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GLOBAL ATTRACTIVITY AND STABILITY IN SOME
MONOTONE DISCRETE DYNAMICAL SYSTEMS

XIAO-QIANG ZHAO

The existence of globally attractive order intervals for some strongly monotone
discrete dynamical systems in ordered Banach spaces is first proved under some
appropriate conditions. With the strict sublinearity assumption, threshold re-
sults on global asymptotic stability are then obtained. As applications, the global
asymptotic behaviours of nonnegative solutions for time-periodic parabolic equa-
tions and cooperative systems of ordinary differential equations are discussed and
some biological interpretations and concrete application examples are also given.

1. INTRODUCTION

Recently both continuous and discrete-time strongly order-preserving dynamical
systems have been extensively investigated and developed. (See [5, *T, 13, 14, 15,
16, 19, 20, 21, 22, 23, 25] and references therein.) Now it is known that typical
asymptotic behavior in strongly monotone dynamical systems is generic convergence
to an equilibrium in the continuous-time case (see [16, 20, 23]) and to cycles in the
discrete- time case (see [21]) for "almost all" relatively compact orbits. From the
practical point of view, one desires a more complete description on the asymptotic
behaviors of all orbits, for example, convergence everywhere, global attractor and global
stability of equilibrium. This of course requires some additional restrictions on the
monotone dynamical systems considered. For discrete strongly monotone dynamical
systems on the finite dimensional ordered space (iin,ii™) , which can be generated by
periodic cooperative and irreducible systems of ordinary differential equations, Smith
[22] essentially obtained threshold results on the global attractivity of either positive
fixed points or zero fixed points under strong concavity assumptions. In [25], Takac
introduced the notion of sublinearity of 5 on V C E, that is, for any a 6 [0,1], u £
V, S(au) ^ aS(u), and studied the convergence of all orbits in V and the stability of
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fixed points of 5 . (See also [13, Chapter 1.5].) As for the convergence problem, we also
refer to Hale and Raugel's recent work on gradient-like dynamical systems in [10], and
references therein.

In this paper we mainly study global attractivity and global asymptotic stability
in discrete strongly monotone dynamical systems on an ordered Banach space E. In
Section 2, based on the Krein-Rutman theorem, we first prove the existence of a globally
attractive order interval with two fixed points of 5 as its endpoints and a stable fixed
point of S inside, either between two linearly unstable fixed points of 5 or between
a linearly unstable fixed point and a superequilibrium of 5 (Theorem 2.1). Then we
prove the global asymptotic stability of the linearly stable or linearly neutrally stable
fixed point 0 = S(0) in a positively invariant order interval V = [0, 6]e and the cone
P of E (Theorem 2.2) under the assumption that

(Ho) S(u) < DS(0)u for all u e V with u > 0.
We further introduce the notion of strict sublinearity of 5 on V, that is,

S(au) > aS(u) for all a € (0,1) and u £ V with u > 0,

which implies the uniqueness of positive fixed point in V and (.Ho) when 5(0) = 0
(Lemma 1). As a consequence of Theorems 1 and 2, we obtain threshold results on
the global asymptotic stability of either a positive fixed point or zero fixed point on
V = [0, b] or V = P under the assumption that Sm is strictly sublinear on V for
some integer m ^ 1 (Theorems 2.3 and 2.4). Theorems 2.3 and 2.4 generalise Hirsch
[14, Theorem 6.1] and Smith's [22, Theorems 2.1-2.3] results in the finite dimensional
ordered space (i2n,i?") to the infinite dimensional ordered Banach space (E,P) with
the strict sublinearity assumption much weaker than their strong concavity ones (Re-
mark 2.2), and also strengthen Takac's result [25], (Remark 2.3). Morever, according
to the remarks in [8], our standard assumption that 5 : V —> V is compact can be
actually replaced by a weaker one: S : V —> V is condensing and S([U,V]E) is bounded
in E for all u,v 6 V with u < v (Remark 2.4).

In Section 3, we first apply the abstract theorems in Section 2 to the Poincare oper-
ator defined by periodic parabolic equations with reaction term f(x,t,u) = uF(x,t,u),
and obtain corresponding results on the global asymptotic behavior of positive solu-
tions and the existence of at least one stable positive periodic solution (Theorem 3.1),
global asymptotic stability of a zero solution (Theorem 3.2) and global asymptotic
stability of a positive periodic solution (Theorem 3.3), which lead to a threshold cri-
terion for the "uniform persistence" and "extinction" of a single species population.
Theorem 3.3 also implies Hess's result [13, Theorem 28.11] for the periodic-parabolic
Logistic equations. Furthermore, as a consequence of Theorems 3.2 and 3.3, we obtain
a threshold result for autonomous parabolic equations (Theorem 3.4), which generalises
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Cantrell and Cosner's results on the global asympjtotic stability of positive steady-state
solution in the Dirichlet boundary condition case (see [3, Theorems 2.1 and 2.3] and
[4, Theorem 2.4 with Corollary 3.3]). As an application example of Theorem 3.4,
for a reaction-diffusion equation deduced from the competition model in an unstirred
chemostat (see [17, 24]) we get a threshold result on the global asymptotic stability of
either a positive steady-state solution or zero steady-state solution (Proposition), which
generalises Hsu and Waltman's recent similar result for the Michaelis-Menten-Monod
function F = {rns)/{a + s), s ^ 0 [17, Theorems 3.1 and 3.2] to a more general func-
tion F satisfying F(0) = 0 and F'(s) > 0 for s ^ 0. Finally we show how the abstract
results in Section 2 can be applied to periodic cooperative and irreducible systems of
ordinary differential equations and, as an illustration of Theorem 2.4, give a threshold
result on the global asymptotic stability of either a positive periodic solution or zero
solution (Theorem 3.5). An application example of Theorem 3.5 to the single loop pos-
itive feedback systems in 12™ is also given under the strict sublinearity assumption on
f(x,t) instead of the strong concaivity assumption in [22].

