX,n, 0), 0)|X))]

+ dTV
(
L
(
(Br(TX,n, 0), 0)

)
,L ((Br(T , 0), 0))

)
�E

[
1[An]dTV

(
L
((

Br
(
G′

n, k0
)
, k0
) |X) ,L ((Br(TX,n, 0), 0)|X))]

+ P
[
Ac

n

]+ dTV
(
L
((

Br
(
TX,n, 0

)
, 0
))
,L ((Br(T , 0), 0))

)
.
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We prove that each term on the right-hand side is of order at most ( log log n)−χ , starting from
the expectation. Let Hr,j, j = 1, 2, 3, be as in (6.1). For the (x, n)-Pólya urn tree Gn with x ∈ An,

Corollary 2 implies that there is a coupling of
(
Gn, k(u)

0

)
and (Tx,n, 0), with a positive constant

C := C(x1, μ, κ, r) such that

Px

[
Br(Tx,n, 0), 0 �∼=

(
Br

(
Gn, k(u)

0

)
, k(u)

0

)]
� Px

[(
3⋂

j=1

Hr,j

)c]
� C( log log n)−χ ; (7.1)

following from the definition (1.4) of the total variation distance, the expectation is at most
C( log log n)−χ . The probability P[Ac

n] can be bounded using Lemma 1 (with α= 2/3). We
now couple (Br(T , 0), 0) and (Br(TX,n, 0), 0) to bound the last term. For this coupling, denote
by E the event that the PA labels in Br(TX,n, 0) are distinct, that is, k(i)

w̄ �= k(i)
v̄ for any w̄ �= v̄. We

first construct Br(TX,n, 0); then on the event E, we set Br(T , 0) as Br(TX,n, 0), inheriting the
Ulam–Harris labels, ages, types, and fitness from the latter. If the PA labels are not distinct, we
generate Br(T , 0) independently from Br(TX,n, 0). Under this coupling,

P[(Br(TX,n, 0), 0) �∼= (Br(T , 0), 0)] = P[{(Br(TX,n, 0), 0) �∼= (Br(T , 0), 0)} ∩ Ec]. (7.2)

From the definition of Hr,2 in (6.1), we can use (7.1) and Lemma 1 to bound the second term

in (7.2) by P[Ec] � P

[(⋂3
j=1 Hr,j

)c]
� C( log log n)−χ . So, once again by (1.4),

dTV
(
L
(
(Br(TX,n, 0), 0)

)
,L ((Br(T , 0), 0))

)
� C( log log n)−χ ,

which concludes the proof. �

8. Remarks on the limiting distributions of the degree statistics

In this section, we discuss the connection of Corollary 1 and Theorem 2 to [4, 7, 20, 25,
30]. To this end, we state the probability mass function of the limiting distributions of the
degrees of the uniformly chosen vertex k0 in PA(π, X1)n and its type-L neighbour kL[1]. These
results are direct consequences of Corollary 1 and Theorem 2 (see [24] for a detailed proof).
We also show that both probability mass functions also exhibit power-law behaviour, which
follows from a dominated convergence argument (see [25]). Below we write an ∼ bn to indicate
limn→∞ an/bn = 1. We start with the degree of the uniformly chosen vertex.

Proposition 1. Retaining the assumptions and the notation in Theorem 2, let ξ0 be as in the
theorem. The probability mass function of the distribution of ξ0 is

pπ (j) = (μ+ 1)
∫ ∞

0

�(x + j − 1)�(x +μ+ 1)

�(x)�(x +μ+ j + 1)
dπ (x), j � 1. (8.1)

Furthermore, if EXμ+1
2 <∞, then as j → ∞,

pπ (j) ∼ Cπ j−(μ+2), Cπ := (μ+ 1)
∫ ∞

0

�(x +μ+ 1)

�(x)
dπ (x). (8.2)
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Remark 4. We use Proposition 1 to relate Theorem 2 to some known results.

(i) When π is a point mass at 1, (pπ (j), j � 1) is the probability mass function of Geo1(
√

U)
(also known as the Yule–Simon distribution), which is a mixture of geometric distribu-
tions on the positive integers, with the parameter sampled according to the distribution
of

√
U, where U ∼ U(0, 1). For such a fitness sequence and a model that allows for self-

loops, [7] established that the limiting empirical degree distribution is (pπ (j), j � 1);
furthermore, using Stein’s method, [30, Theorem 6.1] showed that the total variation
distance is at most n−1 log n.

