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Abstract. This is the first of a series of two papers dealing with local limit theorems in
relatively hyperbolic groups. In this first paper, we prove rough estimates for the Green
function. Along the way, we introduce the notion of relative automaticity which will
be useful in both papers and we show that relatively hyperbolic groups are relatively
automatic. We also define the notion of spectral positive recurrence for random walks
on relatively hyperbolic groups. We then use our estimates for the Green function to
prove that pn � R−nn−3/2 for spectrally positive-recurrent random walks, where pn is
the probability of going back to the origin at time n and where R is the inverse of the
spectral radius of the random walk.
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1. Introduction
1.1. Random walks and local limit theorems. Consider a finitely generated group � and
a probability measure μ on �. We define the μ-random walk on �, starting at γ ∈ �, as
X

γ
n = γg1 · · · gn, where (gk) are independent random variables of law μ in �. We say

that μ is admissible if its support generates � as a semigroup. Equivalently, one can reach
any point from any point with the random walk with positive probability. We will always
assume in the following that measures μ are admissible. We say that μ is symmetric if
μ(γ ) = μ(γ −1), which means for the random walk that the probability to go from γ to γ ′
is the same as the probability to go from γ ′ to γ . The law of X

γ
n is denoted by pn(γ , γ ′) =

pn(e, γ −1γ ′). It is given by the convolution powers of μ, that is, pn(e, γ ) = μ∗n(γ ).
We say that the μ-random walk is aperiodic if pn(e, e) > 0 for large enough n. The

local limit problem consists in finding asymptotics of pn(e, e) when n goes to infinity. In
many situations, if the μ-random walk is aperiodic, one can prove a local limit theorem of
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Local limit theorems in relatively hyperbolic groups I 1927

the form
pn(e, e) ∼ CR−nn−α , (1)

where C > 0 is a constant, R ≥ 1 and α ∈ R. In such a case, α is called the critical
exponent of the random walk.

For example, if � = Z
d and μ is finitely supported and aperiodic, then classical Fourier

computations show that pn(e, e) ∼ Cn−d/2 if the random walk is centered and pn(e, e) ∼
CR−nn−d/2 with R > 1 if the random walk is non-centered. If � is a non-elementary
Gromov-hyperbolic group and μ is finitely supported, symmetric and aperiodic, then one
has pn(e, e) ∼ CR−nn−3/2 for R > 1. This was proved by Gerl and Woess [20] and Lalley
[27] for free groups, by Gouëzel and Lalley [23] for cocompact Fuchsian groups and by
Gouëzel [22] for any hyperbolic group.

In [19], Gerl conjectured that if a local limit of the form (1) holds for a finitely supported
random walk, then α is a group invariant, that is, if two different finitely supported
measures μ1 and μ2 lead to asymptotics like (1), with C1, R1, α1 and C2, R2, α2,
respectively, then α1 = α2. Cartwright disproved in [11] this conjecture with a spectacular
result, constructing different nearest neighbor random walks on a free product Zd ∗ Z

d

with different critical exponents, namely 3/2 and d/2, where d ≥ 5. He had previously
proved that one could have α = d/2 for some free products of the form Z

d ∗ Z
d ∗

· · · ∗ Z
d in [10], whereas Woess had proved in [37] that for nearest neighbor random

walks on free products, in general, one had α = 3/2 (what Woess calls ‘typical cases’
in [38]).

In [8], Candellero and Gilch gave a complete description of every local limit theorem
that can occur for finitely supported adapted nearest neighbor random walks on free
products of free abelian groups. Precisely, let � = Z

d1 ∗ Z
d2 and let μ be a probability

measure on �. We say that μ is adapted if it is of the form tμ1 + (1 − t)μ2, where
0 < t < 1 and where μi is a probability measure on Z

di . We assume that μi is finitely
supported and admissible on Z

di , so that μ also is finitely supported and admissible
on �. Then, depending on the weight t , one can have the critical exponent of μ to
be d1/2, d2/2 or 3/2. Every case can occur when d1, d2 ≥ 5; see [8, §7] for more
details.

In all the examples cited above, except for the case of Zd where explicit computations
are made easily, one shows a local limit theorem by studying the Green function

G(γ , γ ′) =
∑
n≥0

μ∗n(γ −1γ ′) =
∑
n≥0

pn(γ , γ ′),

which encodes the behavior of pn(e, e). More generally, define

G(γ , γ ′|r) =
∑
n≥0

rnμ∗n(γ −1γ ′).

Let Rμ be the radius of convergence of this power series. We call ρμ = R−1
μ the spectral

radius of the random walk. A good way to find asymptotics of μ∗n(e) is to look at
singularities of the Green function at the inverse of the spectral radius. When the Green
function is an algebraic function, this can be done by using Darboux-like theorems.
However, in general, we do not know if it is algebraic and one has to find another way
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to connect properties of G(e, e|Rμ) with asymptotics of μ∗n(e). In [22, 23], this is done
by using Tauberian theory and this will be our approach here.

As we saw, free products provide a great source of examples for local limit theorems.
There are several equivalent ways of defining relatively hyperbolic groups (see §2 for more
details). If � is a collection of subgroups of �, we say that � is hyperbolic relative to
� if it acts geometrically finitely on a proper geodesic hyperbolic space X such that the
stabilizers of the parabolic limit points are exactly the subgroups in �. The elements of
� are called peripheral subgroups or (maximal) parabolic subgroups. We fix a collection
�0 of representatives of conjugacy classes of �. According to [7, Proposition 6.15], such a
collection is finite. If � is a free product of the form � = �1 ∗ · · · ∗ �n, then � is relatively
hyperbolic with respect to conjugacy classes of the free factors �i and one can choose
�0 = {�1, . . . , �n}.

In this series of two papers, we extend Woess’ results [37] on free products to any
relatively hyperbolic group. The second paper will be devoted to proving an asymptotic of
the form (1), with α = 3/2, for non-spectrally degenerate random walks. This property of
spectral degeneracy was introduced in [15] to study stability of the Martin boundary. In
this first paper, we introduce a looser condition, namely spectral positive recurrence, and
prove some weaker estimates than (1) for spectrally positive-recurrent random walks.

We insist on the fact that both papers are different and use very different techniques. In
particular, the second one is not an enhanced version of the first one.

Before stating our main result, we introduce the following terminology. Let μ be a
finitely supported probability measure on a group �, which is relatively hyperbolic with
respect to �, and choose a finite collection �0 of representatives of conjugacy classes of
�. We can look at the weight given by μ to a parabolic subgroup H in �0 in several ways.
One way is to compute the spectral radius of the induced random walk on H and to see if
this spectral radius is 1. This leads to the notion of spectral degeneracy and we refer to §3.2
for more details. A weaker way is as follows. Let H ∈ �0. We define the series of Green
moments of μ along H as

I
(2)

H (r) =
∑

h,h′∈H
G(e, h|r)G(h, h′|r)G(h′, e|r).

Definition 1.1. We say that μ (or equivalently the random walk) has finite Green moments
if, for every H ∈ �0, I

(2)

H (Rμ) < +∞.

Definition 1.2. We say that μ (or equivalently the random walk) is divergent if
(d/dr |r=Rμ)G(e, e|r) = +∞ and that it is convergent otherwise.

Definition 1.3. We say that μ (or equivalently the random walk) is spectrally positive
recurrent if it is divergent and has finite Green moments.

We will give more explanations of these definitions in §3.2. Our main result is as
follows. For two functions f , g, we write f � g if there exists C such that f ≤ Cg.
We write f � g if both f � g and g � f . If the implicit constant C depends on some
parameters, we will avoid using this notation, except if the dependency is clear from the
context.
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THEOREM 1.4. Let � be a non-elementary relatively hyperbolic group. Let μ be a
finitely supported, admissible and symmetric probability measure on �. Assume that the
corresponding random walk is aperiodic and spectrally positive recurrent. Then

pn(e, e) � R−n
μ n−3/2.

This theorem is a consequence of the following one.

THEOREM 1.5. Let � be a non-elementary relatively hyperbolic group. Let μ be a
finitely supported, admissible and symmetric probability measure on �. Assume that the
corresponding random walk has finite Green moments. Then, as r tends to Rμ,

d2

dr2 G(e, e|r) �
(

d

dr
G(e, e|r)

)3

.

1.2. Organization of the paper. We now give some more details about our proofs and
briefly describe the content of the paper.

We first give in §2 several equivalent definitions of relatively hyperbolic groups and we
review basic results about such groups.

In §3, we give some preliminary results on the Green function that will be used
throughout the paper. We first give expressions of the derivatives of the Green function
in terms of spatial sums on the group, following the work of Gouëzel and Lalley; see
precisely Lemma 3.2. As announced in the introduction, we also give more explanations of
Definitions 1.1–1.3, making an analogy with similar definitions in the context of counting
theorems on Kleinian groups. We recall the definition of spectral degeneracy, introduced
in [15], and explain why non-spectral degeneracy implies finiteness of the Green moments.

In §4, we introduce the notion of relative automaticity and we prove that relatively
hyperbolic groups are relatively automatic; see Definition 4.1 and Theorem 4.2. The proof
is analogous to Cannon’s proof [9] for coding geodesics in hyperbolic groups (see also
[21]). We show that there is a finite number of what we call relative cone types. This
should be compared with the notion of partial cone type introduced in [39], where it
is shown that there is a finite number of them too. This result is not surprising and is
kind of implicit in Farb’s work (see [16, 17]), although it is not properly stated there. We
do use the notion of relatively automatic groups in the present paper, but this is mainly
for convenience. On the contrary, it will be of great importance in the next paper. We
will use there relatively automatic structures to relate asymptotic properties of the Green
function with asymptotic properties of some operators defined on a countable Markov shift
associated with a relatively hyperbolic group. Theorem 4.2 will thus be a crucial tool.

In §5, we prove Theorem 1.5. A similar result is given in [22] for hyperbolic groups, but
our proof is more difficult and our estimates also involve the second derivative of the Green
function associated with the first return transition kernels on the parabolic subgroups.
Along the way, we obtain other estimates involving the Green function of the parabolic
subgroups and the Green function of the whole group. We also show that non-spectral
degeneracy of the measure μ in the sense of [15] implies that μ is divergent in the sense
of Definition 1.2, so that non-spectral degeneracy implies spectral positive recurrence.
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We finish the proof of our main result in §6. We prove a weak version of Karamata’s
Tauberian theorem and use it, together with technical results from [23], to deduce
Theorem 1.4 from Theorem 1.5.

Finally, let us mention that we will repeatedly use weak relative Ancona inequalities
up to the spectral radius. These inequalities state the following. Let � be a relatively
hyperbolic group and let μ be an admissible probability measure on �. Let x, y, z ∈ �

be such that y is on a relative geodesic from x to z or more generally y is within a uniform
bounded distance of a transition point on a geodesic from x to z in the Cayley graph of �

(see §2 for more details of these notions). Then, for every r ≤ Rμ,

G(x, z|r) � G(x, y|r)G(y, z|r). (2)

The implicit constant is asked not to depend on r , x, y, z. In other words, the Green
function is roughly multiplicative along relative geodesics (uniformly in r). One of
the main results of [15] is that weak relative Ancona inequalities hold for any finitely
supported, symmetric and admissible probability measure μ on a relatively hyperbolic
group �. Note that there also exist strong relative Ancona inequalities, which were also
proved in [15]. Since strong inequalities are technical to state and since we will not need
them in this paper, we do not mention them here. However, they will be a crucial tool in
the second paper.

2. Relatively hyperbolic groups
There are several equivalent definitions of relative hyperbolicity. We saw one above in
terms of geometric actions. Let us give more details now.

Consider a finitely generated group � acting discretely and by isometries on a proper
and geodesic hyperbolic space (X, d). Choose a base point o ∈ X. The limit set of � is
the set of accumulation points of the orbit of o in the Gromov boundary of X. It does not
depend on the choice of o. We denote this limit set by ��. Recall that an element γ of � is
called elliptic if it fixes some point in X. Otherwise, either it fixes exactly one point in ��

or it fixes exactly two points in ��, one being attractive and the other one being repelling.
In the first case, γ is called parabolic and in the second case it is called loxodromic; see
[21, Ch. 8] for more details.

A point ξ ∈ �� is called conical if there are a sequence (γn) of � and distinct points
ξ1, ξ2 in �� such that γnξ converges to ξ1 and γnζ converges to ξ2 for all ζ 
= ξ in ��.
A point ξ ∈ �� is called parabolic if its stabilizer in � is infinite, fixes exactly ξ in ��

and contains no loxodromic element. A parabolic limit point ξ in �� is called bounded
parabolic if its stabilizer in � is infinite and acts cocompactly on �� \ {ξ}.

We say that the action of � on X is geometrically finite if the limit set only consists of
conical limit points and bounded parabolic limit points. Then we say that � is relatively
hyperbolic with respect to � if it acts geometrically finitely on such a hyperbolic space
(X, d) such that the stabilizers of the parabolic limit points are exactly the elements of �.
We say that � is elementary if the limit set only consists of zero, one or two points.
Otherwise, it is infinite. In the following, we will always assume that the group � is
non-elementary.
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Moreover, we can (and we will) always assume that the limit set is the entire Gromov
boundary of X, up to changing X into the closed convex hull of the limit set; see [7, §6].
Denote by ∂X this Gromov boundary. One might choose different spaces X on which �

can act geometrically finitely. However, different choices of X give rise to equivariantly
homeomorphic boundaries ∂X. We call ∂X the Bowditch boundary of � and we denote it
by ∂B� when we de not want to refer to a space X on which � acts.

We will also be interested in a combinatorial description of relatively hyperbolic groups.
This was first developed by Farb in [16], see also [17], but it will be more convenient
to use Osin’s terminology [31]. Consider a finitely generated group �, together with a
collection of subgroups �, and assume that � is stable by conjugacy and has a finite
number of conjugacy classes. Choose one representative of each conjugacy class to form
a set of representatives �0 = {H1, . . . , HN }.

Consider a finite generating set S of � and denote by Cay(�, S) the corresponding
Cayley graph. We will also use the Cayley graph of � with respect to the infinite generating
set S ∪ ⋃

1≤n≤N Hn. To avoid confusion in the terminology, we will denote this other
Cayley graph by �̂, in reference to Farb’s notation. We denote by d̂ the graph distance
in �̂.

Definition 2.1. We say that � is weakly relatively hyperbolic with respect to � if �̂ is
hyperbolic. This is independent of the choices of �0 and S.

In the following, what we will call a path in � or in �̂ will be a sequence of adjacent
vertices in the corresponding graph, not just any sequence of vertices. We label the edges of
the path with the corresponding element of S or S ∪ ⋃ Hn. Note that a path in � induces
a path in �̂, but the converse is not true in general.