2. GLOBAL ATTRACTIVITY AND STABILITY

Let (E,P) be an ordered Banach space with positive cone P having nonempty
interior int(P). For x,y £ E, we write

x^y Hx-y e P

x>y if x - y £ P \ {0}

a: > 1/ if as - y G int(P).

Let U be an open subset of E. In this section, we always assume S : U —> U is
a continuous and strongly order-preserving mapping, that is, x,y £ U, x > y implies
S(x) >̂ S(y). If u 6 U and S is Frechet differentiable at u, we denote this derivative
by DS{u).

Let a -C b £ E, and V = [a, b]e, the order interval in E, or alternatively, let
V = P. In what follows, we shall assume that

(H) V C U and S : V —* V is order-compact, that is, 5([M,V]£') is relatively
compact for all u,v £ V with u < v.

Let K £ L{E) be a linear operator. We call K strongly positive if K(P \ {0}) C
int(P). If K is compact and strongly positive, we denote its spectral radius by r(K),
the existence and positivity of which are guaranteed by the Krein-Rutman theorem
(see, for example, [13, Theorem 7.2]).

We first prove the following result.
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THEOREM 2 . 1 . Let V = [a,b]E with a < b and let (H) hold. Assume that

(1) S(a) = a, DS(a) exists and DS(a) is compact, strongly positive, and

r(DS(a))>l;

(2) either S(b) — b, DS(b) exists and DS(b) is compact, strongly positive,

and r(DS(b)) > 1, or alternatively, S(b) ^ b.

Then there exist two fixed points u\ and u2 of S in [a, 6]B with U2 ^ U] > a such

that for any u £ (a, b)B = {u £ E; a < u < b},

lim distB(Sn(u),[uuu2]) = 0
n—>oo

and [ui,u2] contains a stable fixed point UQ of S. Morever, u2 C 6 in the case either
S{b) = b and r(DS(b)) > 1 or S(b) < b.

PROOF: We prove the theorem under the first assumption of (2). For the second
case, a similar proof works.

By the Krein-Rutman Theorem [13, Chapter 1.7], let ex > 0, e2 > 0, \\ei\\E = 1
be the principal eigenfunctions of DS(a) and DS(b) respectively. Then

DS{a)e1=r1e1, n = r(DS(a))

DS(b)e2 = r2e2, r2 = r(DS(b)).

Since r\ > 1, r2 > 1 and for e > 0

S(a + eei) =5(o

S(b - ee2) =S(b)+DS(b)(-ee2) + o(\\e\\)

=b - er2e2 + o(\\e\\),

there exists eo > 0 such that for any 0 < e ^ eo,

5(a +eei) > a + eei and S(b — ee2) < b - ee2,

that is, a + eei < b — ee2 are order-related sub- and superequilibria of 5 . Therefore,
by [13, Lemma 1.1], the set F = {u;S(u) = u, a < u < b} ^ 0. We claim that
F is compact. Indeed, since F = S(F) C S([a,b]) is relatively compact, it suffices
to prove that F is a closed subset of E. For any u g F, since S is strongly order-
preserving, a <C u -C b. Assume un £ F (n = 1,2, • ••), un —> u (n —> oo). Then
IJUn. — a\\E > 0, | |«n — b\\B > 0. Morever, a ^ u ^ 6 and, by the continuity of 5 ,
S(u) — u. Now assume u = a. Then

un - a = S{un) - S(a) = DS(a)(un - a) + o(\\un - a\\).
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Let vn = (un - a ) / ( | |u n - a\\) > 0, then

' , o(\\un-a\\)
vn = DS{a)vn + v.n - all

Since DS(a) is compact and ||i>n|| = 1, we may assume, without loss of generality,
that DS(a)vn converges. Hence vn converges to v say, where ||v||B = l,v > 0, and
v = DS(a)v. By the Krein-Rutman theorem, r(DS(a)) = 1, which contradicts the
assumption r(DS(a)) > 1. Therefore u ̂  a. By a similar proof, u ^ b. Then u £ F,

and hence F is a closed set.
From the compactness of F it follows that there exists an £o > 0 such that for any

u £ F, a+eoei < u < b—eoez , and for any e £ (O,£o], a+eei < b—ee^ are order-related
strict sub- and superequilibria. From the Dancer-Hess Theorem (see [7, Theorem 3] or
[13, Theorem 4.2]) it follows that there exists a stable fixed point uo £ [a + eei,6 — ee^].

Further by [13 ,Lemma 1.1], 5n(o + eei) converges increasingly to the minimal fixed
point «i of 5 and Sn(b — ee2) converges decreasingly to the maximal fixed point «2
of 5 in the interval [a + eei,6 — ee-i[. We further claim that ui and U2 are independent
of the choice of e £ (O,£o]. Indeed, for any £1,62 £ (O,£o], let Uj ^ u^ (i = 1,2) be
the corresponding minimal and maximal fixed points with £ = £j respectively. Since
u\}) E F (i = 1,2, j = 1,2), by the choice of £0 above,

^ M < ^ — eoe2 ^ b — €je2, i = 1,2, j = 1,2.