(ii) In the multiple-edge setting, and assuming only the fitness has a finite mean, [25] used
stochastic approximation to obtain the a.s. limit of the empirical degree distribution.
Theorem 2 and Proposition 1 are special cases of [25, Theorems 2.4 and 2.6], but the
distributional representation and the rate in Theorem 2 are new.

In the following, we give the limiting probability mass function of the degree of the
type-L neighbour kL[1] of the uniformly chosen vertex k0, which shows that the distribution
also exhibits power-law behaviour. When the PA tree has constant initial attractiveness, the
proposition is a special case of [4, Lemma 5.2] and [20, Lemma 5.9].

Proposition 2. Retaining the assumptions and the notation in Theorem 1, let RL[1] be as in
the theorem. The probability mass function of the random variable RL[1] + 2 in the theorem is
given by

qπ (j) =μ(μ+ 1)(j − 1)
∫ ∞

0

�(x + j − 1)�(x +μ+ 1)

�(x + 1)�(x +μ+ j + 1)
dπ (x), j � 2. (8.3)

Furthermore, if EXμ2 <∞, then as j → ∞,

qπ (j) ∼ Cπ j−(μ+1), Cπ =μ(μ+ 1)
∫ ∞

0

�(x +μ+ 1)

�(x + 1)
dπ (x).

Comparing Propositions 1 and 2, we see that in the limit, the degree of vertex kL[1] has a
heavier tail than the degree of k0. This is due to the fact that kL[1] has received an incoming
edge from k0, and so kL[1] is more likely to have a higher degree than k0.

9. Proofs for the approximation results

Here we prove the lemmas in Section 2. The arguments are adapted from [33] and have
a similar flavour to the arguments of [6], both of which studied different PA models. For the
proofs below, we recall that φ(n) =(nχ ), where χ is as in (1.2).

Proof of Lemma 1. Given p> 2, choose 1/2 + 1/p<α < 1. Let Aα,n be as in (2.1), let
T�m := ∑m

i=2 Xi, and let Cp be the positive constant given in Lemma 15 below, which bounds
the moment of a sum of variables in terms of the moments of the summands. Then

P
[
Ac
α,n

]= P

[ ∞⋃
j=	φ(n)


{∣∣T�j − (j − 1)μ
∣∣> jα

}]

�
∞∑

j=	φ(n)

P
[∣∣T�j − (j − 1)μ

∣∣> jα
]

(by a union bound)
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�
∞∑

j=	φ(n)

E
[∣∣T�j − (j − 1)μ

∣∣p]j−αp (by Chebyshev’s inequality)

� CpE
[|X2 −μ|p] ∞∑

j=	φ(n)

j−p(α−1/2) (by Lemma 15)

� CpE
[|X2 −μ|p] ∫ ∞

	φ(n)
−1
y−p(α−1/2)dy

= Cp[p(α− 1/2) − 1]−1E
[|X2 −μ|p](	φ(n)
 − 1)1−p(α−1/2),

where p(α − 1/2)> 1 and E[|X2 −μ|p]<∞. The lemma follows from the fact that φ(n) =
(nχ ). �

The next lemma can be found in [34, Item 16, p.60], where [13] is credited.

Lemma 15. Let Y1, . . . , Yn be independent random variables such that for i = 1, . . . , n,
EYi = 0 and E|Yi|p <∞ for some p � 2. Let Wn := ∑n

i=1 Yi; then

E
[|Wn|p

]
� Cpnp/2−1

n∑
i=1

E
[|Yi|p

]
,

where

Cp := 1

2
p(p − 1) max

(
1, 2p−3) [1 + 2

p
K(p−2)/2m

2m

]
,

and the integer m satisfies the condition 2m � p � 2m + 2 and K2m =∑m
i=1

i2m−1

(i−1)! .

Keeping the notation Ti := ∑i
h=1 xh and φ(n) =(nχ ), we now prove Lemma 2 under the

assumption that the event Aα,n holds for the realisation of the fitness sequence x (written as
x ∈ Aα,n). We use the subscript x in Px and Ex to indicate the conditioning on X = x. The first
step is to derive an expression forEx[Sn,k] that holds for any realisation of the fitness sequence,
where we modify a moment formula used in proving [36, Proposition 1.3].