A relative geodesic is then a path of minimal length between its end points in �̂.
A relative (λ, c)-quasi geodesic path is a path α = (γ1, . . . , γn) in �̂ which is also a
(λ, c)-quasi geodesic, that is, for all k, l,

1
λ

|k − l| − c ≤ d̂(γk , γl) ≤ λ|k − l| + c.

We say that a path enters the coset γHn of a parabolic subgroup Hn if there is a vertex
in this path which is an element of γHn and which is followed by an edge labeled with an
element of Hn. Consider then a maximal subpath with vertices in γHn and labeled with
elements of Hn. Such a subpath is called a Hn-component. The entering point (respectively
exit point) of the Hn-component is the first (respectively last) vertex of this subpath and
we say that the path leaves γHn at the exit point.

We also say that the path travels more than r in γHn if the distance in Cay(�, S)

between the entering point and the exit point is larger than r .
Finally, we say that a path is without backtracking if once it has left a coset γHn, it

never goes back to it.

Definition 2.2. We say that the pair (�, �) satisfies the bounded coset penetration property
(BCP property for short) if for all λ, c, there exists a constant Cλ,c such that for every pair
(α1, α2) of relative (λ, c)-quasi geodesic paths without backtracking with common end
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points, the following holds:
(1) if α1 travels more than Cλ,c in a coset, then α2 enters this coset;
(2) if α1 and α2 enter the same coset, the two entering points and the two exit points are

Cλ,c-close to each other in Cay(�, S).

Again, this definition does not depend on the choices of �0 and S. The following is
proved in [31].

PROPOSITION 2.3. The group � is relatively hyperbolic with respect to � if and only if it
is weakly relatively hyperbolic with respect to � and if the pair (�, �) satisfies the BCP
property.

Note that mapping class groups are weakly relatively hyperbolic (see [29]) but are not
relatively hyperbolic (see [2]). Our finite automaton coding relative geodesics would still
code relative geodesics in mapping class groups but would not be finite any more (we do
use the BCP property a lot). However, one could maybe arrange it to have only finitely
many recurrence classes.

One important aspect in relatively hyperbolic groups is the notion of transition points. If
α is a geodesic in the Cayley graph Cay(�, S), a point on α is called a transition point if it is
not deep in a parabolic subgroup. More precisely, let η1, η2 > 0. A point γ on a geodesic
α in Cay(�, S) is called (η1, η2)-deep if the part of α containing the points at distance
at most η2 from γ is contained in the η1-neighborhood of a coset γ0H of a parabolic
subgroup H. Otherwise, γ is called a (η1, η2)-transition point. We refer to [18, 25] for more
details.

Consider a path α = (v1, . . . , vn) in �̂ that starts with a point v1 and ends with a
point vn. Define its lift α̃ = (ṽ1, . . . , ṽkn) in the Cayley graph of � as follows. Start
with ṽ1 = v1. If v2 satisfies v−1

1 v2 ∈ S, define ṽ2 = v2. Otherwise, ṽ2 ∈ v1H for some
parabolic subgroup H. Choose then a geodesic between v1 and v2 and denote its elements
by ṽ2, . . . , ṽk2 , so that ṽk2 = v2. We do the same with v3, that is, if v3 is obtained from v2

by adding an element in S, we define ṽk2+1 = v3, otherwise, we choose a geodesic from
ṽk2 to v3, which is now denoted by ṽk3 . We keep doing this for every element v4, . . . , vn.
Note that according to [14, Theorem 1.12], a geodesic whose end points are in the same
coset of a parabolic subgroup stays in a fixed neighborhood of this parabolic subgroup.
Thus, in other words, the lift of the relative geodesic is obtained by replacing the shortcuts
in �̂ with actual geodesics in the neighborhood of the corresponding parabolic subgroup.
Moreover, we have the following.

LEMMA 2.4. [18, Proposition 7.8, Corollary 7.10] There exist (λ, c) and (η1, η2) such that
if α is a relative geodesic in �̂, then its lift α̃ is a (λ, c)-quasi geodesic. Moreover, points
in α̃ that are obtained from lifting points in α are (η1, η2)-transition points on α̃.

Note that the first part of the lemma (that the lift of a relative geodesic is a quasi
geodesic) was also stated by Drutu and Sapir; see [14, Theorem 1.12]. It is also proved
there that the lift of a relative geodesic stays within a bounded distance of a geodesic. The
converse is also true. Precisely, we have the following.
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LEMMA 2.5. [25, Proposition 8.13] Fix a generating set S. For every large enough
η1, η2 > 0, there exists r ≥ 0 such that the following holds. Let α be a geodesic in
Cay(�, S) and let γ be an (η1, η2)-transition point on α. Let α̂ be a relative geodesic
path with the same end points as α. Then there exists a point γ̂ on α̂ such d(γ , γ̂ ) ≤ r .

3. Preliminary results on the Green function
In this section we give several general results that will be used throughout the paper.

3.1. Combinatorial analysis of the Green derivatives. Let � be a finitely generated
group. Here, we do not need our group to be relatively hyperbolic and we do not make such
an assumption. Let μ be a probability measure on � and let Rμ be the inverse of the spectral
radius of the corresponding random walk. Again, we do not need to make assumptions
such as the support to be finite or the associated random walk to be irreducible. We will
give formulae for the Green derivative (d/dr)G(γ , γ ′|r) and higher derivatives. The first
formula we get, given in the following lemma, was apparently first coined by Gouëzel
and Lalley in [23], although it was already implicitly used before, for example by Woess
in [38, §27.6].

LEMMA 3.1. For every γ , γ ′ ∈ �, for every r ∈ [0, Rμ], we have

d

dr
(rG(γ1, γ2|r)) =

∑
γ∈�

G(γ1, γ |r)G(γ , γ2|r).

Proof. First, the formula makes sense at Rμ, even if the sum diverges at Rμ, since the
coefficients of the power series G(·, ·|r) are non-negative. We have by definition

rG(γ1, γ2|r) =
∑
n≥0

μ∗n(γ −1
1 γ2)r

n+1,

so that
d

dr
(rG(γ1, γ2|r)) =

∑
n≥0

(n + 1)μ∗n(γ −1
1 γ2)r

n.

The Cauchy formula for products of power series gives

∑
γ∈�

G(γ1, γ |r)G(γ , γ2|r) =
∑
γ∈�

∑
n≥0

( n∑
k=0

μ∗k(γ −1
1 γ )μ∗(n−k)(γ −1γ2)

)
rn

=
∑
n≥0

n∑
k=0

( ∑
γ∈�

μ∗k(γ −1
1 γ )μ∗(n−k)(γ −1γ2)

)
rn.

For fixed k, decomposing a path of length n from γ1 to γ2 according to its position at time
k, we see that

∑
γ∈� μ∗k(γ −1

1 γ )μ∗(n−k)(γ −1γ2) = μ∗n(γ −1
1 γ2). Thus,

∑
γ∈�

G(γ1, γ |r)G(γ , γ2|r) =
∑
n≥0

n∑
k=0

μ∗n(γ −1
1 γ2)r

n =
∑
n≥0

(n + 1)μ∗n(γ −1
1 γ2)r

n,

which gives the desired formula.
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Using Lemma 3.1, we have r2(d/dr)(rG(γ1, γ2|r))=∑
γ∈�(rG(γ1, γ |r))(rG(γ , γ2|r)),

so that

d

dr

(
r2 d

dr
(rG(γ1, γ2|r))

)

=
∑
γ∈�

(
d

dr
(rG(γ1, γ |r))rG(γ , γ2|r) + rG(γ1, γ |r) d

dr
(rG(γ , γ2|r))

)

= r
∑
γ∈�

∑
γ ′∈�

G(γ1, γ ′|r)G(γ ′, γ |r)G(γ , γ2|r)

+ r
∑
γ∈�

∑
γ ′∈�

G(γ1, γ |r)G(γ , γ ′|r)G(γ ′, γ2|r)

= 2r
∑

γ ,γ ′∈�

G(γ1, γ |r)G(γ , γ ′|r)G(γ ′, γ2|r).

More generally, we define

I (k)(r) =
∑

γ (1),...,γ (k)∈�

G(γ , γ (1)|r)G(γ (1), γ (2)|r) · · · G(γ (k−1), γ (k)|r)G(γ (k), γ ′|r).

We also inductively define

F1(r) = d

dr
(rGr(γ , γ ′))

and

Fk(r) = d

dr
(r2Fk−1(r)), k ≥ 2.

We do not refer to γ and γ ′ in the notation, but Fk(r) and I (k)(r) do depend on them.
According to the formula above, we have

F2(r) = d

dr

(
r2 d

dr
(rG(γ , γ ′|r))

)
= 2rI (2)(r).

More generally, we have the following result.

LEMMA 3.2. For every γ , γ ′ ∈ �, for every r ∈ [0, Rμ], Fk(r) = k! rk−1I (k)(r).

Proof. We prove this by induction. The formula is true for k = 2, as stated above. Assume
that it is true for k. Then

Fk+1(r) = d

dr
(r2Fk(r)) = d

dr
(k! rk+1I (k)(r)),

so that

Fk+1(r)

k!
= d

dr

∑
γ (1),...,γ (k)∈�

(rG(γ , γ (1)|r)) · · · (rG(γ (k−1), γ (k)|r))(rG(γ (k), γ ′|r)).
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Differentiating every rG(γ (i), γ (i+1)|r) using Lemma 3.1, we get, as for the case k = 2,

Fk+1(r)

k!
= (k + 1)

∑
γ (1),...,γ (k+1)∈�

rkG(γ , γ (1)|r) · · · G(γ (k), γ (k+1)|r)G(γ (k+1), γ ′|r)

and hence Fk+1(r) = (k + 1)! rkI (k+1)(r).

We will use the following proposition later. We denote by G(k)(γ , γ ′|r) the kth
derivative (dk/drk)G(γ , γ ′|r) of the Green function at r and simply by G′(γ , γ ′|r) its
first derivative (d/dr)G(γ , γ ′|r).
PROPOSITION 3.3. For every γ , γ ′ ∈ � and every r ∈ [1, Rμ], I (k)(r) grows at most
exponentially if and only if G(k)(γ , γ ′|r)/k! does. Precisely, there exist c1 ≥ 0 and C1 > 1
such that (G(k)(γ , γ ′|r)/k!) ≤ c1C

k
1 for all k if and only if there exist c2 ≥ 0 and C2 > 1

such that I (k)(r) ≤ c2C
k
2 for all k.

• Note that the constants ci and Ci are allowed to depend on r .
• The only reason for requiring Ci > 1 and r ≥ 1 is technical. The goal is to have

divergent geometric series below. In any case, if one of the upper bounds is true for
Ci ≥ 0, it is in particular true for some C′

i > 1.
• Of course, (G(k)(γ , γ ′|Rμ)/k!) ≤ c1C

k
1 cannot happen since Rμ is the radius of

convergence of the Green function. However, the statement still remains valid at
r = Rμ and shows in particular that I (k)(Rμ) ≤ c2C

k
2 cannot happen. We will actually

use this in a proof by contradiction later.

Proof. Let us first differentiate rG(γ , γ ′|r). For simplicity, we will write Gr rather than
G(γ , γ ′|r) and similarly for derivatives. We have (d/dr)(rGr) = Gr + rG′

r . Differenti-
ating r2(d/dr)(rGr), we thus get

F2(r) = d

dr

(
r2 d

dr
(rGr)

)
= d

dr
(r2(Gr + rG′

r )) = 2rGr + 4r2G′
r + r3G(2)

r .

Let us compute the next Fk before giving a general formula. We have

F3(r) = d

dr
(r2(2rGr + 4r2G′

r + r3G(2)
r )) = 6r2Gr + 18r3G′

r + 9r4G(2)
r + r5G(3)

r .

More generally, we have

Fk(r) =
k∑

j=0

fj ,kr
k+j−1G

(j)
r , (3)

where the coefficients fj ,k satisfy

fj ,k+1 = fj−1,k + (k + j + 1)fj ,k , 0 ≤ j ≤ k, (4)

since we first multiply Fk(r) by r2 before differentiating to get Fk+1(r). We also have
f0,k = k! and fk,k = 1.

This shows that r2k−1G
(k)
r ≤ Fk(r) = k! rk−1I (k)(r) according to Lemma 3.2. Thus,

we have (G
(k)
r /k!) ≤ (1/rk)I (k)(r). This proves the ‘if’ part of the proposition.
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For the ‘only if’ part, we will have to be precise about the coefficients fj ,k . We first
prove by induction on k that there exist c ≥ 1 and C ≥ 1 such that

fj ,k
j !
k!

≤ cCj+k . (5)

Indeed, assuming that this is true for k, according to (4), we have for j ≤ k,

fj ,k+1 ≤ cCj−1+k k!
(j − 1)!

+ cCj+k(k + j + 1)
k!
j !

≤ cCj−1+k k!
(j − 1)!

+ cCj+k k + j + 1
k + 1

(k + 1)!
j !

.

Since j ≤ k, we always have (k!/((j − 1)!))≤ (((k + 1)!)/j !) and (k + j + 1)≤ 2(k + 1).
Thus,

fj ,k+1 ≤ cCj−1+k (k + 1)!
j !

+ 2cCj+k (k + 1)!
j !

.

To conclude, it suffices to choose c and C such that cCj−1+k + 2cCj+k ≤ cCj+k+1, that
is, 1 + 2C ≤ C2, which is always possible.

Now, assuming that (G
(k)
r (x, y)/k!) ≤ c1C

k
1 for all k and using Lemma 3.2 along

with (3) and (5), we get

rk−1I (k)(r) ≤ 1
k!

Fk(r) = 1
k!

k∑
j=0

fj ,kr
k+j−1G

(j)
r ≤ 1

k!
rk−1

k∑
j=0

fj ,kr
j c1C

j

1 j !

≤ cc1r
k−1Ck

k∑
j=0

(rCC1)
j ≤ rk−1 cc1rCC1

rCC1 − 1
(rC2C1)

k .

This completes the proof.

Remark 3.1. In [22, 23], the authors used the incorrect formula

G(γ , γ ′|r + ε) =
∑
k≥0

εk
∑

γ (1),...,γ (k)∈�

G(γ , γ (1)|r) · · · G(γ (k−1), γ (k)|r)G(γ (k), γ ′|r).

If this were true, this would imply that

dk

drk
G(γ , γ ′|r) =

∑
γ (1),...,γ (k)∈�

G(γ , γ (1)|r) · · · G(γ (k−1), γ (k)|r)G(γ (k), γ ′|r) = I (k)(r),

whereas Lemma 3.2 shows that the formula is a little bit more involved. This is actually
not a problem since the authors only used the fact that I (k) grows at most exponentially
to deduce that G

(k)
r /k! grows at most exponentially, which is legitimate according to

Proposition 3.3.