Again by [13, Lemma 1.1],

which implies that

(i) (2) (i) (2)

Finally, we prove that for any u £ (a,b)

lim distB(Sn(t*), [ui,u2]) = 0.
TO—»0O

Since {5"(w)} C S([a, b}) is relatively compact, it suffices to prove that for any u £
(a,b), its w-limit set w(w) C [1*1,1*2]. For any u* £ w(u), there exist n* —» 00
such that Snk —* u* (k —• 00). Since u £ (a, b) and 5 is strongly order-preserving,
a 4; S(u) <t; 6, and hence there exists an e £ (0,£o] such that a + £ei ^ S(u) ^ 6 —£e2.
Then

ei) ^ Snk(u) ^ 5 n * (6 — £62),
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which implies that u\ ^ u* ^ u2.
This completes the proof. D

THEOREM 2 . 2 . Let either V = [0,b]E with b > 0 or V = P and let (H) hold.
Assume that

(1) 5(0) = 0, .DS(O) is compact and strongly positive, and r(£>5(0)) < 1;
(2) S(u) < DS(0)u for any u G V with u > 0.

Then u — 0 is globally asymptotically stable with respect to V.

PROOF: We first show that there exists no positive fixed point of 5 in V. Assume
that, by contradiction, there exists u 6 V, u > 0 such that u = S(u). Since 5 is
strongly order-preserving, i i > 0 , and hence, by assumption (2),

(-u) - DS(0){-u) = DS(0)u - S(u) > 0.

By the Krein-Rutman Theorem (see [13, Theorem 7.3]), r(DS(0)) > 1, which contra-
dicts our assumption r(Z?5(0)) ^ 1.

Now we let V = P. For V = [0,6]JS, the proof is much easier. Let e > 0 be
the principal eigenfunction of DS(0). Then DS(0)e - r(DS(O))e, and hence for any
t > 0, by assumptions (1) and (2),

S{te) < DS(0)(te) = t • r(DS(0))e ^ te.

That is, te is a strict superequilibrium of S. For any u £ P, there exists t > 0 such
that u 6 [0,<e]£. By [13, Lemma 1.1] and the nonexistence of a positive fixed point
of 5 , 0 «S Sn{u) ^ Sn{te) -• 0, that is, lim Sn(u) = 0. Since {Sn(te)} is a strictly

n—>oo

decreasing sequence in P, then u = 0 is an order stable from above fixed point of S in
P, and hence, by [7, Remark 3.2] or [13, Lemma 4.3], u = 0 is stable with repect to
P.

This completes the proof. U

Before we show an application of Theorems 2.1 and 2.2, we give the following
lemmas.

LEMMA 1. Let either V = [0,b]E C E or V = P. Assume S : V -» V is
continuous, strongly order-preserving and strictly subhnear on V, that is, S(au) >
aS(u) for all a £ (0,1) and u £ V with u >̂ 0. Then 5 admits at most one positive
fixed point in V. If, in addition, 5(0) - 0 and DS(0) exists, then S{u) < DS(0)u for
all u G V with u > 0.

PROOF: Assume that, by contradiction, 5 admits two positive fixed points U\
and u2 in V and U] 7̂  u2. Since ui > 0, u2 > 0, 5(0) ^ 0 and 5 is strongly order-
preserving, ui 2> 0, v.2 3> 0. Since Ui ^u2, without loss of generality we may assume
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ui ^ [ 0 , U 2 ] B . Let o-0 = sup{<r ^ 0;<rui ^ u2}. Clearly, aoui ^ u2 and 0 < ao < 1. In

the case ooUi < U2 > we have

and hence u2 — ffo^i 3> 0, which contradicts the definition of a§ . In the case
we have

<T0Ul = U2 = S(u2) = S(o-0«l) > O"o5(iil) = (TQUI,

which also leads to a contradiction. Therefore S admits at most one positive fixed
point in V.

For any u G V with u » 0, we have ||u|| > 0. Since 5(0) = 0 and for any
0 <a < 1,

S{au) S(0) + DS(0){ctu) + o(\\au\\)
S(u)<

= DS(0)u
a

ofllat.ll

if we let a -> 0, it follows that S(u) ^ DS(0)u. We further show that S(u) < DS(O)u
for all u 6 V with t i > 0 . Indeed, assume there exists uo € V with uo 3> 0 such that
S(u0) = DS(0)(u0). Then for any 0 < a < 1, auo > 0 and

aS(u0) < S{au0) < DS{0)(au0) = aDS{0){uo) = aS(uo),

which is a contradiction.
This completes the proof. U

From the proof of [25, Corollary 1.2] it follows that the following lemma is valid.

LEMMA 2. Let either V = [0,b]E C E or V = P. Assume S : V -> V is
continuous, strongly order-preserving and for some m G N, Sm is sublinear, that is,

Sm(au) 5= aSm{u) for ail a £ (0,1) and u € V with u > 0.

TAen Fm = {u; u G V \ {0}, Sm(u) = u} = {u; u G V \ {0}, 5(«) = u} = ^ .

Now we are in a position to prove the following threshold result.

THEOREM 2 . 3 . Let V - [0, b]E with b > 0 and let (H) hold. Assume that

(1) S(0) = 0, Z)5(0) is compact and strongly positive;
(2) for some m £ N, Sm is strictly subhnear on V, that is,

Sm(au) > aSm{u) for all ct£ (0,1) and u £ V with u > 0.