Lemma 16. Let Ti be as above, and let Bi, Sn,i be as in (1.8) and (1.9). Then for 1 � k< n and
a positive integer p,

Ex
[
Sp

n,k

]=
⎡⎣p−1∏

h=0

Tk + k + h

Tn + n − 1 + h

⎤⎦ p−1∏
j=0

n−1∏
i=k+1

[
1 + 1

Ti + i − 1 + j

]
. (9.1)

Proof. Since (Bi, 1 � i � n) are independent beta random variables, we use the moment
formula of the beta distribution to show that for p � 1,

Ex
[
Sp

n,k

]= n∏
i=k+1

E
[
(1 − Bi)

p]= n∏
i=k+1

p−1∏
j=0

Ti−1 + i − 1 + j

Ti + i − 1 + j
,

=
p−1∏
j=0

⎧⎨⎩ (Tk + k + j)

(Tn + n − 1 + j)

(Tn + n − 1 + j)

(Tk + k + j)

n∏
i=k+1

Ti−1 + i − 1 + j

Ti + i − 1 + j

⎫⎬⎭ .
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Noting that Tk + k + j and Tn + n − 1 + j in the second product above cancel with (Tn + n −
1 + j)/(Tk + k + j), we can rewrite the final term as

Ex
[
Sp

n,k

]=
⎡⎣p−1∏

h=0

Tk + k + h

Tn + n − 1 + h

⎤⎦ n−1∏
i=k+1

p−1∏
j=0

Ti + i + j

Ti + i − 1 + j

=
⎡⎣p−1∏

h=0

Tk + k + h

Tn + n − 1 + h

⎤⎦ p−1∏
j=0

n−1∏
i=k+1

[
1 + 1

Ti + i − 1 + j

]
,

hence concluding the proof. �
Taking k = 1 in (9.1) recovers the original formula of [36], where Ti here is Ai in [36]. Next,

we use the moment formula to show that when x ∈ Aα,n, the difference between the mean of
Sn,k and (k/n)χ is small enough for large n and k � 	φ(n)
.

Lemma 17. Given 1/2<α < 1 and a positive integer n, assume that x ∈ Aα,n. Then there is a
positive constant C := C(x1, μ, α) such that for all 	φ(n)
� k � n,

∣∣∣∣Ex[Sn,k] −
(

k

n

)χ ∣∣∣∣� Cnχ (α−1). (9.2)

Proof. We first prove the upper bound for Ex[Sn,k], using the techniques for proving [33,
Lemma 4.4]. Applying the formula (9.1) (with p = 1), for x ∈ Aα,n and k � 	φ(n)
, we obtain

Ex[Sn,k] � k(μ+ 1) + kα + b

n(μ+ 1) − nα + b − 1

n−1∏
i=k+1

[
1 + 1

iμ− iα + i + b − 1

]
, (9.3)

where b := x1 −μ. We rewrite the first term on the right-hand side of (9.3) as follows:

(
k

n

)
μ+ 1 + k−1+α + k−1b

μ+ 1 − n−1+α + n−1(b − 1)
=
(

k

n

) [
1 + kα−1 + nα−1 + (k−1 − n−1)b + n−1

μ+ 1 − nα−1 + n−1(b − 1)

]
� k

n

(
1 + Ckα−1)

� k

n

(
1 + Cnχ (α−1)),

where C := C(x1, μ, α) is some positive constant. To bound the product term on the right-hand
side of (9.3), we take the logarithm and bound

∣∣∣∣∣∣
n−1∑

i=k+1

log

(
1 + 1

i(μ+ 1) − iα + b − 1

)
− 1

μ+ 1
log
(n

k

)∣∣∣∣∣∣ .
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By the triangle inequality, we have∣∣∣∣∣∣
n−1∑

i=k+1

log

(
1 + 1

iμ− iα + i + b − 1

)
− 1

μ+ 1
log
(n

k

)∣∣∣∣∣∣
�

∣∣∣∣∣∣
n−1∑

i=k+1

log

(
1 + 1

iμ− iα + i + b − 1

)
− 1

i(μ+ 1) − iα + b − 1

∣∣∣∣∣∣ (9.4)

+
∣∣∣∣∣∣

n−1∑
j=k+1

1

j(μ+ 1) − jα + b − 1
− 1

μ+ 1
log
(n

k

)∣∣∣∣∣∣ . (9.5)

We use the fact that y − log (1 + y) � y2 for y � 0 to bound (9.4). Letting yi = (i(μ+ 1) − iα +
b − 1)−1, this implies that (9.4) is bounded by

∑n
i=k+1 y2

i for k � 	φ(n)
 and n large enough,
and by an integral comparison,

n∑
i=k+1

y2
i = O(n−χ ).