3.2. Spectral degeneracy and spectral positive recurrence. We now consider a group �,
hyperbolic relative to a collection of peripheral subgroups �, and we fix a finite collection
�0 = {H1, . . . , HN } of representatives of conjugacy classes of �. We assume that � is
non-elementary. Let μ be a probability measure on �, Rμ the inverse of the spectral radius
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of the μ-random walk and G(γ , γ ′|r) the associated Green function, evaluated at r , for
r ∈ [0, Rμ]. If γ = γ ′, we simply use the notation G(r) = G(γ , γ |r) = G(e, e|r).

We denote by pk the first return transition kernel to Hk . Namely, if h, h′ ∈ Hk , then
pk(h, h′) is the probability that the μ-random walk, starting at h, eventually comes back
to Hk and that its first return to Hk is at h′. In other words,

pk(h, h′) = Ph(there exists n ≥ 1, Xn = h′, X1, . . . , Xn−1 /∈ Hk)

=
∑
n≥1

∑
γ1,...,γn−1

/∈Hk

μ(h−1γ1)μ(γ −1
1 γ2) · · · μ(γ −1

n−2γn−1)μ(γ −1
n−1h

′).

More generally, for r ∈ [0, Rμ], we denote by pk,r the first return transition kernel to Hk

for rμ. Precisely, if h, h′ ∈ Hk , then

pk,r (h, h′) =
∑
n≥1

∑
γ1,...,γn−1

/∈Hk

rnμ(h−1γ1)μ(γ −1
1 γ2) · · · μ(γ −1

n−2γn−1)μ(γ −1
n−1h

′).

We then denote by p
(n)
k,r the convolution powers of this transition kernel, by Gk,r (h, h′|t)

the associated Green function, evaluated at t , and by Rk(r) the inverse of the associated
spectral radius, that is, the radius of convergence of the power series t �→ Gk,r (h, h′|t).
For simplicity, write Rk = Rk(Rμ). As for the initial Green function, if h = h′, we will
simply write Gk,r (t) = Gk,r (h, h|t) = Gk,r (e, e|t). We first show the following lemma.

LEMMA 3.4. Let r ∈ [0, Rμ]. For any k ∈ {1, . . . , N},
Gk,r (h, h′|1) = G(h, h′|r).

Proof. This follows from the fact that every trajectory from h to h′ for rμ defines a
trajectory from h to h′ for pk,r , excluding every point of the path that is not in Hk , and
every trajectory for pk,r is obtained in such a way. Summing over all trajectories, the two
Green functions coincide.

Since � is non-elementary, it contains a free group and hence is non-amenable. It
follows from a result of Guivarc’h (see [24, pp. 85, Remark b)]) that G(Rμ) < +∞ (see
also [38, Theorem 7.8] for a stronger statement). Thus, Gk,Rμ(1) < +∞. In particular,

for all k ∈ {1, . . . , N}, Rk ≥ 1. (6)

Definition 3.5. We say that μ (or equivalently the random walk) is spectrally degenerate
along Hk if Rk = 1. We say that it is non-spectrally degenerate if for every k, Rk > 1.

This definition was introduced in [15] to study the homeomorphism type of the Martin
boundary at the spectral radius. Beware that what is called spectral radius in [15] is the
inverse of the spectral radius in the present paper. This homeomorphism type can change
whether μ is spectrally degenerate or not along a parabolic subgroup. Also, this definition
does not depend on the choice of �0, in the sense that if H′

k is conjugate to Hk and if Hk

is replaced with H′
k in �0, then μ is spectrally degenerate along H0 if and only if it is

spectrally degenerate along H′
k; see [15, Lemma 2.4].
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Recall that for a parabolic subgroup H,

I
(2)

H (r) =
∑

h,h′∈H
G(e, h|r)G(h, h′|r)G(h′, e|r).

For simplicity, once �0 is fixed, for every parabolic subgroup Hk ∈ �0, we set I
(2)
k = I

(2)

Hk
.

In view of Lemma 3.2, I (2)
k is finite if and only if d2/dt2|t=1(t �→ Gk,Rμ(t)) is finite, which

obviously holds if Rk > 1. In particular, we have the following result.

PROPOSITION 3.6. With the same notation, if μ is non-spectrally degenerate, then it has
finite Green moments.

We will also prove later that if μ is non-spectrally degenerate, then it is divergent; see
Proposition 5.8. In particular, we state here the following.

PROPOSITION 3.7. With the same notation, if μ is non-spectrally degenerate, then it is
spectrally positive recurrent.

3.3. Analogy with counting theorems. We briefly explain here our choice of terminology
and give some perspectives on Definitions 1.1–1.3 and on our main theorem.

Consider a simply connected complete Riemannian manifold X with pinched negative
curvature. Let � be a finitely generated group acting on X via a discrete and free action.
Denote by M = X/� the quotient manifold. We assume that M is geometrically finite or
equivalently that � is geometrically finite; see [5, 6] for more details. In particular, � is
relatively hyperbolic with respect to virtually nilpotent parabolic subgroups.

The Poincaré series is defined as

P�(s) =
∑
γ∈�

e−sd(x0,γ ·x0). (7)

The critical exponent δ� of the group is the exponential radius of convergence of this
series. Precisely, P�(s) is finite if s > δ� and P�(s) is infinite if s < δ� .

Following Patterson and Sullivan [32, 36], we say that � is divergent if P�(δ�) = +∞
and that � is convergent otherwise.

We also introduce the series of moments along a parabolic subgroup H as

MH(s) =
∑
γ∈H

d(x0, γ · x0)e
−sd(x0,γ ·x0). (8)

Note that the series of moments is the derivative of the Poincaré series of H. We say that �

is positive recurrent if it is divergent and if, for every parabolic subgroup H, MH is finite.
Positive recurrence is a key property for establishing counting theorems and dynamical
properties of � in such contexts. Note for example that according to [13, Theorem B], � is
positive recurrent if and only if the associated Bowen–Margulis measure m� is finite.

We can also introduce the critical exponent δH of the parabolic subgroup H as the
exponential radius of convergence of the Poincaré series restricted to H. We say that � has
a spectral gap if for every parabolic subgroup H, δH < δ� .
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Clearly, if � has a spectral gap, then MH is finite for every H. It is also true that if
� has a spectral gap, then it is divergent; see [13, Theorem A]. We also refer to [34] and
references therein for many more details.

Let us now make a formal analogy with random walks on relatively hyperbolic groups.
Let μ be an admissible probability measure on a finitely generated group � defining a
transient random walk (that is, for every γ , G(e, γ ) is finite). Following Blachère and
Brofferio [4], we introduce the Green distance as

dG(γ , γ ′) = −log F(γ , γ ′) = −log
G(γ , γ ′)
G(e, e)

.

Then F(γ , γ ′) is the probability of ever reaching γ ′, starting the random walk at γ ; see
[38, Lemma 1.13 (b)]. When the measure μ is symmetric, this is indeed a distance. The
triangle inequality can be reformulated as

F(γ1, γ2)F (γ2, γ3) ≤ F(γ1, γ3).

In particular, for any γ1, γ2, γ3, we have

G(γ1, γ2)G(γ2, γ3) ≤ CG(γ1, γ3) (9)

for some uniform constant C. Note that this inequality is always true, whether μ is
symmetric or not, since it only states that the probability of reaching γ3 starting at γ1

is always bigger than the probability of first reaching γ2 from γ1 and then reaching γ3

from γ2.
More generally, we set

F(γ , γ ′|r) = G(γ , γ ′|r)
G(e, e|r) . (10)

We also define the r-Green metric as dG(γ , γ |r) = − log F(γ , γ ′|r) and the symmetrized
r-Green metric as

d̃G(γ , γ ′|r) = −log F(γ , γ ′|r) − log F(γ ′, γ |r).
Notice then that

I (1)(r) =
∑
γ∈�

G(e, γ |r)G(γ , e|r) =
∑
γ∈�

e−d̃G(e,γ |r).

Thus, I (1)(r) is analogous to the Poincaré series associated with the symmetrized Green
metric. The main difference with (7) is that the parameter r is part of the definition
of the metric in our situation. Lemma 3.1 shows that I (1)(r) is finite if and only if
(d/dr)G(e, e|r) is finite. In particular, we see that for r < Rμ, I (1)(r) is finite and, for
r > Rμ, I (1)(r) is infinite. Thus, under this analogy, the inverse of the spectral radius of
the random walk should be compared with the critical exponent of the group. Moreover,
we see that our terminology divergent and convergent is coherent with that of Patterson
and Sullivan.

As explained, given a parabolic subgroup H, the series of moments defined by (8)
is the derivative of the Poincaré series of H. In our situation, we thus have to check
finiteness of (d/dr)I

(1)

H (r). According to Lemma 3.2, this derivative is finite if and
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only if (d2/dr2)GH(e, e|r) is finite or equivalently I
(2)

H (r) is finite. This explains our
terminology of having finite Green moments. Finally, being spectrally positive recurrent is
formally analogous to being positive recurrent for a geometrically finite group, as defined
above.

The fact that this property of being positive recurrent seems so important for counting
theorems and is in particular equivalent to having a finite Bowen–Margulis measure also
gives motivation for our main theorem.

Finally, we see that under this analogy, the fact that the measure is non-spectrally
degenerate should be compared with the fact that the group has a spectral gap. As noted
above, in both situations, this implies being (spectrally) positive recurrent.

4. Coding relatively hyperbolic groups
In all this section, finite generating sets S of a group � are assumed to be symmetric
for simplicity. Hyperbolic groups are known to be strongly automatic, meaning that for
every such generating set S, there exists a finite directed graph G = (V , E, v∗) with a
distinguished vertex v∗ called the starting vertex and with a labeling map φ : E → S

such that the following holds. If γ = e1 · · · en is a path of adjacent edges in G, define
φ(e1 · · · em) = φ(e1) · · · φ(em) ∈ �. The properties satisfied by the labeled graph are
the following. No edge ends at v∗, every vertex v ∈ V can be reached from v∗ in G, for
every path γ = e1 · · · en, the path e, φ(e1), φ(e1e2), . . . , φ(γ ) in � is a geodesic from e

to φ(γ ) for the word distance corresponding to the generating set S and the extended map
φ is a bijection between paths in G starting at v∗ and elements of �. We refer to [21, Ch. 9,
Theorem 13] for a proof of this fact. This result was first proved by Cannon in [9] for some
particular negatively curved groups.

Automatic structures for relatively hyperbolic groups have been explored by Rebbechi
in his thesis [33] and then by Antolín and Ciobanu in [1]. Namely, Rebbechi proved
that if � is hyperbolic relative to automatic groups, then it is itself automatic. Antolín
and Ciobanu gave a strengthened version of this result (see [1, Theorem 1.1]). Let us
also mention the work of Neumann and Shapiro on geometrically finite groups (see [30]).
In the following, we will have to deal with what we call relative automatic structures.
Unfortunately, we can neither use directly the results of Rebbechi nor those of Antolín and
Ciobanu.

Let � be a finitely generated group and let � be a collection of subgroups invariant by
conjugacy and such that there is a finite set �0 of conjugacy classes of representatives of
subgroups in �.

Definition 4.1. A relative automatic structure for � with respect to the collection of
subgroups �0 and with respect to some finite generating set S is a directed graph
G = (V , E, v∗) with distinguished vertex v∗ called the starting vertex, where the set of
vertices V is finite, and with a labeling map φ : E → S ∪ ⋃

H∈�0
H such that the fol-

lowing holds. If ω = e1, . . . , en is a path of adjacent edges in G, define φ(e1, . . . , en) =
φ(e1) · · · φ(en) ∈ �. Then:
• no edge ends at v∗, except the trivial edge starting and ending at v∗;
• every vertex v ∈ V can be reached from v∗ in G;
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• for every path ω = e1, . . . , en, the path e, φ(e1), φ(e1e2), . . . , φ(γ ) in � is a relative
geodesic from e to φ(γ ), that is, the image of e, φ(e1), φ(e1e2), . . . , φ(γ ) in �̂ is a
geodesic for the metric d̂;

• the extended map φ is a bijection between paths in G starting at v∗ and elements of �.

Note that the union S ∪ ⋃
H∈�0

H is not required to be a disjoint union. Actually, the
intersection of two distinct subgroups H, H′ ∈ �0 can be non-empty. Also note that we
require the vertex set V to be finite. However, the set of edges is infinite, except if the
parabolic subgroups H are finite (in which case the group � is hyperbolic).

If there exists a relative automatic structure for � with respect to �0 and S, we say
that � is automatic relative to �0 and S. The goal of this section is to prove the following
theorem.

THEOREM 4.2. Let � be a relatively hyperbolic group and let �0 be a finite set of
representatives of conjugacy classes of the maximal parabolic subgroups. For every
symmetric finite generating set S of �, � is automatic relative to �0 and S.

During the proof, we will be careful about the notation for the distance. The letter d will
stand for the distance in the Cayley graph for the generating set S, whereas the letter d̂ will
refer to the graph distance in �̂. We will use both.

We will use several times the following classical results. Recall that a k-local relative
geodesic is a path (x1, . . . , xn) such that every subpath of length k is a relative geodesic.

LEMMA 4.3. [1, Theorem 5.2] There exist λ and c and a finite set of non-geodesic
sequences NG of the form σ = (σ1, . . . , σn), where σi ∈ S ∪ ⋃ Hk , such that every
2-local relative geodesic (x1, . . . , xn) that does not contain any sequence of NG as a
subpath is a relative (λ, c)-quasi geodesic path.

LEMMA 4.4. [25, Corollary 8.15] For every λ ≥ 1, c ≥ 0 and K ≥ 0, there exists
C ≥ 0 such that the following holds. Let (x1, . . . , xn) and (x′

1, . . . , x′
m) be two relative

(λ, c)-quasi geodesic paths such that d(x1, x′
1) ≤ K and d(xn, x′

m) ≤ K . Assume that
these quasi-geodesic are without backtracking. Then, for every 1 ≤ j ≤ n such that xj is
the entrance or exit point of a parabolic subgroup, there exists ij such that d(xj , x′

ij
) ≤ C.

In particular, if (x1, . . . , xm) is a relative geodesic, then, for every j , there exists
such an ij .

Actually, [25, Corollary 8.15] is only about relative geodesics, but one deduces the
result for relative quasi-geodesic paths using the BCP property. Also note that this lemma
is exactly the content of [31, Proposition 3.15], although the author uses a particular
generating set there. We also have a version of this lemma for relative geodesic rays.