(a) II r(DS(0)) Sj 1, then u — 0 is globally asymptotically stable with respect
to V;

(b) If r(DS(0)) > 1, then there exists a unique positive fixed point UQ of S
in V and UQ is globally asymptotically stable with repect to V \ {0}.
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PROOF: For 5 m : V -» V, since 5(0) = 0 and DS(0) exists, DSm(0) exists and
DSm{0) = (DS(O))m. Therefore DSm(0) is compact and strongly positive, and, by
the Krein-Rutman theorem, r(DSm(0)) = (r(DS(0)))m. From Theorem 2.1 and the
uniqueness of the positive fixed point in Lemma 1 it follows that conclusion (b) holds
for 5 m . By Lemma 1 and Theorem 2.2 conclusion (a) holds for Sm.

By the continuity of 5 and the definition of the stability of a fixed point with
repect to V (see, for example, [7, Definition 2.1] or [13, Definition 3.1]), one can easily
prove that if Uo = Sm(uo) = S(uo) then the stability of uo for Sm implies that for 5.
Moreover, from [7, Lemma 2.2] or [13, Lemma 3.4] it follows that if for some u £ V we
have lim (5m) (u) = UQ and uo is a stable fixed point of 5 with repect to V, then

k—»oo

lim Sn(u) = UQ . Now conclusions (a) and (b) for 5 follow from Lemma 2.
n—»oo

This completes the proof. D

As an application of Theorem 2.3, we prove the following result.

THEOREM 2 . 4 . Let V = P and let (H) hold. Assume that
(1) there exists 6 > 0 such that for any u 6 P, ~f+{u) (~1 [0,b]E ^ 0, where

-y+(u) = {Sn(u);neN};
(2) 5(0) = 0, DS(0) is compact and strongly positive;
(3) 5 is strictly sublinear on P.

Then the conclusions of Theorem 2.3 are valid for V = P.

PROOF: For any u > 0, since b ~^> 0, there exists a sufficiently large t = t{u) > 1
such that u £ [0,<6]. From assumption (1) it follows that there exists n = n(t) £ N
such that 0 ^ Sn(tb) ^ b < tb. By assumption (3), 5 n is also strictly sublinear. In
the case r(DS(0)) > 1, by applying Theorem 2.3 to 5" : V - [O,tb] -> V, we conclude
that there exists a stable positive fixed point uo of 5 n and lim (571) (u) = uo. By
Lemma 2 and the conclusion in the proof of Theorem 2.3, uo is also a stable positive
fixed point of 5 and lim Sk(u) = UQ . Now from the uniqueness of the positive fixed

k—»oo

point, which is guaranteed by Lemma 1, it follows that u0 is independent of the choice
of u £ P \ {0}. Therefore uo is globally asymptotically stable with repect to P \ {0}.
In the case r(DS(0)) ^ 1, a similar proof shows that the other conclusion of Theorem
2.3 holds for V = P.

This completes the proof. D

REMARK 2.1. If we replace assumptions (1) and (3) in Theorem 2.4 by the following
ones:

(1)' there exists i > 0 such that for any u 6 P, the orbit j+(u) of u ul-
timately lies in [0,6]B, that is, there exists N — N{u) such that for all
n>N, Sn(u)(E[0,b}B;
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(3)' for some m £ N, Sm is strictly sublinear on P

respectively, the corresponding conclusions are also valid. To prove this, it suffices to
notice that with (1)' one can choose n in the proof of Theorem 2.4 to be such that
n = mk and k = k(t) £ N.

REMARK 2.2. Theorems 2.3 and 2.4 can be viewed as generalisations of [14, Theorem
6.1] and [22, Theorems 2.1-2.3] for strongly order-preserving mappings on the finite
dimensional ordered space (i?n,il™) to the case of the infinite dimensional ordered
Banach spaces (E,P). Moreover, the crucial concavity hypothesis (C) in [22], that
is, DT(v) - DT(u) > 0 if u > v > 0 (in [14], even u > v ^ 0), implies our strict
sublinearity. Indeed, for any 0 < a < l , u ^ O ,

T(au) = T(0) + a I DT(sa • u)u • da
Jo

> T(0) + a / DT{su)u • da (by (C))
Jo

= (1 - a)T(O) + aT(u) J5 aT(u).

In [22, Theorem 2.3], the strong concavity of T as formulated by Krasnoselskii [18],
that is, for every u S> 0 and a £ (0,1) there exists TJ = 77(11, a) > 0 such that
T(au) ^ (1 + Ti)aT(u), is assumed. Obviously, this strong concavity implies our
strict sublinearity. We further point out that in Theorems 2.1-2.4, we only require
the (Frechet) differentiability of 5 at u — 0 (and u = b).

REMARK 2.3. In [25], Takac introduced the notion of sublinearity of 5 on V C E,
that is, for any a G [0,1], u £ V, S(au) ^ aS(u), and studied the convergence of orbits
in V and the stability of fixed points of 5 (see also [13, Section 1.5] for a new proof).
Our Theorems 2.3 and 2.4 here give a threshold type and much stronger results under
the strict sublinearity assumption. On the other hand, our Theorems 2.1 and 2.2 on the
global asymptotic behaviors are for more general strongly order-preserving mappings.