For (9.5), we have∣∣∣∣∣∣
n−1∑

i=k+1

1

i(μ+ 1) − iα + b − 1
− 1

(μ+ 1)
log
(n

k

)∣∣∣∣∣∣
=
∣∣∣∣∣∣

n−1∑
i=k+1

(
1

i(μ+ 1) − iα + b − 1
− 1

(μ+ 1)i

)
+ O
(
k−1)∣∣∣∣∣∣

�
n−1∑

i=k+1

∣∣∣∣ iα − b + 1

i(μ+ 1)(i(μ+ 1) − iα + b − 1)

∣∣∣∣+ O
(
k−1)

� C′
n−1∑

i=k+1

i−2+α + O
(
k−1)

� C′(1 − α)−1[φ(n)]α−1 + O
(
n−χ ),

where C′ := C′(x1, μ, α) is some positive constant. Combining the bounds above, a little cal-
culation shows that there are positive constants C := C(x1, μ, α) and C̃ := C̃(x1, μ, α) such
that for x ∈ Aα,n and 	φ(n)
� k � n,

Ex[Sn,k] � (k/n)χ
(
1 + Cnχ (α−1)) exp

{
C̃nχ (α−1)}.

Since ex = 1 + x + O(x2) for x near zero, there is a positive constant C := C(x1, μ, α) such
that for 	φ(n)
� k � n and n large enough,

Ex[Sn,k] � (k/n)χ
(
1 + Cnχ (α−1))� (k/n)χ + Cnχ (α−1),
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hence proving the desired upper bound. The lower bound can be proved by noting that for
	φ(n)
� k � n,

Ex[Sn,k] � k(μ+ 1) − kα + b

n(μ+ 1) + nα + b − 1

n∏
i=k+1

[
1 + 1

iμ+ iα + i + b − 1

]
,

and repeating the calculations above. The details are omitted. �
With Lemma 17 and a martingale argument, we can prove Lemma 2.

Proof of Lemma 2. Let δ̂n = Cnχ (α−1)/4, where C := C(x1, μ, α) is the positive constant in
(9.2) of Lemma 17. Writing K := 	φ(n)
, define

Ẽn,δ̂n
:=
{

max
K�k�n

∣∣∣∣Sn,k −
(

k

n

)χ ∣∣∣∣� 2δ̂n

}
.

The lemma follows from bounding Px

[
Ẽn,δ̂n

]
under the assumption x ∈ Aα,n. By the triangle

inequality, we have

Px

[
Ẽn,δ̂n

]
� Px

[
max

K�k�n

∣∣Sn,k −Ex[Sn,k]
∣∣+ max

K�j�n

∣∣Ex[Sn,j] − (j/n)χ
∣∣� 2δ̂n

]
.

Applying Lemma 17 to bound the difference between (j/n)χ and Ex[Sn,j], we obtain

Px

[
Ẽn,δ̂n

]
� Px

[
max

K�k�n

∣∣Sn,k −Ex[Sn,k]
∣∣� δ̂n

]
� Px

[
max

K�k�n

∣∣∣Sn,k(Ex[Sn,k])−1 − 1
∣∣∣� δ̂n

]
,

where the second inequality is due to Ex[Sn,k] � 1. We bound the right-hand side of the above
using a martingale argument. Recall that Ex[Sn,k] =∏n

j=k+1 E[1 − Bj]. Define M0 := 1, and
for j = 1, . . . , n − K, let

Mj :=
n∏

i=n−j+1

1 − Bi

E[1 − Bi]
= Sn,n−j

E[Sn,n−j]
.

Let Fj be the σ -algebra generated by (Bi, n − j + 1 � i � n) for 1 � j � n − K, with F0 =∅.
It follows that

((
Mj,Fj

)
, 0 � j � n − K

)
is a martingale with E[Mj] = 1. Since (Mj − 1)2 is a

submartingale, Doob’s inequality [14, Theorem 4.4.2, p.204] yields

Px

[
Ẽn,δ̂n

]
� Px

[
max

0�j�n−K

∣∣Mj − 1
∣∣� δ̂n

]
� δ̂−2

n Varx(Mn−K), (9.6)

where Varx(Mn−K) is the variance conditional on x. We use the formulas for the first and second
moments of the beta distribution to bound the variance:

Varx(Mn−K) =Ex
[
(Mn−K)2]− 1 =

[ n∏
j=K+1

(Tj−1 + j)