LEMMA 4.5. For every (λ, c) and K ≥ 0, there exists C ≥ 0 such that the following holds.
Let (x1, . . . , xn, . . .) and (x′

1, . . . , x′
m, . . .) be two infinite relative (λ, c)-quasi geodesic

paths such that d(x1, x′
1) ≤ K and xn and x′

m converge to the same conical limit point ξ .
Assume that these relative geodesics are without backtracking. Then, for every 1 ≤ j ≤ n

such that xj is the entrance or exit point of a parabolic subgroup, there exists ij such that
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d(xj , x′
ij
) ≤ C. In particular, if (x1, . . . , xn, . . .) is a relative geodesic, then, for every j ,

there exists such an ij .

Proof. Consider two such (λ, c)-quasi geodesic paths. Convergence to a conical limit
point means convergence to the Gromov boundary of �̂. Since �̂ is hyperbolic, there
exists C1 such that for every j , there exists kj such that d̂(xj , x′

kj
) ≤ C1. Fix j and

consider xj and x′
kj

as above. Then the concatenation of the relative quasi geodesic path
(x1, . . . , xj ) and a relative geodesic from xj to x′

kj
is a relative (λ′, c′)-quasi geodesic

path with fixed parameters λ′, c′ (that only depend on C1, λ, c). Letting λ′′ = max(λ, λ′)
and c′′ = max(c, c′), we thus have two relative (λ′′, c′′)-quasi geodesic paths starting at
x1 and x′

1 and ending at x′
kj

. Applying Lemma 4.4 to those two paths, we see that there
exists i′j such that d(xj , x′

ij
) ≤ C for some C that only depends on C1, λ′′, c′′ and thus

only on λ, c.

We will adapt the proof of [21, Ch. 9, Theorem 13] to the relative case to prove
Theorem 4.2. We denote by � the set S ∪ ⋃

H∈�0
H and by �∗ the complete language

over the alphabet �, that is, the set of all finite sequences of elements of �. We denote
by σ = (σ1, σ2, . . . , σn) a sequence in �∗ and we define then the elements of � as γ1 =
σ1, γ2 = σ1σ2, . . . , γn = σ1 · · · σn. We denote by γ = (e, γ1, . . . , γn) the sequence of
elements of � thus produced (notice that we added the neutral element e to the sequence).
We say that σ is reduced if γ is a relative geodesic from e to γn. From the definition of �̂,
we get the following.

LEMMA 4.6. Every γ can be represented by a reduced sequence σ = (σ1, σ2, . . . , σn) in
�∗, meaning that γ = σ1σ2 · · · σn.

However, such a sequence is not unique in general. We will first construct an automaton
that will recognize every reduced sequence. This will not prove the theorem since the map
φ will not be bijection, but we will then modify the automaton to have this property. Denote
by R ⊂ �∗ the subset of reduced sequences.

Definition 4.7. We will say that two reduced sequences σ and σ ′ have the same relative
cone type if for every reduced sequence σ ′′, the concatenation of σ and σ ′′ is again reduced
if and only if the concatenation of σ ′ and σ ′′ also is reduced. In other words, the reduced
sequences extending σ and σ ′ to reduced sequences are the same.

Having the same relative cone type is an equivalence relation. We denote by V0 the
quotient set and define a graph G0 = (V0, E0, v0) with vertex set V0, distinguished vertex
v0 the cone type of the empty sequence and edge set E0 constructed as follows. If v ∈ V0,
we choose a sequence σ with relative cone type v. For every reduced sequence σ ′ that is
obtained from σ by adding some σ ∈ �, we introduce an edge e in G0 from v to the cone
type of σ ′. We label this edge by φ0(e) := σ . This construction does not depend on the
choice of σ .

First, we have the following result.

LEMMA 4.8. The empty sequence is the only one having its relative cone type.
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Proof. For any σ ∈ � \ {e}, the sequence only consisting of σ extends the empty
sequence. On the contrary, if σ = (σ1, . . . , σn), the sequence (σ1, . . . , σn, σ−1

n ) is not
reduced (and σ−1

n does lie in � since the generating set S is assumed to be symmetric).
Thus, the sequence only consisting of σ−1

n does not extend σ .

We also have the following proposition, which is basically a consequence of the BCP
property, although the actual proof is a bit involved. See also [39, Lemma B.1] for a similar
statement in a different setting.

PROPOSITION 4.9. There is only a finite number of different cone types of sequences. In
other words, the set V0 of vertices of G0 is finite.

The proposition will be proved in several steps. The first lemma states that concatenating
a relative geodesic that ends with a long word in a parabolic subgroup with another relative
geodesic which starts with the same word again yields a relative geodesic.

LEMMA 4.10. There exists C0 ≥ 0 such that the following holds. Let y ∈ � with
d(e, y) ≥ C0. Let α = (x0, . . . , xn, xny) and β = (y, z1, . . . , zm) be two relative
geodesic paths whose first and last jumps respectively are y. Then the path defined as
(x0, x1, x2, . . . , xn, xny, xnz1, . . . , xnzm) is a relative geodesic.

Proof. If d(e, y) is larger than the maximum of d(e, s) for s ∈ S, we know that y lies
in some parabolic subgroup H. Since (x0, . . . , xn, xny) and (y, z1, . . . , zm) are relative
geodesics, we can apply Lemma 4.3 to (x0, x1, x2, . . . , xn, xny, xnz1, . . . , xnzm). Thus,
it is a relative (λ, c)-quasi geodesic path with fixed parameters λ, c.

Let C0 be larger than the constant Cλ,c in the BCP property for λ and c. Then any
relative geodesic from x0 to xnzm has to pass through the coset xnH, precisely through
some points x̃n and ỹ with d(xn, x̃n) ≤ Cλ,c and d(xny, ỹ) ≤ Cλ,c. If C0 is large enough,
then one necessarily has x̃n 
= ỹ. Consider such a relative geodesic.

Assume by contradiction that (x1, x2, . . . , xn, xny, xnz1, . . . , xnzm) is not a relative
geodesic. Then the length of our relative geodesic from x0 to xnzm is smaller than
n + m + 1. Thus, either the subgeodesic from x0 to x̃n has length smaller than n or the
subgeodesic from ỹ to xnzm has length smaller than m. In the first case, one gets a path
from x0 to xny by adding one edge from x̃n to xny (recall that they lie in the same coset)
that has length smaller than or equal to n. This is a contradiction since (x0, . . . , xn, xny)

is a relative geodesic. The second case similarly leads to a contradiction.

In the same spirit, we also prove the following.

LEMMA 4.11. There exists C1 ≥ 0 such that the following holds. Let y and y′ be
two elements of the same parabolic subgroup H ∈ �0 with d(e, y), d(e, y′) ≥ C1. Let
(x0, x1, . . . , xn) be a relative geodesic. Then (x0, . . . , xn, xny) is a relative geodesic if
and only if (x0, . . . , xn, xny

′) also is one.

Proof. Assume that (x0, . . . , xn, xny) is a relative geodesic. Then, since d̂(y, y′) = 1,
(x0, x1, . . . , xn, xny

′) is a (λ, c)-quasi geodesic path for some fixed λ and c. Let C1
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be larger than the constant Cλ,c in the BCP property. Assume by contradiction that
(x0, . . . , xn, xny

′) is not a relative geodesic and take a relative geodesic from x0 to xny
′.

According to the BCP property, it passes through some point x̃n in the coset xnH with
d(xn, x̃n) ≤ C1. In particular, x̃n 
= xny. Moreover, this geodesic has length smaller than
n + 1, so that its subgeodesic from e to x̃n has length smaller than n. Thus, adding a vertex
between x̃n and xny (recall that they lie in the same coset) gives a path from x0 to xny of
length smaller than n + 1, which is a contradiction.

For a fixed constant C ≥ 0, denote by BC the ball of radius C and center e in the Cayley
graph endowed with the word distance for the generating set S. Define then, for γ ∈ �,

ρ̂C(γ ) : g ∈ BC �→ d̂(e, γg) − d̂(e, γ ) ∈ R.

We insist on the fact that we use the ball in the Cayley graph and not the relative ball in �̂

in the definition of ρ̂. In particular, BC is finite; this will be a crucial point in the proof of
Proposition 4.9.

LEMMA 4.12. There exist n0 ≥ 0 and C2 ≥ 0 such that the following holds. Let
(x0, . . . , xm) and (x′

0, . . . , x′
l ) be relative geodesics and (e, z1, . . . , zj ) be another

relative geodesic with j ≥ n0. Assume that both (x0, . . . , xm, xmz1, . . . , xmzj ) and
(x′

0, . . . , x′
l , x′

l z1, . . . , x′
l zn0) are relative geodesics. Assume that setting γ = x0 · · · xm

and γ ′ = x′
0 · · · x′

l , we have ρ̂C2(γ ) = ρ̂C2(γ
′). Then (x′

0, . . . , x′
l , x′

l z1, . . . , x′
l zj ) is a

relative geodesic.

Proof. Let γ0 = x′
l zj . Consider a geodesic α = (e, α1, . . . , αn) from e to γ0

of length n ≤ l + j . We have to prove that n ≥ l + j . We already know that
(x′

0, . . . , x′
l , x′

l z1, . . . , x′
l zn0) is a relative geodesic, so (x′

0, . . . , x′
l , x′

l z1, . . . , x′
l zj )

is a k-local relative geodesic, where k only depends on n0 and tends to infinity as
n0 tends to infinity. Thus, [12, §3, Theorem 1.4] shows that if n0 is large enough,
(x′

0, . . . , x′
l , x′

l z1, . . . , x′
l zj ) is a relative (λ, c)-quasi geodesic path for some λ

and c. Thus, Lemma 4.4 shows that there exists p such that d(γ ′, αp) ≤ C for
some C ≥ 0.

Consider multiplication on the left by γ γ ′−1. It sends γ ′ to γ , γ0 to xmzj and αp to some
βp. Since � acts by isometries, both on its Cayley graph and on �̂, the relative geodesic α

is sent to a relative geodesic and d(γ , βp) ≤ C.
Let C2 ≥ C, so that if ρ̂C2(γ ) = ρ̂C2(γ

′), then

d̂(e, αp) − d̂(e, γ ′) = d̂(e, βp) − d̂(e, γ ),

which can be written as

d̂(e, βp) = m + p − l. (11)

Moreover, d̂(βp, γ ) = d̂(αp, γ ′) and, since α is a relative geodesic of length n, we get

d̂(βp, γ ) = n − p. (12)
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Finally, (x0, . . . , xm, xmz1, . . . , xmzj ) is a relative geodesic, so that the triangle
inequality gives m + j = d̂(e, γ ) ≤ d̂(e, βp) + d̂(βp, γ ), so that, using (11) and (12),

m + j ≤ m + p − l + n − p = m − l + n,

which shows that l + j ≤ n.

LEMMA 4.13. There exists C ≥ 0 such that the following holds. Let σ = (σ1, . . . , σn) and
σ ′ = (σ ′

1, . . . , σ ′
m) be two reduced sequences. Let γ = σ1 · · · σn and γ ′ = σ ′

1 · · · σ ′
m in

�. Assume that ρ̂C(γ ) = ρ̂C(γ ′). Then σ and σ ′ have the same relative cone type.

Proof. Let C3 be larger than C0, C1 and C2 from Lemmas 4.10–4.12 and let
C = n0C3, where n0 is given by Lemma 4.12. Consider a reduced sequence
(σ ′′

1 , . . . , σ ′′
l ) and define as usual the points γ ′′

1 = σ ′′
1 , . . . ,γ ′′

l = σ ′′
1 · · · σ ′′

l . Assume
that (e, γ1, . . . , γn, γnγ

′′
1 , . . . , γnγ

′′
l ) is a relative geodesic, where γ1 = σ1, . . . , γn =

σ1 · · · σn. We want to prove that (e, γ ′
1, . . . , γ ′

m, γ ′
mγ ′′

1 , . . . , γ ′
mγ ′′

l ) also is a relative
geodesic.

First, if, for all j ≤ n0, d(γ ′′
j−1, γ ′′

j ) ≤ C3, then (e, γ ′
1, . . . , γ ′

m, γ ′
mγ ′′

1 , . . . , γ ′
mγ ′′

n0
) is

a relative geodesic since ρ̂C(γ ) = ρ̂C(γ ′). Thus, (e, γ ′
1, . . . , γ ′

m, γ ′
mγ ′′

1 , . . . , γ ′
mγ ′′

l ) is
indeed a relative geodesic, according to Lemma 4.12.

On the contrary, assume that for some j ≤ n0, d(γ ′′
j−1, γ ′′

j ) > C3 and let j0 be
the smallest of such j . In particular, (γ ′′

j0−1)
−1γ ′′

j0
is in some parabolic subgroup,

say H. Let σ be in the same parabolic subgroup H with C1 ≤ d(e, σ) ≤ C3. We
know that (e, γ1, . . . , γn, γnγ

′′
1 , . . . , γnγ

′′
j0

) is a relative geodesic, so, according to
Lemma 4.11, (e, γ1, . . . , γn, γnγ

′′
1 , . . . , γnγ

′′
j0−1, γnγ

′′
j0−1σ) also is one. Since ρ̂C(γ ) =

ρ̂C(γ ′) and d(e, h) ≤ C3, (e, γ ′
1, . . . , γ ′

m, γ ′
mγ ′′

1 , . . . , γ ′
mγ ′′

j0−1, γ ′
mγ ′′

j0−1σ) also is one.
Using again Lemma 4.11, we see that (e, γ ′

1, . . . , γ ′
m, γ ′

mγ ′′
1 , . . . , γ ′

mγ ′′
j0

) also is a relative
geodesic.

Finally, since C3 ≥ C0, Lemma 4.10 shows that (e, γ ′
1, . . . , γ ′

m, γ ′
mγ ′′

1 , . . . , γ ′
mγ ′′

l ) also
is a relative geodesic.

Proposition 4.9 now follows from Lemma 4.13. Indeed, since BC is finite, there is a
finite number of different functions ρ̂C(γ ).

Lemma 4.8 shows that the graph G0 satisfies the first condition in Definition 4.1 and
it also satisfies the second and third conditions by definition. Also, Proposition 4.9 shows
that its set of vertices is finite. As announced, we will modify G0 so that it also satisfies
the fourth one. We arbitrarily choose an order on the countable set � and endow �∗
with the associated lexicographical order, which we denote by ≤. We will say that a
reduced sequence σ = (σ1, . . . , σn) is nicely reduced if for all other reduced sequences
σ ′ = (σ ′

1, . . . , σ ′
m) satisfying σ1 · · · σn = σ ′

1 · · · σ ′
m in �, σ ≤ σ ′. We denote by N ⊂ R

the set of nicely reduced sequences. The map σ = (σ1, . . . , σn) ∈ N �→ σ1 · · · σn ∈ � is
now a bijection. Our goal is thus to modify G0 so that the accepted language is N rather
than R.