REMARK 2.4. According to the remarks on strongly monotone discrete dynamical sys-
tems in [8, Section 5], we can replace the standard assumption (H) in this section by
the following weaker one:

(H') V C U and 5 : V —> V is condensing and 5([U,W]B) is bounded in E for all
u,v £ V with u < v.
A typical example of a condensing map is the following

where L is Lipschitz continuous with Lipschitz constant < 1 and K is compact. For the
definitions of condensing maps and the related Kuratowski noncompactness measure,
we refer to [8, 9, 26].
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3. APPLICATIONS TO PERIODIC PARABOLIC EQUATIONS AND COOPERATIVE SYSTEMS

Let T > 0 be fixed and fi C RN (N ̂  1) be a bounded domain with boundary
dCl of class C2+e (0 < 0 ̂  1). We now consider the scalar periodic-parabolic equations

-T^ + A{t)u = f(x,t,u) infix(0,oo)

Bu = 0 on9nx(0,oo)

u(-,0) = uo in fi

where
i •. d2 v—v , . d , .

d^dx

is uniformly elliptic for each t 6 [0,T], a.ij(x,t) (1 < i,j ^ N), a.i(x,t) (1 ̂  i s$ N)

and f(x,t,u) are T"-periodic in t, Bu = u or Bu = ——\-bo(x)u, where -̂— denotes
Ov ov

differentiation in the direction of the outward normal and bo(x) ^ 0. Let QT =
Q, x [0, T]. We suppose that

(Hi) ajk = akj and a; £ C"W2(QT) (1 ^ j,k ^ N, 0 ̂  i ^ N), and 60 e
C1+0(dQ,R);

(H2) f e C ( Q T x R,R), -^- exists and - ^ 6 C(jQT x R,R) with / (- , - ,«) and

- ^ ( • , -,u) 6 Ce'e/2(QT,R) uniformly for u in bounded subsets of R.
ou

Let X = Lp(n), JV < p < oo, and for j3 € (1/2 + N/(2p), 1], let ^ be the
fractional power space of X with respect to (-4.(0), B) (see [12]). Then Xp is an ordered
Banach space with order cone consisting of the nonnegative functions. Moreover

X1 = Wl

[ N\
0,2/3-1 J ,

and the order cone in Xp has nonempty interior. From [13, Section III.20], it follows
that for every uo £ Xp , there exists a unique regular solution ip(t,Uo) of (3.1) with the
maximal existence interval J+(tio) C [0,co) and <p(t,UQ) is globally defined provided
there is an L°°- bound on I+(UQ).

Let E = Xp with (3 £ (12 + N/(2p),l] and assume that there exists an open
subset U of E such that for every u 6 U, f(t,u) is L°°-bounded on I+(u)x. Then
I+(u) = +oo. We define the Poincare operator S : U —* E by

S(u) = <p{T,u).
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From a similar argument to that of [13, Proposition 21.2] or [7, Section 5] it follows
that 5 : U —> E is continuous, compact and strongly order-preserving. Obviously, a
fixed point uo of S corresponds to the T-periodic solution tp(t,uo) of (3.1).

Let u be a T-periodic solution of (3.1). Consider the corresponding linear periodic-
parabolic equation

I Bv = 0
That is,

( 3 , , f£
I Bv =0

where ~A(x,t)v = A(x,t)v - -^-(x,t,u(t,x))v. According to [13, Chapter II], (3.2)
ou

admits a evolution operator U(t,r) (0 ^ r ^ t ^ T) and for any 0 ^ T < t $J T, U(t,r)
is a compact and strongly positive operator on E = Xp. By [13, Proposition 23.1], the
Poincare operator 5 associated with (3.1) is defined in a neighbourhood of -uo — u(0)
and is Frechet differentiable at u0, with DS{u0) = F(T,0). Let r = r(DS(uo)). Then
by [13, Proposition 14.4], /i = (—l/T)/o^(r) is the unique principal eigenvalue of the
periodic-parabolic eigenvalue problem

dv -r,,s

— + A(t)v = fiv

(3-3) { Bv = 0

v T-periodic.

For various properties and estimates of the principal eigenvalue of linear periodic-
parabolic problems, we refer to [13,Sections 11.15 and 17].

In what follows, we shall impose the following conditions on / .
(.4i) f(x,t,0) ^ 0 and for every {x,t) EQ,xR, f(x,t,) is sublinear on / C [0,oo),

that is, f(x,t, au) ^ af(x,t, u) for any a 6 (0,1) and u 6 / with u > 0, and for at least
one (xo,to) £ Q,xR, f(xo,to, •) is strictly sublinear, that is, f(x0,to,au) > a/(aiO)^0!u)
for any a 6 (0,1) and u £ I with u > 0.

(A2) f(-,,0) = 0 and for every (x,t) £ fl x R and all u > 0,

ft < Nf(x,t,u)

for at least one (xo,to) G fi x R and all u > 0,

/(zo,<o,u) < — ^ - T ^ • u.
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Let P be the cone of E — Xp and

V = {u £ U; u(x) ^ 0 and u(x) £ I for all x £ 0} .

By the strong positivity of the evolution operator U(t,r) on E for 0 ^ T < t ^ T

and the formula of the variants of constant for the inhomogeneous linear evolution
equation, it is not difficult to prove that (Ai) implies the strict sublinearity of the
Poincare operator 5 on V and (.4.2) implies S(u) < DS(0)u for any u £ V with
u > 0 . (In the case f(x,t,0) = 0, for any u £ E, let ipo(t,u) = U(t,0)u be the regular
solution of (3.2) with u0 = 0; then ipo(T,u) = DS{0)u.)

In biological and chemical reaction models, we often encounter the Kolmogorov
type reaction function / , that is, f(x,t,u) = uF(x,t,u). Let \x — fi(A(t),F(x,t,0))

be the principal eigenvalue of the periodic-parabolic problem

— + A(t)v = F(x, t, 0)v + fiv

(3-4) { Bv = 0

v T-periodic.

Then we have the following results.

THEOREM 3 . 1 . Let f(x,t,u) = uF(x,t,u) and let assumptions (27i) with

ao ^ 0 and (H2) hold. Assume that

(1) there exists Ko > 0 such that F(x,t,u) < 0 for all (x,t) £ fi x [0,T] and

u^ Ko;
(2) / ^ ( t ^ -F^^O) ) < 0.