(Tj−1 + j − 1)

(Tj + j − 1)

(Tj + j)

]
− 1

=
n∏

j=K+1

[
1 + Tj − Tj−1

(Tj + j)(Tj−1 + j − 1)

]
− 1.
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Below we allow the positive constant C′ = C′(x1, μ, α) to vary from line to line. As
∣∣∑j

i=2 xi −
(j − 1)μ

∣∣� jα for all K + 1 � j � n when x ∈ Aα,n, a little computation yields

Varx(Mn−K) �
n∏

j=K+1

[
1 + μ+ jα + (j − 1)α

{(μ+ 1)j −μ− jα + x1}{(μ+ 1)j − 2μ− jα + x1 − 1}
]

− 1

�
n∏

j=K+1

(
1 + C′jα−2)− 1

� C′Kα−1. (9.7)

Applying (9.7) to (9.6) completes the proof. �

We conclude this section with the proof of Lemma 3, recalling that Zj ∼ Gamma(xj, 1) and
Z̃j ∼ Gamma(Tj + j, 1).

Proof of Lemma 3. Writing Tj := ∑j
i=1 xi and Yj ∼ Gamma(Tj + j − 1, 1), we first prove

(2.4). Letting Eε,j be as in (2.3), we have

Px
[
Ec
ε,j

]= Px

[∣∣∣∣∣ Zj

Zj + Z̃j−1
− Zj

(μ+ 1)j

∣∣∣∣∣� Zj

(μ+ 1)j
ε

]

= Px

[∣∣∣∣∣ (μ+ 1)j

Zj + Z̃j−1
− 1

∣∣∣∣∣� ε
]

� Px

[∣∣∣∣∣Zj + Z̃j−1

(μ+ 1)j
− 1

∣∣∣∣∣� ε

1 + ε

]

= Px

[∣∣∣∣ Yj

(μ+ 1)j
− 1

∣∣∣∣� ε

1 + ε

]
,

and by Chebyshev’s inequality,

Px
[
Ec
ε,j

]
�
(

1 + ε

ε

)4

Ex

[(
Yj

(μ+ 1)j
− 1

)4
]

.

Then (2.4) follows from bounding the moment above under the assumption x ∈ Aα,n, and apply-
ing a union bound. Let aj := Tj + j − 1. Using the moment formula for the standard gamma
distribution, a little calculation shows that the moment is equal to

Ex
[
Y4

j

]
(μ+ 1)4j4

− 4Ex
[
Y3

j

]
(μ+ 1)3j3

+ 6Ex
[
Y2

j

]
(μ+ 1)2j2

− 4Ex[Yj]

(μ+ 1)j
+ 1

=
∏3

k=0 (aj + k)

(μ+ 1)4j4
− 4
∏2

k=0 (aj + k)

(μ+ 1)3j3
+ 6
∏1

k=0 (aj + k)

(μ+ 1)2j2
− 4aj

(μ+ 1)j
+ 1.

Noting that |aj − (μ+ 1)j|� jα + x1 +μ+ 1 for j � φ(n), a direct computation shows that
there is a positive constant C := C(x1, μ, α) such that

Ex

[(
Yj

(μ+ 1)j
− 1

)4
]
� Cj4α−4. (9.8)
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We now prove (2.4) using (9.8). Let C := C(x1, α, μ) be a positive constant that may vary at
each step of the calculation. Then

Px

[
n⋃

j=	φ(n)

Ec
ε,j

]
�

n∑
j=	φ(n)


Px
[
Ec
ε,j

]
� C

(
1 + ε

ε

)4 n∑
j=	φ(n)


j4α−4

� C

(
1 + ε

ε

)4 ∫ ∞

	φ(n)
−1
y4α−4dy � C(1 + ε)4ε−4nχ (4α−3),

as required. Next, we use a union bound and Chebyshev’s inequality to prove (2.5) as
follows:

Px

[
n⋃

j=	φ(n)


{
Zj � j1/2

}]
�

n∑
j=	φ(n)


Ex
[
Z4

j

]
j−2 =

n∑
j=	φ(n)


j−2
3∏
�=0

(xj + �).

If we further assume x2 ∈ (0, κ], then there are positive numbers C′ and C′′ such that

Px

[
n⋃

j=	φ(n)


{
Zj � j1/2

}]
� C′κ4

n∑
j=	φ(n)


j−2 � C′κ4
∫ ∞

φ(n)−1
y−2dy � C′′κ4n−χ ,

proving (2.6). �
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