Let σ = (σ1, . . . , σn) ∈ R be reduced and let C ≥ 0. Let σ ′ = (σ ′
1, . . . , σ ′

n) be a
sequence in �∗ with the same number of elements. Let γ and γ ′ be the corresponding
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sequences of elements of �. We say that σ ′ relatively C-follows σ if for every 1 ≤ k ≤ n,
d̂(γk , γ ′

k) ≤ C. We say that σ ′ C-follows σ if for every 1 ≤ k ≤ n, d(γk , γ ′
k) ≤ C.

More generally, let (x1, . . . , xn) and (x′
1, . . . , x′

m) be two relative quasi geodesic paths.
We say that they C-follow each other if for every k with k ≤ n and k ≤ m, we have
d(xk , x′

k) ≤ C.

LEMMA 4.14. For every c ≥ 0, there exists C ≥ 0 such that the following holds.
Let (x1, . . . , xn) and (x′

1, . . . , x′
m) be two relative geodesics such that x1 = x′

1 and
d(xn, x′

m) ≤ c. Then (x1, . . . , xn) and (x′
1, . . . , x′

m) C-follow each other.

Proof. Roughly speaking, the fact that the two relative geodesics relatively C-follow each
other is a consequence of the Morse lemma in the hyperbolic space (�̂, d̂). The fact that
they actually C-follow themselves for the Cayley graph distance is a consequence of the
bounded coset penetration property. More precisely, Lemma 4.4 shows that there exists C0

such that (x1, . . . , xn) and (x′
1, . . . , x′

m) asynchronously fellow travel, that is, for every
m, there exists l such that d(xm, x′

l ) ≤ C0. In particular, m ≤ l + C0 and, similarly, l ≤
m + C0.

Assume first that l < m. Let yj = x−1
j−1xj and similarly y′

j = (x′
j−1)

−1x′
j . We prove

that there exists C1 such that d(e, y′
l+1) ≤ C1. Indeed, if d(e, y′

l+1) is large enough, then
y′
l+1 lies in some parabolic subgroup H and, by the BCP property, the relative geodesic

(x1, . . . , xn) passes through the coset x′
lH at two points xj and xj+1, where d(x′

l , xj ) and
d(x′

l+1, xj+1) are bounded. One necessarily has j < m. Otherwise, the path obtained by
adding to x′

1, . . . , x′
l an edge from x′

l to xj would yield a path of length l + 1 < j + 1 from
x′

1 = x1 to xj+1, contradicting the fact that (x1, . . . , xj+1) is a relative geodesic. Thus,
the relative geodesic defined by (x1, . . . , xn) has to travel a long time inside x′

lH before it
reaches xm, which proves that d(xm, x′

l ) is arbitrarily long if d(e, y′
l+1) is arbitrarily long,

contradicting the fact that it is smaller than C0 and hence the existence of C1.
If l = m − 1, then d(xm, x′

m) ≤ C0 + C1 and we are done. Otherwise, we similarly
prove that there exists C2 such that d(e, y′

l+2) ≤ C2 and so on, so that we can thus
prove that for every j ≤ C0, as long as l + j 
= m, d(e, y′

j ) is bounded. We thus get that
d(x′

l , x′
m) ≤ C3 for some C3, so that d(xm, x′

m) ≤ C0 + C3.
If l > m, we prove in the same way that d(xm, x′

m) ≤ C0 + C3. This concludes the
proof.

In particular, we have the following.

LEMMA 4.15. There exists C such that if σ = (σ1, . . . , σn) and σ ′ = (σ ′
1, . . . , σ ′

n) are
two reduced sequences mapped to the same element γ in �, then σ C-follows σ ′.

Similarly, we can prove the following lemma. We will not use it to prove Theorem 4.2
but it will have useful consequences in the following, especially in the next paper.

LEMMA 4.16. Let σ = (σ1, . . . , σn) and σ ′ = (σ ′
1, . . . , σ ′

m) be two reduced sequences.
Let γ and γ ′ be the corresponding sequences of elements in �. Assume that the nearest
point projection of γ ′

m on the geodesic (e, γ1, . . . , γn) in �̂ is at γl . If there are several
such nearest point projections, choose the closest to γn. Then any relative geodesic from
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γ ′
m to γn passes within a bounded distance (for the distance d) of γl . Moreover, if γl 
= e,

then any relative geodesic from e to γ ′
m passes within a bounded distance of γl−1.

γl−1

e

γl

γ̃l

γn

γ ′
m

Before proving this lemma, let us give a brief heuristic explanation. Typically, a relative
geodesic from e to γ ′

m will roughly follow a relative geodesic from e to γn up to some γl−1

and then both geodesics will diverge. Assuming that they diverge in the same parabolic
subgroup, which is the worst possible case, we let γ̃l be the exit point of the corresponding
coset. Then, using results of [35], we see that a relative geodesic from γ ′

m to γn will first go
to γ̃l , then will travel in the same coset up to γl and will finally roughly follow the relative
geodesic from γl to γm. This is illustrated by the above picture.

Proof. For simplicity, denote γ = γn, γ ′ = γ ′
m and by [e, γ ] the relative geodesic defined

by γ and similarly for [e, γ ′]. Since γ ′ projects on [e, γ ] at γl , any relative geodesic from
γ ′ to γ roughly follows for the distance d̂ a relative geodesic from γ ′ to γl and then a
relative geodesic from γl to γ (this is true in any hyperbolic space and hence in �̂; see, for
example, [28, Proposition 2.2]). In particular, it passes within a bounded d̂-distance of γl .
Moreover,

|d̂(γ ′, γ ) − [d̂(γ ′, γl) + d̂(γl , γ )]| ≤ D1 (13)

for some D1. Consider such a relative geodesic [γ ′, γ ]. Let α1, . . . , αp be the consecutive
points on [γ ′, γ ] with α1 = γ ′ and αp = γ . We saw that there exists i such that d̂(αi , γl) ≤
D2 for some D2. Consider a relative geodesic [αi , γl] and denote by β1, . . . , βq the
consecutive points on this geodesic. Then, since d̂(αi , γl) is bounded, (13) shows that
concatenating [γ ′, αi], [αi , γl] and [γl , γ ] yields a relative quasi-geodesic path from γ ′ to
γ with bounded parameters. Denote this relative quasi geodesic by α̃.

If [αi , γl] does not enter any coset of a parabolic subgroup for more than some constant
D3 that we will choose later, then we also have d(αi , γl) ≤ D4 for some D4. Otherwise,
denote by j the last time that [αi , γl] enters such a coset, say γ̃H, so that d(βj+1, γl) ≤ D4.
Then, according to the bounded coset penetration property, the geodesic [γ ′, γ ] also enters
this coset. To deduce that the exit point is within a bounded distance of βj+1, we need to
show that α̃ does not enter γ̃H after βj+1. Assume by contradiction that this is the case.
Since [αi , γl] is a relative geodesic, it only enters every coset at most once. Therefore,
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[γl , γ ] enters γ̃H and so there exists l′ > l such that γl′ ∈ γ̃H. Also, the concatenation
of [γ ′, αi] and [αi , γl] is a relative quasi geodesic from γ ′ to γl , so, if D3 is chosen large
enough, any relative geodesic from γ ′ to γl also needs to enter γ̃H. Replacing the edge in
γ̃H of such a relative geodesic by an edge with the same origin and ending at γl′ , we get a
path in �̂ satisfying d̂(γ ′, γl′) ≤ d̂(γ ′, γl). This is a contradiction since γl is the projection
of γ ′ onto [e, γ ], which is the closest possible to γ . Thus, α̃ does not enter γ̃H after βj+1

and, according to the BCP property, we can find αi′ such that d(αi′ , βj+1) ≤ D5. Finally,
d(αi′ , γl) ≤ D6, which concludes the first part of the lemma.

We prove that a relative geodesic [e, γ ′] from e to γ ′ passes within a bounded distance
of γl−1 in the same way. We know by the same reasoning as above that such a relative
geodesic passes within a bounded d̂-distance of γl , but we cannot guarantee that γl is
actually within a bounded distance of the exit point of [e, γ ′] in the corresponding coset,
but we necessarily have that γl−1 is a bounded distance from the entering point.

Combining this with Lemma 4.14, we get the following result. Again, we will not use it
to prove Theorem 4.2, but it will be useful in the following, especially in our next paper.

LEMMA 4.17. There exist c ≥ 0 and C ≥ 0 such that the following holds. Let (γ1, . . . , γn)

and (γ ′
1, . . . , γ ′

m) be two relative geodesics with γn = γ ′
m. Assume that the nearest point

projection of γ ′
1 on the geodesic (γ1, . . . , γn) in �̂ is at γl . If there are several such nearest

point projections, choose the closest to γn. Then there exists k and j with |k − l| ≤ c such
that for every i with j + i ≤ m and k + i ≤ n, we have d(γk+i , γj+i ) ≤ C.

In other words, the two relative geodesics begin C-following each other at some point.
The moment they begin doing so is approximately the moment that the second geodesic
reaches its projection on the first one.

Proof. According to Lemma 4.16, the relative geodesic (γ ′
1, . . . , γ ′

n) passes within a
bounded distance of γl , so there exists p such that d(γl , γ ′

p) ≤ C0. Consider the reversed
geodesics (γn, γn−1, . . . , γl) and (γ ′

m, γ ′
m−1, . . . , γ ′

p). They begin at the same point, so
we can apply Lemma 4.14 to conclude the proof.

Recall that BC is the ball of center e and of radius C in the Cayley graph of � with
respect to S. Denote by PC the (finite) set of subsets of BC \ {e} and define V1 = V0 × PC

(where V0 is the set of vertices of G0).
We define a graph G1 with set of vertices V1 as follows. First, consider a nicely reduced

sequence σ = (σ1, . . . , σn) ∈ N . For all 1 ≤ k ≤ n, denote by Pk the set of elements
γ ∈ BC such that one can find a sequence (σ ′

1, . . . , σ ′
k) satisfying:

• (σ ′
1, . . . , σ ′

k) is strictly smaller than (σ1, . . . , σk) for the lexicographical order;
• (σ ′

1, . . . , σ ′
k) C-follows (σ1, . . . , σk);

• σ ′
1 · · · σ ′

k = σ1 · · · σkγ in �.
Since σ is nicely reduced, e /∈ Pk . By definition, if P0 := ∅, then

Pk = {γ ∈ BC , such that there exists σ ∈ � strictly smaller than σk with γ = σ−1
k σ }

∪ {γ ∈ BC , such that there exist σ ∈ � and γ ′ ∈ Pk−1 with γ = σ−1
k γ ′σ }.
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The first set corresponds to the case where (σ ′
1, . . . , σ ′

k−1) = (σ1, . . . , σk−1) and the
second one corresponds to the case where (σ ′

1, . . . , σ ′
k−1) is smaller than (σ1, . . . , σk−1).

We can now define the edges of G1. Let w = (v, P) and w′ = (v′, P ′) be two vertices
of V1 with v, v′ ∈ V0 and P , P ′ ∈ PC . Define an edge from w to w′ if the following two
conditions are satisfied. First, there is an edge in G0 from v to v′ with label σ . Second,

P ′ = {γ ∈ BC , such that there exists σ ′ ∈ � smaller than σ with γ = σ−1σ ′}
∪ {γ ∈ BC , such that there exist σ ′ ∈ � and γ ′ ∈ P with γ = σ−1γ ′σ ′}.

Then label this edge from w to w′ by σ too. Denote by φ the induced labeling map.

PROPOSITION 4.18. Recall that v0 is the distinguished vertex of G0. Assume that
(v0, ∅), (v1, P1), . . . , (vn, Pn) is a sequence of adjacent vertices in G1, starting at (v0, ∅),
with edges e1, . . . , en labeled with σ1, . . . , σn. Then σ = (σ1, . . . , σn) is nicely reduced.

Proof. Assume that it is not nicely reduced. Then let σ ′ = (σ ′
1, . . . , σ ′

n) be the nicely
reduced sequence with σ1 · · · σn = σ ′

1 · · · σ ′
n. Denote by i the first time σi 
= σ ′

i , so that
σ ′

i < σi . According to Lemma 4.15, we have d(σ1 · · · σi , σ ′
1 · · · σ ′

i ) ≤ C and, since σ1 =
σ ′

1, . . . , σi−1 = σ ′
i−1, we have d(σi , σ ′

i )≤C. Thus, σ−1
i σ ′

i ∈Pi . This in turn proves that
σ−1

i+1σ
−1
i σ ′

i σ
′
i+1 ∈Pi+1, . . . ,σ−1

n · · · σ−1
i σ ′

i · · · σ ′
n ∈Pn. However, we have σ1 · · · σi−1 =

σ ′
1 · · · σ ′

i−1 and σ1 · · · σn = σ ′
1 · · · σ ′

n, so that e ∈ Pn, which is a contradiction.

Finally, we choose the distinguished vertex v∗ = (v0, ∅) and denote by G the subgraph
of G1 whose set of vertices V consists of those one can reach from v∗. Since we chose the
same labeling maps for G and G0, the graph G still satisfies the first three conditions of
Definition 4.1. Also, Proposition 4.18 shows that the sequences one can construct with the
labeling map are necessarily nicely reduced, so that the fourth condition of Definition 4.1
also is satisfied. This proves Theorem 4.2.

5. Green functions of the parabolic subgroups
We consider a group �, hyperbolic relative to a collection of peripheral subgroups �,
and we fix a finite collection �0 = {H1, . . . , HN } of representatives of conjugacy classes
of �. We assume that � is non-elementary. Let μ be a probability measure on �, Rμ

the inverse of the spectral radius of the μ-random walk and G(γ , γ ′|r) the associated
Green function, evaluated at r , for r ∈ [0, Rμ]. If γ = γ ′, we simply use the notation
G(r) = G(γ , γ |r) = G(e, e|r).

Recall the following notation from §3.2. We let pk,r be the transition kernel of first
return to Hk , associated with rμ. Also, we let Gk,r be the associated Green function and
Rk(r) be the inverse of the associated spectral radius. We write Rk = Rk(Rμ).

Our goal in this section is to collect some properties of Gk,r and Rk,r and to relate
them with properties of the initial Green function G. We will refer to Gk,r and R−1

k,r as the
parabolic Green functions and the parabolic spectral radii.