Then there exist two positive T-periodic solutions Ui(t) ̂  u2(t) of (3.1) such that for

any solution u(t) of (3.1) with u(0) £ Xp and u(0) > 0,

Urn distXfj(u(t), [u1(t),u2(t)]) = 0

and (3.1) admits at least one stable positive T-periodic solution uo(t) with ui(t) ^

PROOF: By (1), any constant K ^ Ko is a supersolution of (3.1), and hence
for every uo £ E — Xp with Wo > 0, the solution tp(t,uo) of (3.1) exists globally
on I+(uo) = [0,oo). Let S : uo —» <P[T,UQ) be the associated Poincare operator.
From assumption (1) it follows that any possible nonnegative T-periodic solution u(t,x)

satisfies 0 Sj u(t,x) < KQ , and hence, by a standard iteration argument for 5 , for any
u0 £ E with uo ̂  0 there exists iV = N(u0) > 0 such that for n ^ N,

0 ^ Sn(u0) ^ Ko on 12.
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According to [6, Section 2] or [13, Chapter III.21], we may assume, without loss of
generality, Ko £ E. Now the conclusion of the theorem follows from applying Theorem
2.1 with V = [0,K0] to 5 . D

THEOREM 3 . 2 . Let f(x,t,u) = uF(x,t,u) and let (Hi) and(H2) hold. Assume
that

(1) for any (a, t) e f i x [0 ,T ] and any u > 0, F(x,t,u) 4 F(x,t,0), and for at

least one (xo,to) G 0 x [0,T] and any u > 0, F(xo,to,u) < F(xQ,t0,Q);

(2) /*(A(t) ,F(*>*,0))>0.

Tien u = 0 is globally asymptotically stable with respect to nonnegative initial values
in Xp.

PROOF: From assumption (1) and the comparison theorem for scalar parabolic
equations, it follows that for any UQ £ Xp with ito ^ 0, the solution ip(t,utj) of
(3.1) exists on [0,+oo). Since (1) implies (A^), the conclusion follows from applying
Theorem 2.2 with V = P , the cone of Xp, to the associated Poincare operator 5 . D

REMARK 3.1. By noticing that Xp •-> C1+X(p) for A G [0,2/9 - 1 - N/p) and combin-
ing Theorems 3.1 and 3.2, we can get a threshold criterion for the "uniform persistence"
and "extinction" of single species population. For the uniform persistence (that is, per-
manence), we refer to [27, 28] for reaction-diffusion systems and to [11] for general
infinite dimensional dynamical systems. Furthermore, the following Theorem implies
a kind of particular uniform persistence, that is, the global attractivity of a unique
positive periodic solution.

THEOREM 3 . 3 . Let f(x,t,u) = uF(x,t,u) and let (F j ) and (H2) hold. Assume
that

(1) for any (x,t) G fl x [0,T], F(x,t,-) is decreasing on [0,oo), and tor at

least one (xo , t o) G fix [0,T], F(xo,to,) is strictly decreasing on (0,oo);

(2) tAere exists a positive supersolution V for the periodic boundary value

problem (3.1);

(3) / i (A(0, l i l (* > * ,0))<0.

Then there exists a positive T-periodic solution uo(t) of (3.1) and uo(<) is globally
asymptotically stable with respect to positive initial values in Xp.

PROOF: Since for any p ^ 1, by assumption (2), pV is also a supersolution of
(3.1), the global existence of any solution u(t) of (3.1) with nonnegative initial values
in E follows. Obviously, assumption (1) implies (A\) with / — [0,oo) and hence the
strict sublinearity of the associated Poincare operator 5 : P —> P, where P is the
cone of E. By Lemma 1 in Section 2, 5 admits at most one positive fixed point in
P. Without loss of generality, we may assume that V(0) G E = Xp (see [6, Section 2]
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or [13, Chapter 111.21]). On applying Theorem 2.3 with V - [0,PV(0)]B C P for any
p ^ 1, we then complete the proof of the theorem. D

REMARK 3.2. In [13, Chapter 111.28], Hess considered the periodic-parabolic Logistic
equation, that is,

— + A(t)u — mu -bu2 i n f ix (0, oo)
at
Bu = 0 on d£l x (0, oo)

where m and 6 G Ce'e/2(p, x R) and are T-periodic in t, and b(x,t) > 0, b(x,t) ^ 0 on
QT. Let F(x,t,u) = m(x,t) — b(x,t)u. Obviously, both assumptions (1) of Theorems
3.2 and 3.3 are satisfied, and hence Theorems 3.2 and 3.3 imply [13, Theorem 28.1].

Now we turn to the case that (3.1) is autonomous, that is, A(x,t) — A(x) and
F(x,t,u) = F(x,u). We distinguish between two cases:

(I) ao(x) ^ 0, with ao(x) ^ 0 if bo(x) = 0;
(N) oo(x) = 0 , bo{x) = O.

In case (I), we assume m £ C0(Jl) and m(x) > 0 at some x G fi. From [13, Theorem
16.1 and Remark 16.5] it follows that the elliptic eigenvalue problem

{ A(x)u = Am(x)u in fi

Bu = 0 on oil

has a unique positive principal eigenvalue Ai(rre). For any T > 0, let fi(A,m(x),T) be
the principal eigenvalue of the periodic-parabolic problem (3.4) with F(x,t,0) replaced
by m(x). From [13, Chapter 11.15 and Remark 16.5] it follows that if Ai(m) < 1,
then fj.(A,m(x),T) < 0, and if Aj(m) ^ 1, then fi(A,m(x),T) ^ 0 . As a corollary of
Theorems 3.2 and 3.3, we have the following result.