5.1. Derivatives of the parabolic Green functions. We begin this subsection with some
geometric lemmas. We fix a generating set S. The following is a direct consequence of [35,
Lemma 2.10].
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LEMMA 5.1. Let � be a relatively hyperbolic group. There exists C ≥ 0 such that the
following holds. Let ξ be a parabolic limit point and let H be its stabilizer. Then there
exists a neighborhood U of ξ in the Bowditch compactification � ∪ ∂B� such that the
nearest point projection of � ∩ Uc on H has diameter at most C.

We deduce the following.

LEMMA 5.2. Let � be a non-elementary relatively hyperbolic group and let H be a
maximal parabolic subgroup. There exists C ≥ 0 such that the following holds. There
exists a finite set F = {γ1, γ2, γ3} of loxodromic elements such that for any γ , γ ′ ∈ �,
there exists i such that the nearest point projections of γiγ and γiγ

′ on H are at distance
at most C from e.

Proof. Let ξ be the parabolic fixed point of H. Let U be the neighborhood of ξ in the
Bowditch compactification given by Lemma 5.1. Since � is non-elementary, we can find
three loxodromic elements γ1, γ2 and γ3 whose attractive fixed points γ +

1 , γ +
2 , γ +

3 are all
distinct and lie in Uc. Fix a neighborhood Ui of γ +

i contained in Uc. Also, fix three disjoint
neighborhoods Vi of the repelling fixed points γ −

i of γi . Then, up to changing γi by some
power of itself, the image of the complement of Vi is contained in Ui .

Since Vi are all disjoint, there exists i such that both γ /∈ Vi and γ ′ /∈ Vi . In particular,
γiγ and γiγ

′ both lie in the complement of U . Hence, their projections on H are within a
uniform bounded distance of e, according to Lemma 5.1.

We use these lemmas to prove the following generalization of [40, Lemma 1.13] (see
also [22, Lemma 2.4] for a similar statement for hyperbolic groups).

LEMMA 5.3. There exist C ≥ 0 and c ≥ 0 such that for any γ , γ ′ ∈ �, one can find
some point σ ∈ B(e, C) such that d̂(e, γ σγ ′) ≥ d̂(e, γ ) + d̂(e, γ ′) − c. Moreover, if
α is a relative geodesic from e to γ σγ ′, then γ is within a uniform distance of a
point on α.

Proof. First, we can assume that there exists an infinite maximal parabolic subgroup.
Otherwise, � is hyperbolic and the result is given by [22, Lemma 2.4]. Fix such a parabolic
subgroup H. Choose a set F = {γ1, γ2, γ3} as in Lemma 5.2.

Fix γ , γ ′ ∈ �. According to Lemma 5.2, there exists i such that the projection of γ −1

on γ −1
i H is within a uniformly bounded distance of γ −1

i and the projection of γiγ
′ on H

is within a uniformly bounded distance of e.
The BCP property shows that the projection of γ −1 on γ −1

i H in �̂ also is within a
uniformly d-bounded distance of γ −1

i . More precisely, we have the following. Let β0 be
a relative geodesic from γ −1 to γ −1

i H and denote its end point by γ −1
i σ0. Then [35,

Lemma 1.13 (2)] shows that d(e, σ0) is uniformly bounded. Similarly, let β1 be a relative
geodesic from H to γiγ

′ and denote its starting point by σ1. Then d(e, σ0), d(e, σ1) ≤ C1

for some uniform C1. Letting σ2 ∈ H, consider the translated path γ −1
i σ2β1 which starts

at γ −1
i σ2σ1 and ends at γ −1

i σ2γiγ
′. Finally, let β2 be the concatenation of β0, a path of

length 1 in �̂ from γ −1
i σ0 to γ −1

i σ2σ1 and the translated path γ −1
i σ2β1. Then β2 starts at

γ −1, passes through γ −1
i σ0 and ends at γ −1

i σ2γiγ
′.
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Then β2 is a 2-local relative geodesic. Thus, if d(e, σ2) is large enough, independently
of γ and γ ′, Lemma 4.3 shows that β2 is a (λ, c)-quasi geodesic for uniform λ and c. Thus,
the BCP property shows that a relative geodesic from γ −1 to γ −1

i σ2γiγ
′ passes within a

bounded distance of γ −1
i σ0.

Fix such a σ2 large enough and let σ = γ −1
i σ2γi . Finally, let α be a relative geodesic

from e to γ σγ ′. Then α passes within a uniformly bounded distance of γ γ −1
i σ0. Since

d(e, σ0) ≤ c and, since γ −1
i is fixed, it also passes within a uniformly bounded distance

of γ . Moreover, since σ2 is fixed, there is a finite number of possibilities for σ , so that
d(e, σ) ≤ C for some uniform C. This concludes the proof.

We first deduce from this the following lemma, adapted from [22, Lemma 2.5]. Denote
by Ŝm the relative sphere of radius m, that is, elements γ ∈ � such that d̂(e, γ ) = m,
where d̂ is the distance in �̂. For simplicity, for r ∈ [0, Rμ], we write H(e, γ |r) =
G(e, γ |r)G(γ , e|r).
LEMMA 5.4. There exists some uniform C ≥ 0 such that for every r ∈ [0, Rμ], for
every m,

∑
γ∈Ŝm

H(e, γ |r) ≤ C.

Proof. Since H(γ , γ ′|r) ≤ H(γ , γ ′|r ′) if r ≤ r ′, it suffices to prove the lemma for r =
Rμ. Fix r < Rμ and write um(r) = ∑

γ∈Ŝm
H(e, γ |r). For γ ∈ Ŝm, γ ′ ∈ Ŝm′ , Lemma 5.3

shows that one can define a point γ σγ ′ ∈ ⋃
m+m′≤l≤m+m′+m0

Ŝl , where m0 is fixed and
where d(e, σ) is bounded. Moreover, γ is within a uniformly bounded distance of a relative
geodesic from e to γ σγ ′. Choosing such a σ , we write �(γ , γ ′) = γ σγ ′. Since d(e, σ)

is bounded, we have

H(e, γ |r)H(e, γ ′|r) ≤ C0H(e, γ |r)H(e, σγ ′|r) = C0H(e, γ |r)H(γ , γ σγ ′|r).

Also, H(e, γ |r)H(γ , γ σγ ′|r) ≤ C′
0H(e, γ σγ ′), see (9), so that

H(e, γ |r)H(e, γ ′|r) ≤ CH(e, γ σγ ′|r).

Fix γ ′′ ∈ ⋃
m+m′≤l≤m+m′+m0

Ŝl . Assume that γ ′′ = γ σγ ′, with γ ∈ Ŝm, within a
bounded distance of a point on a relative geodesic from e to γ ′′ and σ ∈ B(e, C). Fix such
a relative geodesic [e, γ ′′] from e to γ ′′. There exists γ̃ on [e, γ ′′] such that d(γ , γ̃ ) ≤ C.
Thus, we also have d̂(γ , γ̃ ) ≤ C. In particular, |d̂(e, γ̃ ) − m| ≤ C, so there is a uniformly
bounded number of distinct possibilities for γ̃ . Since d(γ , γ̃ ) is bounded, this gives a
uniformly bounded number of possibilities for γ . Also, since d(e, σ) is bounded, there
is a uniformly bounded number of possibilities for σ . In particular, there is a uniformly
bounded number of such decompositions of γ ′′. In other words, the map � has a uniformly
bounded number of preimages of γ ′′.
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This proves that

um(r)um′(r) =
∑

γ∈Ŝm,γ ′∈Ŝm′

H(e, γ |r)H(e, γ ′|r) ≤ C
∑

γ∈Ŝm,γ ′∈Ŝm′

H(e, �(γ , γ ′)|r)

≤ C′
( ∑

γ ′′∈Ŝm+m′

H(e, γ ′′|r) + · · · +
∑

γ ′′∈Ŝm+m′+m0

H(e, γ ′′|r)
)

,

so that

um(r)um′(r) ≤ C′
m0∑
j=0

um+m′+j (r). (14)

Since r < Rμ, (d/dr)G(e, γ |r) is finite, so that according to Lemma 3.1, the sum∑
γ∈� H(e, γ |r) is finite. Hence, the sequence um(r) converges to 0 when m tends to

infinity, so that it reaches its maximum at some index k0(r). This index does depend
on r . However, denoting by M(r) this maximum, equation (14) shows that M(r)2 ≤
(m0 + 1)C′M(r), so that M(r) ≤ (m0 + 1)C′. This constant (m0 + 1)C′ does not depend
on r , so that we also have um(Rμ) ≤ (m0 + 1)C′ for every m, which is the desired
inequality.

Applying Lemma 5.4 for m = 1, we get the following corollary that will be very useful.

COROLLARY 5.5. For every parabolic subgroup H ∈ �0 and every r ∈ [0, Rμ], we have
∑
h∈H

G(e, h|r)G(h, e|r) < +∞.

5.2. Relations between G, Gk and Rk . We prove here Theorem 1.5. Recall that

I (j)(r) =
∑

γ1,...,γj ∈�

G(e, γ1|r)G(γ1, γ2|r) · · · G(γj−1, γj |r)G(γj , e|r).

Also define, for a parabolic subgroup Hk ∈ �0,

I
(j)
k (r) =

∑
γ1,...,γj ∈Hk

Gk,r (e, γ1|1)Gk,r (γ1, γ2|1) · · · Gk,r (γj−1, γj |1)Gk,r (γj , e|1).

Finally, for simplicity, denote by G
(j)
k,r the j th derivative of the parabolic Green function

at 1, that is, G
(j)
k,r = (dj /dtj |t=1)(Gk,r (e, e|t)) and by G

(j)
r the j th derivative of the Green

function on the whole group at r .

Remark 5.1. Beware that G
(j)
k,r is a derivative of t �→ Gk,r (e, e|t) and not the derivative of

r �→ Gk,r (e, e|t), whereas G
(j)
r is a derivative of r �→ G(e, e|r). This notation is far from

being perfect but it will be very convenient in the following.

We prove the main result of this subsection, which states the a priori estimates we will
need to prove the local limit theorem.
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PROPOSITION 5.6. For every r ∈ [0, Rμ), we have

G
(2)
r

(G
(1)
r )3

� 1 +
∑

k

G
(2)
k,r .

In particular, Theorem 1.5 is an immediate consequence of Proposition 5.6. According
to Lemma 3.2, G

(j)
r � I (j)(r) and G

(j)
k,r � I

(j)
k . Hence, we can restate the statement of the

proposition as

I (2)(r)

I (1)(r)3 � 1 +
∑

k

I
(2)
k (r). (15)

The proof of (15) is very technical and we first explain roughly the arguments. Recall
that

I (2)(r) =
∑
γ ,γ ′

G(e, γ |r)G(γ , γ ′|r)G(γ ′, e|r).

We fix two elements γ and γ ′ and consider the moment the relative geodesics from e to γ

and from e to γ ′ start diverging. Typically, two such relative geodesics will roughly follow
each other up to some γ0 and then diverge inside parabolic subgroups. Then, to go from
e to γ , the random walk passes near γ0, according to weak relative Ancona inequalities.
Similarly, to go from γ ′ to e, it will pass near γ0.

If the two relative geodesics diverge into different parabolic subgroups, then to go from
γ to γ ′, the random walk also has to pass near γ0, as suggested by the picture below.

γ0

e

γ

γ ′

We denote by �1 the subsum in I (2) over these γ , γ ′. Relative Ancona inequalities yield

�1 �
∑
γ ,γ ′

G(e, γ0)G(γ0, γ )G(γ , γ0)G(γ0, γ ′)G(γ ′, γ0)G(γ0, e).

As we will see in the detailed proof, (γ , γ ′) and (γ0, γ −1
0 γ , γ −1

0 γ ′) determine each other,
up to a bounded error. In particular, we obtain

�1 �
∑
γ0

∑
γ −1

0 γ

∑
γ −1

0 γ ′
G(e, γ0)G(γ0, e)G(γ0, γ )G(γ , γ0)G(γ0, γ ′)G(γ ′, γ0) � (I (1))3.

On the contrary, if the two relative geodesics diverge into the same parabolic subgroups,
then we obtain a triangle inside the corresponding parabolic subgroup H = Hk , as
illustrated by the picture below.
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γ0

e

γ0σ

γ0σ
′

γ

γ ′

This time, to go from γ to γ ′, the random walk does not have to pass near γ0, but it has to
pass near γ0σ and γ0σ

′, the respective projections of γ and γ ′ on γ0Hk . Then, summing
over these γ , γ ′, we get a sum �k

2 and relative Ancona inequalities yield

�k
2 �

∑
γ ,γ ′

G(e, γ0)G(γ0, γ0σ)G(γ0σ , γ )G(γ , γ0σ)G(γ0σ , γ0σ
′)

G(γ0σ
′, γ ′)G(γ ′, γ0σ

′)G(γ0σ
′, γ0)G(γ0, e).

Again, we will see that (γ , γ ′) and (γ0, σ , σ ′, σ−1γ −1
0 γ , (σ ′)−1γ −1

0 γ ′) determine each
other, so we obtain, setting γ̃ = γ −1

0 σ−1γ and γ̃ ′ = γ −1
0 (σ ′)−1γ ′,

�k
2 �

∑
γ0

∑
σ ,σ ′

∑
γ̃ ,γ̃ ′

G(e, γ0)G(γ0, e)G(e, σ)G(σ , σ ′)G(σ ′, e)

G(e, γ̃ )G(γ̃ , e)G(e, γ̃ ′)G(γ̃ ′, e)

� (I (1))3I
(2)
k .

Summing over all possible Hk , we get (15).

Proof. Let us now give the formal proof. Recall that whenever f and g are two functions
satisfying that there exists C such that f ≤ Cg, we write f � g. In order to prove (15),
we need to prove an upper bound and a lower bound. We start proving the upper bound,
that is,

I (2)(r)

I (1)(r)3 � 1 +
∑

k

I
(2)
k (r). (16)

Consider, for each γ ∈ �, a relative geodesic [e, γ ] from e to γ . Also, assume that if
γ ′ ∈ [e, γ ], then the chosen relative geodesic [e, γ ′] coincides with the restriction of [e, γ ]
from e to γ ′. This is possible using for example the automaton G given by Theorem 4.2.
We want to control the sum

I (2)(r) =
∑
γ ,γ ′

G(e, γ |r)G(γ , γ ′|r)G(γ ′, e|r).
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If γ is fixed, we consider for every γ ′ the nearest point projection of γ ′ on [e, γ ]. If there
are more than one possible such projections, we choose the closest to e. For γ0 ∈ [e, γ ],
we denote by �γ0(γ ) the set of γ ′ such that this nearest point projection is at γ0. Also,
when γ0 is fixed, we denote by �γ0 the set of γ such that γ0 ∈ [e, γ ]. We can bound I (2)

from above by ∑
γ0∈�

∑
γ∈�γ0

∑
γ ′∈�γ0 (γ )

G(e, γ |r)G(γ , γ ′|r)G(γ ′, e|r).