THEOREM 3 . 4 . Let A(x,t) = A(x), f{x,t,u) = uF(x,u) and let (Hi), (H2)
and (I) hold. Assume thai

(1) F(x,0) > 0 at some x G ft;
(2) for any x G f2, F(x,-) is decreasing on [0, oo), and for at least one xo G O,

JF(XO, •) is strictly decreasing on (0,oo);

(3) there exists a positive supersolution V tor the corresponding steady-state
problem

!

A(x)u = uF(x,u)

Bu = 0
(3-6) <

1 " on 80..
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(a) If Xi(F(x,O)) ^ 1, then (3.6) has no positive solution in Xp and u = 0 is a
globally asymptotically stable solution of (3.1) with repect to nonnegative initial values
in Xp;

(b) If Ai(F(x,0)) < 1, then (3.6) has a unique positive solution uo in Xp and

u = uo is a globally asymptotically stable solution of (3.1) with respect to positive

initial values in Xp .

PROOF: For given T > 0, we view the autonomous parabolic equation (3.1) as
a T-periodic one. From Theorem 3.2 the first conclusion (a) follows. In the second
case, by Theorem 3.3, (3.1) has a unique positive T-periodic solution uo(t,x) and
uo(t,x) is globally asymptotically stable. For any 7 > 0, since (3.1) is autonomous,
wo(̂  + 7ia;) is also a T-periodic solution of (3.1). By the uniqueness of the positive
T-periodic solution, uo(t + f,x) = uo(t,x) for all t £ [0,T], x £ Q. This implies that
uo(t,x) = uo(O,x), x £ ft, that is, uo is a steady-state solution of (3.1), and hence the
second conclusion follows.

This completes the proof. U

REMARK 3.3. It is obvious that the following assumption

(3)' there exists Ko > 0 such that for all x £ FJ, F(x,K0) ^ 0

implies condition (3) in Theorem 3.4. Similar results to the second conclusion of The-
orem 3.4 were proved for diffusive Logistic equation under condition (3)' and Dirichlet
boundary condition (see [3, Theorems 2.1 and 2.3] and [4, Theorem 2.4 with Corollary
3.3]). For the biological interpretation and significance of these results, we further refer
to [3, 4].

For the case (N), according to [13, Theorem 16.3 and Remark 16.5], we can also
discuss the global asymptotic stability of the steady-state solution of the corresponding
autonomous equation (3.1) in a similar way.

EXAMPLE 1. We consider a reaction-diffusion equation of a single population growth,
which is deduced from a competition model in an unstirred chemostat (see [17, 24]).

(3.7)

—^+F{<f>{x)-u)u, t>0,0<x<l
ox*

w(0,x) = uo(x) ^ 0, and uo(x) ^ <f>(x), x £ (0,1)

where d > 0, 4(s) = S<°> ((1 + i)h ~ * ) . 0 < x < 1, S<°> > 0, 7 > 0 and F is the
typical Michaelis-Menten- Monod response function:

TTL8F() >Q ( 0 ° )
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In what follows, we consider a more general function F(s) satisfying

(3.8) F(0) = 0 and F'{s) > 0 for s ^ 0.

Let Ao = A0(-F(<£(x))) > 0 be the first eigenvalue of

(3.9)

Then we have the following result.

PROPOSITION. Assume (3.8) holds.

(a) If Ao(F(<^>(x))) > 1, then u = 0 is a globally asymptotically stabJe steady-

state solution of (3.7) with respect to nonnegative initial values.

(b) If \0(F(<p(x))) < 1, then (3.7) has a globally asymptotically stable pos-
itive steady-state solution «o(x) (uo(x) < <£(x)), x £ (0,1) with respect
to positive initial values.

PROOF: For the use of Theorem 3.4, let F(s), s £ R be any continuously differ-

entiable extension of F(s) on [0,oo) to R satisfying F'(s) > 0 for all s 6 R.

Consider autonomous parabolic equation

(3.10)

-£ - d—^ + F(<t>(x) - u)u, t > 0, 0 < x < 1
at ox

= uo{x) ^ 0.

Let Ko = 5 ( 0 ) • ( l + 7 ) / 7 . Then <j>{x) < KQ, x 6 (0,1) and hence F(<f>(x) - Ko) ^ 0.
Then Theorem 3.4 implies the corresponding conclusion for (3.10). From a comparison
argument it easily follows that for any 0 ̂  uo(x) ^ ^(x) , the solution u(t,x) of (3.10)
satisfies 0 ^ u(t,x) ^ 4>(x), t ^ 0, and hence the conclusion for (3.7) follows. U

REMARK 3.4. In [17], Hsu and Waltman considered (3.7) with F = (mis)/(ai + a)

(s ^ 0 ) (i—u,v). Obviously, the above Proposition implies [17, Theorems 3.1 and

3.2]. Moreover, our Proposition also includes the critical case Xo(F(<f>(x))) = 1.

Finally, we consider the periodic system of ordinary differential equations

(o) =
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where x = ( * i , . . . , x n ) £ Rn and iCJ. = {x £ iZ";z< ^ 0, i = 1,2,... , n } . We
assume that .F : R+ x iZ™ —> iZ™ is continuous and T-periodic in £, and that all partial

dF-
derivatives -3—-(1 ^ i, j ^ n) exist and are continuous in iZi. x iZ™ .