According to Lemma 4.16, a relative geodesic from γ ′ to e passes within a bounded
distance of γ0. Weak relative Ancona inequalities then show that

G(e, γ |r) � G(e, γ0|r)G(γ0, γ |r) and G(γ ′, e|r) � G(γ ′, γ0|r)G(γ0, e|r).
We thus get

I (2)(r) �
∑
γ0∈�

∑
γ∈�γ0

∑
γ ′∈�γ0 (γ )

G(e, γ0|r)G(γ0, γ |r)

G(γ , γ ′|r)G(γ ′, γ0|r)G(γ0, e|r).
(17)

We fix γ0. We claim that∑
γ∈�γ0

∑
γ ′∈�γ0 (γ )

G(γ0, γ |r)G(γ , γ ′|r)G(γ ′, γ0|r) � I (1)(r)2(1 +
∑

k

I
(2)
k (r)). (18)

Our goal is to prove this claim. By translating by γ0 the relative geodesics [e, γ −1
0 γ ]

and [e, γ −1
0 γ ′], we get relative geodesics [γ0, γ ] and [γ0, γ ′] from γ0 to γ and from γ0

to γ ′, respectively. We distinguish the different elements γ in �γ0 according to the first
jump of [γ0, γ ]. This first jump can be in some parabolic subgroup Hk or in the generating
set S. For simplicity, we write S = H0 in all this proof. We denote by �

γ0
k the subset of �γ0

consisting of elements γ such that the first jump is in Hk , 0 ≤ k ≤ N . Notice that we do
not ask that the geodesic from e to γ satisfies that the first jump after γ0 is in Hk . We really
ask that the translated geodesic from γ0 to γ starts with a jump in Hk . We do the same for
γ ′ ∈ �γ0(γ ) and denote by �

j
γ0(γ ) the corresponding set of γ ′ such that the first jump of

[γ0, γ ′] is in Hj . For γ ∈ �
γ0
k , we denote by σ ∈ Hk the first jump of [γ0, γ ]. Similarly,

for γ ′ ∈ �
j
γ0(γ ), we denote by σ ′ ∈ Hj the first jump of [γ0, γ ′].

We prove that any relative geodesic [γ , γ ′] from γ to γ ′ has to pass within a bounded
distance of γ0σ and then γ0σ

′. The projection of γ ′ on [e, γ ] is on γ0. Denote by σ ′′ the first
jump of [e, γ ] after γ0. The second part of Lemma 4.16 shows that [γ , γ ′] passes within a
bounded distance of γ0σ

′′. The only problem is that in our above construction, we changed
the relative geodesic from e to γ translating the relative geodesic from e to [γ −1

0 γ ]. Denote
the new relative geodesic by [e, γ ] and denote by γ1 the projection of γ ′ on [e, γ ]. Then
the hyperbolicity of �̂ together with the BCP property show that d(γ0, γ1) ≤ a0 for some
a0 independent of γ and γ ′.

Assume first that d(e, σ) ≥ a0 + 1. Then γ1 has to be between e and γ0 on [e, γ ]. Since
we did not change the part between e and γ0, we deduce that γ1 also is between γ0 and γ .
This proves that in this situation, γ1 = γ0. Similarly, if d(e, σ ′) ≥ a1 for some uniform a1,
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then the BCP property shows that γ1 = γ0. In both cases, the second part of Lemma 4.16
indeed shows that [γ , γ ′] passes within a bounded distance of γ0σ and then γ0σ

′.
We are left with the case where d(e, σ) and d(e, σ ′) are uniformly bounded. In this case,

the BCP property shows that d(e, σ ′′) is also uniformly bounded, that is, d(γ0, γ0σ
′′) is

uniformly bounded. Hence, [γ , γ ′] passes within a bounded distance of γ0, so within a
bounded distance of γ0σ and γ0σ

′.
Using the weak relative Ancona inequalities, we get

∑
γ∈�γ0

∑
γ ′∈�γ0 (γ )

G(γ0, γ |r)G(γ , γ ′|r)G(γ ′, γ0|r)

�
∑
k,j

∑
γ∈�

γ0
k

∑
γ ′∈�

j
γ0 (γ )

G(e, σ |r)G(γ0σ , γ |r)G(γ , γ0σ |r)

G(σ , σ ′|r)G(γ0σ
′, γ ′|r)G(γ ′, γ0σ

′|r)G(σ ′, e|r).

(19)

We first fix k and consider only the sum over j 
= k in (19). In this case, a relative
geodesic from σ to σ ′ passes within a bounded distance of e. This is obviously true if
d(e, σ) or d(e, σ ′) is bounded and follows from the BCP property if both d(e, σ) and
d(e, σ ′) are large enough. We get that

∑
j 
=k

∑
γ∈�

γ0
k

∑
γ ′∈�

j
γ0 (γ )

G(e, σ |r)G(γ0σ , γ |r)G(γ , γ0σ |r)

G(σ , σ ′|r)G(γ0σ
′, γ ′|r)G(γ ′, γ0σ |r)G(σ ′, e|r)

�
∑
j 
=k

∑
γ∈�

γ0
k

∑
γ ′∈�

j
γ0 (γ )

G(γ0, γ |r)G(γ , γ0|r)G(γ0, γ ′|r)G(γ ′, γ0|r).

Translating everything by γ −1
0 , we bound this last term by

∑
j 
=k

∑
γ∈�e

k

∑
γ ′∈�

j
e (γ )

G(e, γ |r)G(γ , e|r)G(e, γ ′|r)G(γ ′, e|r).

Indeed, by definition of �
γ0
k , if γ ∈ �

γ0
k , then γ −1

0 γ ∈ �e
k . Also, if the projection of γ ′ on

[e, γ ] is at γ0, then the projection of γ −1
0 γ ′ on [γ −1

0 , γ −1
0 γ ] is at e. Thus, the projection

of γ −1
0 γ ′ on [e, γ −1

0 γ ] also is at e, so that γ −1
0 γ ′ ∈ �

j
e (γ ).

Fix γ ∈ �e
k . If γ ′ ∈ �

j
e (γ ), in particular, the geodesic [e, γ ′] starts with a jump in Hj ,

so that γ ′ ∈ �e
j . We can thus bound the last sum by

∑
j 
=k

∑
γ∈�e

k

∑
γ ′∈�e

j

G(e, γ |r)G(γ , e|r)G(e, γ ′|r)G(γ ′, e|r),

which is itself bounded by

I (1)(r)
∑
γ∈�e

k

G(e, γ |r)G(γ , e|r).
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Summing over k, we finally have∑
k

∑
j 
=k

∑
γ∈�

γ0
k

∑
γ ′∈�

j
γ0 (γ )

G(γ0, γ |r)G(γ , γ0|r)G(γ0, γ ′|r)G(γ ′, γ0|r) � I (1)(r)2.

To prove (18), we can thus only focus on the case where j = k in (19). We get∑
k

∑
γ∈�

γ0
k

∑
γ ′∈�k

γ0
(γ )

G(e, σ |r)G(γ0σ , γ |r)G(γ , γ0σ |r)

G(σ , σ ′|r)G(γ0σ
′, γ ′|r)G(γ ′, γ0σ |r)G(σ ′, e|r).

Translating γ by σ−1γ −1
0 and γ ′ by (σ ′)−1γ −1

0 on the left, we bound this sum by
∑

k

∑
σ ,σ ′∈Hk

∑
γ̃

∑
γ̃ ′

G(e, σ |r)G(σ , σ ′|r)G(σ ′, e|r)G(e, γ̃ |r)G(γ̃ , e|r)

G(e, γ̃ ′|r)G(γ̃ ′, e|r).
We thus have∑

k

∑
γ∈�

γ0
k

∑
γ ′∈�k

γ0
(γ )

G(e, σ |r)G(γ0σ , γ |r)G(γ , γ0σ |r)

G(σ , σ ′|r)G(γ0σ
′, γ ′|r)G(γ ′, γ0σ |r)G(σ ′, e|r)

� I (1)(r)2
∑

k

I
(2)
k (r),

which proves (18), which, in turn, combined with (17), proves (16).
We now prove the lower bound, that is, we show that

I (1)(r)3
(

1 +
∑

k

I
(2)
k (r)

)
� I (2)(r). (20)

If there is no parabolic subgroup or if they are all finite, then � is hyperbolic and the result
is given by [22, Proposition 3.2]. So, we can assume that there is at least one parabolic
subgroup and that it is infinite. Since I

(2)
k is bounded from below, it is sufficient to show

that for every 1 ≤ k ≤ N , I (1)(r)3I
(2)
k (r) � I (2)(r). We fix such a k. By definition,

I
(2)
k (r) =

∑
σ ,σ ′∈Hk

G(e, σ |r)G(σ , σ ′|r)G(σ ′, e|r).

Up to a bounded multiplicative error, we can replace the sum over σ and σ ′ by a sum over
σ and σ ′ such that d(e, σ) ≥ c and d(e, σ ′) ≥ c for some fixed c that will be chosen later.
Also, according to Corollary 5.5,

∑
σ ′′∈Hk

G(e, σ ′′|r)G(σ ′′, e|r) is finite, so that we can
assume that d(σ , σ ′) ≥ c in the above sum. We fix some large loxodromic element γ0 ∈ �

such that its projection on Hk in �̂ is within a bounded d-distance of e. According to
Lemma 5.3, for every γ ∈ �, there exists γ1 ∈ B(e, C) such that a relative geodesic from
e to γ̃ = γ0γ1γ passes within a bounded distance of γ0. In particular, the projection of γ̃

on Hk is within a bounded d-distance of e.
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Denote by O(e) the set of γ such that the projection of γ on Hk is at d-distance at most
c/3 of e. We can reformulate the above discussion as follows, provided c is large enough.
For every γ ∈ �, there exists γ2 such that d(e, γ2) is uniformly bounded and γ̃e = γ2γ is
in O(e). Also, for σ ∈ Hk , denote by O(σ ) the set of γ such that its projection on Hk is
at d-distance at most c/3 from σ . Lemma 5.3 shows that for any γ , there exists γ2 such
that d(e, γ2) is uniformly bounded and any relative geodesic from e to γ̃σ = σγ2γ passes
within a bounded distance of σ . If c is large enough, then γ̃σ ∈ O(σ ). Recall that d(e, σ) ≥
c, d(e, σ ′) ≥ c and d(σ , σ ′) ≥ c in the above sum. According to the BCP property, if c is
large enough, we also have that:
(1) the sets O(σ ), O(σ ′) and O(e) are all disjoint;
(2) if γ ∈ O(σ ) and γ ′ ∈ O(σ ′), then any relative geodesic from γ to γ ′ passes first

within a bounded distance of σ , then within a bounded distance of σ ′ and similarly
for O(e) and O(σ ) and for O(σ ′) and O(e).

Let γ ∈ �; then we have

G(e, γ |r)G(γ , e|r) � G(e, γ̃e|r)G(γ̃e, e|r).
Also, for any σ ∈ Hk , we have

G(e, γ |r)G(γ , e|r) � G(σ , γ̃σ |r)G(γ̃σ , σ |r).
We thus get, using weak relative Ancona inequalities,

I (1)(r)3I
(2)
k (r) �

∑
σ ,σ ′

G(e, σ |r)
( ∑

γ

G(σ , γ̃σ |r)G(γ̃σ , σ |r)
)

G(σ , σ ′|r)
( ∑

γ ′
G(σ ′, γ̃ ′

σ ′ |r)G(γ̃ ′
σ ′ , σ ′|r)

)

G(σ ′, e|r)
( ∑

γ ′′
G(e, γ̃ ′′

e |r)G(γ̃ ′′
e , e|r)

)
.

�
∑
σ ,σ ′

∑
γ ,γ ′,γ ′′

G(γ̃ ′′
e , γ̃σ |r)G(γ̃σ , γ̃ ′

σ ′ |r)G(γ̃ ′
σ ′ , γ̃ ′′

e |r).

The sets O(e), O(σ ) and O(σ ′) are all disjoint. For γ̃ ∈ O(σ ), γ̃ ′ ∈ O(σ ′) and γ̃ ′′ ∈ O(e),
let γ = (γ̃ ′′)−1γ̃ and γ ′ = (γ̃ ′′)−1γ̃ ′. Then the projection of γ ′ in �̂ on a relative geodesic
[e, γ ] is within a bounded d-distance of (γ̃ ′′)−1. In other words, up to a bounded error,
γ̃ , γ̃ ′, γ̃ ′′ determine γ and γ ′. Moreover, for fixed γ , there is a uniformly finite number of
σ such that γ ∈ O(σ ), according to the BCP property. This proves that

I (1)(r)3I
(2)
k (r) �

∑
γ ,γ ′

G(e, γ |r)G(γ , γ ′|r)G(γ ′, e|r) = I (2)(r).

This proves (20), which concludes the proof.

We have thus proved Theorem 1.5. More generally, we have the following combinatorial
result, which relates I (j)(r) with I

(j)
k (r).
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LEMMA 5.7. There exists a constant C > 1 such that for every r ∈ [0, Rμ], for every
j ≥ 2,

I (j)(r)

I (1)(r)
≤ C

∑
l≥2

Cl
∑

i1+···+il=j

I (i1)(r) · · · I (il )(r)

(
1 +

∑
1≤k≤N

I
(l)
k (r)

)

+
∑
m≥2

∑
j1+···+jm=j

Cm

m∏
p=1

(∑
l≥1

Cl
∑

i1+···+il=jp

I (i1)(r) · · · I (il )(r)

(
1 +

∑
1≤k≤N

I
(l)
k (r)

))
.

Proof. The proof goes in the same way as above, but instead of summing over γ , γ ′, we
have to sum over γ1, γ2, . . . , γj , so we have to be more precise. We choose for every γ a
relative geodesic [e, γ ] from e to γ . We denote by γ0 the last element of [e, γ1] such that
relative geodesics from e to γ1, . . . , γj pass a d-distance at most c from γ0 for some c that
will be chosen later.