UXj

In what follows, we take Rn as an ordered Banach space with its natural cone iZ"
and denote the interior of iZ™ by iZ" . An nxn matrix A is said to be quasipositive if
its off-diagonal entries are nonnegative. It is irreducible if viewed as a linear mapping
from Rn to Rn, it does not leave invariant any proper linear subspace spanned by
a subset of the standard basis vectors of Rn. For the other equivalent definitions of
irreducibility, we refer to [2, 15].

We first impose the following conditions on F(t,u).

(Cl) Fi(t,x) ^ 0 for every x > 0 with x{ = 0, t £ iZ]j_, (i - 1,2,... ,n ) ;

(C2) ^ ^ 0, i ± j , for all (t, x ) G ^ x ^ , and DxF(t, x) = — M
O a ! i \OXj ^.j^

is irreducible for each < G i?i .̂, x G i2™ .

Assume (Cl) and C(2) hold. Then for every x £ i2™ , there exists a unique solution
ip(t,x) of (3.11) with the maximal existence interval I+{x) C [0,+oo) and tp(t,x) ^
0 (t £ J + (x) ) . If there exists a relatively open and convex subset U of iZ™ such that
for every x £ U, <p(t,x) is bounded on I+(x), then I+(x) — +00. We can define the
Poincare operator 5 : U —» iZ™ by

S ( u ) = <p{T,u), u £ U

From a Kamke's theorem argument it follows that 5 : U —> iZ™ is strongly order-
preserving (for example, see [15, Theorem 1.5]). Now let x(t) be a nonnegative T-
periodic solution of (3.11) and consider the corresponding linear periodic systems

(3.12) ^ = D.F[t1z{t))z.

By (C2), A(t) = DxF(t,x(t)) is a continuous, T-periodic, quasipositive and irreducible
matrix function. Let <j>(t) be the fundamental matrix solution of (3.12) with ^(0) = J
(the identity matrix). By [2, Lemma 2] or [15, Theorem 1.1], for each t > 0, <j>{t)
is a matrix with all entries positive, and hence for each t > 0, <j){t) : iZn —» Rn is a
compact and strongly positive linear operator. From the continuity and differentiability
of solutions for initial values, it easily follows that the Poincare operator S associated
with (3.11) is defined in a neighbourhood of xo — x(0) and differentiable at xo, with
DS(x0) = 4>{T). The eigenvalues of <f>(T) are often called the Floquet multipliers of
(3.12). Based on the Krein-Rutman theorem (or on the Perron-Frobenius theorem in our
present finite dimensional case), we call p = r(<j>(T)) the principal Floquet multiplier
of (3.12).
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In what follows, we shall further impose the following conditions on F.

(C3) F(t, •) is strictly subHnear on R% for each t G R\, that is, for each x > 0
and 0 < a < 1,

F(t,ax) >aF(t,x), t ^ 0;

(C4) F(i,0) = 0 and for every t E R\ and x > 0,

F{t,x) <DxF(t,0)x.

Let A(t)(t Js 0) be a continuous, quasipositive and irreducible matrix function, and
dx

<f>(t,T) (t ^ T ^ 0) be the fundamental matrix solution of — = A(t)x with <J>(T,T) =
at

I. From the proof of [2, Lemma 2] or [15, Theorem 1.1] it follows that for each
t > T, (f>(t,r) : Rn —> Rn is strongly positive linear operator. Now by the formula for
the variation of constant for the inhomogeneous Hnear ordinary differential equation,
one can easily prove that (C3) implies the strict subHnearity of the Poincare operator
on iJIJ. and (C4) impHes S(x) < DS(ti)x for any x > 0. Therefore, by applying
Theorems in Section 2 to the Poincare operator defined by (3.11), we can formulate
the corresponding theorems for (3.11). As an illustration of Theorem 2.4, we have the
following result.

THEOREM 3 . 5 . Let (Cl), (C2) and (C3) hold. Assume that F(t,0) = 0 and
there exists a bounded subset B of i?" such that any solution x(t) of (3.11) ultimately
lies in B. Let p be the principal Floquet multiplier of (3.12) with x(t) = 0.

(a) If p ^ 1, tiien x(i) E 0 is a globally asymptotically stable periodic

solution of (3.11) with repect to the initial values in i i" ;

(b) If p > 1, then (3.11) has a unique positive T-periodic solution x(t) and

x(t) is globally asymptotically stable with respect to initial values in

R$\{0}.

REMARK 3.5. In a similar way to the paraboHc equations, from Theorem 3.5 we can
easily deduce an analogous conclusion for autonomous systems (3.11), that is, for

) = F(u).

EXAMPLE 2. Consider the single loop positive feedback systems in i?" (see [22, 25]):

(3.13)

-j£- = f{xn,t) -

dx2 . .
— = X! - Ct2{t)X2

d X n /4\

— = xn_1-an(t)xn
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Assume that a^(-) and f(xn,-) are continuous and T-periodic in t G R\., that

f(O,t) = 0, f(u,t) ^ 0, -J-(u,t) > 0 is continuous in # + , and that for each t G R\,
ov,

f(-,t) is strictly sublinear on R\., that is, for any t ^ 0, u > 0 and 0 < a < 1,
f(au,t) > af(u,t). It is easy to verify that (Cl), (C2) and (C3) are satisfied for (3.13).
If we further assume that

min a.i(t) > 0, 1 ^ i ^ n,

then the ultimate boundedness of (3.13) follows from that of a nonhomogeneous linear
system which majorises (3.13) (for some details, see [22]). Therefore Theorem 3.5 now
applies to (3.13). A similar result was proved in [22] with f(-,t) strongly concave.
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