First, we consider the subsum �1 over points γ1, . . . , γj such that the first jump σi of
[γ0, γi] is in the same parabolic subgroup Hk for every 1 ≤ i ≤ j . Fix a constant c and
denote by i1 the last index such that d(σi , σ1) ≤ c. As in the proof of Lemma 5.6, if c

is large enough, then a relative geodesic from γi1 to γi1+1 has to pass within a bounded
distance of γ0σi . Weak relative Ancona inequalities then give

G(γi1 , γi1+1|r) � G(γi1 , γ0σ1|r)G(σ1, σi1+1|r)G(γ0σi1+1, γi1+1|r).
Denote then by i2 the last index such that d(σi1+i2 , σi1+1) ≤ c. Similarly,

G(γi2 , γi2+1|r) � G(γi2 , γ0σi1+1|r)G(σi1+1, σi2+1|r)G(γ0σi2+1, γi2+1|r).
We go on and get a decomposition of j as i1 + i2 + · · · + il . Combining all the inequalities
above, we have

G(γ0, γ1|r)G(γ1, γ2|r) · · · G(γj−1, γj |r)G(γj , γ0|r)
≤ ClG(e, σ1|r)G(σ1, σ(i1+1)|r) · · · G(σ(i1+···+il−1+1), e|r)
G(γ0σ1, γ1|r)G(γ1, γ2) · · · G(γi1−1, γi1 |r)G(γi1 , γ0σ1|r)
G(γ0σi1+1, γi1+1|r)G(γi1+1, γi1+2|r) · · · G(γi1+i2−1, γi1+i2 |r)G(γi1+i2 , γ0σi1+1|r)

· · ·
G(γ0σ(i1+···+il−1+1), γi1+···+il−1+1|r)G(γi1+···+il−1+1, γi1+···+il−1+2|r) · · ·

· · · G(γi−1, γj |r)G(γj , γ0σ(i1+···+il−1+1)|r)
for some constant C ≥ 0. By definition of γ0, we necessarily have l ≥ 2.

We obtain �1 by summing over every such decomposition of j and over such
σ1, . . . , σ(i1+···+il−1+1). The second line in the right-hand side will give a contribution
bounded by I (i1)(r), the third line by I (i2)(r) and so on. The first line will give a
contribution bounded by I

(l)
k (r), so this contribution will be bounded by

∑
k I

(l)
k (r). We

thus get

�1 ≤
∑
l≥2

∑
i1+···+il=j

ClI (i1)(r) · · · I (il )(r)

(
1 +

∑
1≤k≤N

I
(l)
k (r)

)
.
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Assume now that the jumps σ1, . . . , σj1 are in the same parabolic subgroup Hk1 and
that the other jumps σj1+1, . . . , σj lie in some other parabolic subgroup Hk2 . Then

G(γj1 , γj1+1|r) ≤ CG(γj1 , γ0|r)G(γ0, γj1+1|r).
We then get an upper bound for

G(γ0, γ1|r) · · · G(γj1−1, γj1 |r)G(γj1 , γ0|r)
and

G(γ0, γj1+1|r) · · · G(γj−1, γj |r)G(γj , γ0|r)
as above, except that we do not necessarily have l ≥ 2. Summing over all such possible
decompositions, we finally get a sum �2 which satisfies

�2 ≤ C

( ∑
l≥1

Cl+1
∑

i1+···+il=j1

I (i1)(r) · · · I (il )(r)

(
1 +

∑
1≤k≤N

I
(l)
k (r)

))

( ∑
l≥1

Cl+1
∑

i1+···+il=j−j1

I (i1)(r) · · · I (il )(r)

(
1 +

∑
1≤k≤N

I
(l)
k (r)

))
.

To conclude, we decompose in general j as j1 + · · · + jm, where σ1, . . . , σj1 lie in the
same parabolic Hk1 , σj1+1, . . . , σj1+j2 lie in the same Hk2 and so on. We similarly get
sums �m which satisfy

�m ≤
∑

j1+···+jm=j

C2m
m∏

p=1

( ∑
l≥1

C3l
∑

i1+···+il=jp

I (i1)(r) · · · I (il )(r)

(
1 +

∑
1≤k≤N

I
(l)
k (r)

))
.

This proves the lemma, summing over all possible m.

We can use this upper bound to prove the second main result of this subsection, namely
that spectral degeneracy of the measure μ implies that μ is divergent.

PROPOSITION 5.8. If, for parabolic subgroup Hk ∈ �0, 1 ≤ k ≤ N , we have Rk > 1,
then (d/dr |r=Rμ)G(e, e|r) = +∞.

Proof. If, for every k, Rk > 1, then Proposition 3.3 shows that for every j ≥ 2 and for
every k, I

(j)
k (Rμ) ≤ c0C

j

0 for some c0 ≥ 0 and C0 > 0. Lemma 5.7 shows that for some
c ≥ 0 and C > 0,

I (j)(Rμ)

I (1)(Rμ)
≤ c

∑
l≥2

Cl
∑

i1+···+il=j

I (i1)(Rμ) · · · I (il )(Rμ)

+ c
∑
m≥2

∑
j1+···+jm=j

Cm

m∏
p=1

( ∑
l≥1

Cl
∑

i1+···+il=jp

I (i1)(Rμ) · · · I (il )(Rμ)

)
.

(21)
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Notice that we can enlarge C if necessary. We will prove by contradiction that
(d/dr |r=Rμ)G(e, e|r) = +∞. Our goal is to prove that I (j)(Rμ) grows at most
exponentially. Define inductively J1 = cI (1)(Rμ) and, for j ≥ 2,

Jj = cI (1)(Rμ)
∑
l≥2

Cl
∑

i1+···+il=j

Ji1 · · · Jil

+ cI (1)(Rμ)
∑
m≥2

∑
j1+···+jm=j

Cm
m∏

p=1

( ∑
l≥1

Cl
∑

i1+···+il=jp

J (i1) · · · J (il )

)
.

First, since (d/dr |r=Rμ)G(e, e|r) < +∞, Lemma 3.1 shows that I (1)(Rμ) is finite and
hence J1 also is finite. Thus, (21) combined with an induction argument shows that

I (j)(Rμ) ≤ Jj . (22)

Our goal is now to prove that Jj grows at most exponentially in j . Define the power
series

J (z) =
∑
j≥1

Jj z
j .

Assume first that its radius of convergence is positive. Using the definition of Jj , we get

J (z)

J1
= z +

∑
j≥2

( ∑
l≥2

Cl
∑

j1+···+jl=j

Jj1 · · · Jjl

)
zj

+
∑
j≥2

∑
m≥2

∑
j1+···+jm=j

Cm
m∏

p=1

( ∑
l≥1

Cl
∑

i1+···+il=jp

Ji1 · · · Jil

)
zj

= z +
∑
l≥2

( ∑
j≥2

∑
j1+···+jl=j

(Jj1z
j1) · · · (Jjl

zjl )

)
Cl

+
∑
m≥2

∑
j≥2

∑
j1+···+jm=j

Cm
m∏

p=1

( ∑
l≥1

Cl
∑

i1+···+il=jp

Ji1 · · · Jil

)
zj .

The Cauchy product formula shows that for l ≥ 2,∑
j≥2

∑
j1+···+jl=j

(Jj1z
j1) · · · (Jjl

zjl ) = J (z)l .

We thus get

J (z)

J1
= z +

∑
l≥2

ClJ (z)l

+
∑
m≥2

∑
j≥2

∑
j1+···+jm=j

Cm
m∏

p=1

( ∑
l≥1

Cl
∑

i1+···+il=jp

Ji1 · · · Jil

)
zj .

Let

Kq =
∑
l≥1

Cl
∑

i1+···+il=q

Ji1 · · · Jil
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and let K(z) = ∑
q≥1 Kqzq . Then, similarly,

∑
m≥2

∑
j≥2

∑
j1+···+jm=j

Cm
m∏

p=1

( ∑
l≥1

Cl
∑

i1+···+il=jp

Ji1 · · · Jil

)
zj =

∑
m≥2

CmK(z)m.

We get

J (z)

J1
= z +

∑
l≥2

ClJ (z)l +
∑
m≥2

CmK(z)m = z + C2J (z)2

1 − CJ(z)
+ C2K(z)2

1 − CK(z)
.

We also have

K(z) =
∑
l≥1

ClJ (z)l = CJ(z)

1 − CJ(z)
,

so that we finally get

aJ (z)3 − b(z)J (z)2 + c(z)J (z) − d(z) = 0, (23)

where

a = C(C + C2)

(
1
J1

+ C

)
,

b(z) = 2C + C2

J1
+ C2 + C4 + (C2 + C3)z,

c(z) = 1
J1

+ (2C + C2)z,

d(z) = z.

As noticed above, we can enlarge C. For z = 0, the polynomial equation

ax3 − b(0)x2 + c(0)x − d(0) = 0 (24)

has three solutions, namely x = 0 and

x =
J1C

4 + C2(1 + J1) + 2C ± C2
√

C4J 2
1 + 2C2J1(1 + J1) + 4CJ1 + (J1 − 1)2

2C(C + C2)(1 + J1C)
.

As C tends to infinity, the second solution tends to 1 and the third one is asymptotic
to (−4/2C(C + C2)(1 + J1C)) < 0. Thus, if C is large enough, the three solutions are
distinct. We fix such a C. The implicit function theorem shows that there is an analytic
function J̃ (z) of z in a neighborhood of 0 which is a solution of (24) and satisfies J̃ (0) = 0.
This proves that the radius of convergence of J̃ (z) is positive. Moreover, the coefficients
of the power series defined by J (z) and J̃ (z) satisfy the same induction equation, so that
they coincide and the radius of convergence of J (z) is positive.

In particular, there exist d0 ≥ 0 and D0 > 0 such that Jj ≤ d0D
j

0 , so that, accord-
ing to (22), I (j)(Rμ) ≤ dDjI (1)(Rμ). Proposition 3.3 shows that (G

(j)
r /k!) ≤ dDj at

r = Rμ for some d ≥ 0 and D > 0, which is a contradiction. Thus, I (1) = +∞, that is,
G

(1)
Rμ

= +∞. This concludes the proof.

https://doi.org/10.1017/etds.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.7


Local limit theorems in relatively hyperbolic groups I 1963

6. From the rough estimates of the Green function to the rough local limit theorem
Our goal in this section is to prove Theorem 1.4. We start with the following result, which
was proved by Kwaśnicki in [26]. We reproduce the proof for simplicity.

THEOREM 6.1. Let A(z) = ∑
anz

n be a power series with non-negative coefficients an

and radius of convergence 1. Let β > 0. Then
∑

n≥0 ans
n � 1/(1 − s)β for s ∈ [0, 1) if

and only if
∑n

k=0 ak � nβ . The implicit constants are asked not to depend on s and n,
respectively.

Proof. Following [3], we denote by OR the set of positive functions f such that for every
λ > 0,

lim sup
x→∞

f (λx)

f (x)
< ∞.

Then [3, Theorem 2.10.2] shows that for every non-decreasing measurable function U with
positive lim inf and vanishing on (−∞, 0), the following are equivalent:
(1) U ∈ OR;
(2) t �→ Û (1/t) ∈ OR;
(3) U(t) � Û (1/t), t > 0.
Here, Û is the Laplace transform of the Stieltjes measure U(dx). Precisely,

Û (t) =
∫ ∞

0
e−txU(dx).

We apply this to U(x) = ∑�x�
k=0 ak . We then have

Û (t) =
∑
n≥0

ane
−tn = A(e−t ).

Assuming that A(s) = ∑
n≥0 ans

n � 1/(1 − s)β for s ∈ [0, 1), we get

Û (1/t) = A(e−1/t ) � (1 − e−1/t )−β ,

so that t �→ Û (1/t) ∈ OR. Thus, U(t) � Û (1/t) and so
n∑

k=0

ak � (1 − e−1/n)−β � nβ .

Conversely, assuming that
∑n

k=0 ak � nβ , then U ∈ OR and so we also have U(t) �
Û (1/t). Consequently, A(e−1/t ) � tβ and so∑

n≥0

ans
n � 1/(1 − s)β .

This concludes the proof.

We want to apply Theorem 6.1 to prove Theorem 1.4. Let � be a non-elementary rela-
tively hyperbolic group. Let μ be a finitely supported, admissible and symmetric probabil-
ity measure on �. Assume that the corresponding random walk is aperiodic and spectrally
positive recurrent. We write G′(r) = (d/dr)G(e, e|r) and G′′(r) = (d2/dr2)G(e, e|r) for
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simplicity. Theorem 1.5 shows that

G′′(r)
(G′(r))3 � 1.

Letting r ≤ R < Rμ, integrating these two inequalities between r and R yields

1
G′(r)2 − 1

G′(R)2 � R − r .

By monotone convergence, G′(R) tends to G′(Rμ) as R converges to Rμ. Since we are
assuming that μ is divergent, we get

1
G′(r)2 � Rμ − r ,

so that

G′(r) � (Rμ − r)1/2.

Theorem 6.1, applied to an−1 = nRn
μpn(e, e), shows that

n+1∑
k=1

kRk
μpk(e, e) � n1/2.

Classically, when bk is a non-increasing sequence satisfying
∑n

k=1 bk � nβ , one can
prove that bn � nβ−1. We will prove a similar statement below. Unfortunately, there is
no chance to guarantee that nRn

μpn(e, e) is non-increasing, so we cannot deduce yet that
Rn

μpn(e, e) � n−3/2.
However, [23, Theorem 9.4] shows that there exists α > 0 such that

nRn
μpn(e, e) = nqn + O(e−αn), (25)

where qn ≥ 0 is non-increasing. In particular,

n+1∑
k=1

kRk
μpk(e, e) =

n+1∑
k=1

kqk + O(1)

and so
n+1∑
k=1

kqk � n1/2.

LEMMA 6.2. Let bn be a non-increasing sequence of non-negative numbers and let 0 <

β < 1. Assume that
∑n

k=1 kbk � nβ . Then bn � nβ−2.

Proof. First, we see that

n∑
k=1

kbk ≥ bn

n∑
k=1

k.
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Now, n2 �
∑n

k=1 k, so

bn � n−2
n∑

k=1

kbk � n−2nβ ,

which proves the first inequality.
We prove the second one. Let c and C be such that

cnβ ≤
n∑

k=1

kbk ≤ Cnβ .

We fix a large constant A such that 2C ≤ cAβ . Then 2Cnβ ≤ c(An)β and so

2Cnβ ≤
�An�∑
k=1

kbk ≤
n∑

k=1

kbk + bn

�An�∑
n+1

k.

Note that
∑�An�

n+1 k � n2 and hence there exists C′ such that

2Cnβ ≤
n∑

k=1

kbk + C′bnn
2 ≤ Cnβ + C′bnn

2.

We thus obtain Cnβ ≤ C′bnn
2, which concludes the proof.

Applied to our situation, this lemma shows that qn � n−3/2. We then use again (25) to
deduce that Rn

μpn(e, e) � n−3/2. This proves Theorem 1.4.
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