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Abstract

Canned sardines are a ready-to-use fish product with excellent nutritional properties owing to its high n-3 long-chain PUFA content, mainly

EPA (20 : 5n-3) and DHA (22 : 6n-3). The present study aimed to assess the effect of two dosages of canned sardines, recommended for the

primary and secondary prevention of human CVD, on the inflammatory marker concentrations and fatty acid composition of erythrocytes

and key metabolic tissues (liver, muscle, adipose tissue and brain) in the rat model. Wistar rats were fed a diet containing 11 % (w/w)

of canned sardines (low-sardine (LS) diet) and a diet containing 22 % (w/w) of canned sardines (high-sardine (HS) diet) for 10 weeks.

Daily food intake, weight gain, and organ and final body weights were not affected by the dietary treatments. The concentrations of

total cholesterol, HDL-cholesterol and LDL-cholesterol decreased in both the LS and HS groups, while those of alanine aminotransferase

and adiponectin increased. The concentrations of IL-1b increased only with the highest dosage of sardine. The dose-dependent influence

of the graded levels of EPAþDHA was tissue specific. Compared with that of other tissues and erythrocytes, the fatty acid composition of

the brain was less affected by the canned sardine-supplemented diets. In contrast, the retroperitoneal adipose tissue was highly responsive.

The deposition ratios of EPA and DHA indicated that the LS diet was optimal for DHA deposition across the tissues, except in the retro-

peritoneal adipose tissue. Taken together, our findings indicate that a LS diet positively affects plasma lipid profiles and inflammatory

mediators, whereas a HS diet has contradictory effects on IL-1b, which, in turn, is not associated with variations in the concentrations

of other pro-inflammatory cytokines. This finding requires further investigation and pathophysiological understanding.
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Exposure to a typical Western diet increases the risk of

metabolic disorders throughout the course of one’s life, creat-

ing an intergenerational cycle of metabolic disease. In Western

countries, this epidemic has coincided with a marked increase

in the intake of n-6 PUFA, leading to suggestions that the two

may be causally related(1). In contrast, diets rich in n-3 PUFA

reduce the rates of all-cause mortality, in particular, cardiac

arrest, sudden death or stroke, due to their positive effects

on cholesterol, fasting insulin and TAG contents(2,3). Evidence

from several studies supports the premise that increasing

the intake of n-3 long-chain (.C18, LC) PUFA from fish oil

affects tissue lipid composition, in particular, cell membrane

fatty acids, and derived lipid mediator production, resulting

in clinical benefits(4). Such mediators derived from EPA

(20 : 5n-3) and DHA (22 : 6n-3) are anti-inflammatory, while

those derived from the most prevalent n-6 LC-PUFA, arachi-

donic acid (AA, 20 : 4n-6), are, in general, pro-inflammatory

or exhibit other pathophysiological effects(5). Contrarily to

the well-known inflammatory diseases, only more recently

has chronic low-grade inflammation been recognised to be

involved in obesity, type 2 diabetes mellitus, the metabolic

syndrome and CVD(4), with the concentrations of systemic

inflammatory markers, namely leptin, TNF-a, IL-1b and

IL-6, being increased. In contrast, adiponectin exerts anti-

inflammatory and insulin-sensitising effects with beneficial

outcomes on cardiovascular and metabolic disorders(6–8).
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Sardine is a pelagic species and one of the main halieutic

resources of the Portuguese coast with regard to the total

annual catch(9). This species is an excellent source of n-3

LC-PUFA, in particular, EPA and DHA(10). In addition, canned

products are convenient and ready-to-use food products that

are a good source of digestible protein with a high content

of LC-PUFA(11). The current nutritional recommendations for

EPAþDHA intake are based on a clear inverse relationship

between EPAþDHA intake and the risk of fatal and non-fatal

CVD. Due to the low efficiency of the conversion of a-linolenic

acid into EPA and DHA in certain tissues, their maximum

beneficial effect can only be achieved by direct dietary

intake(12). For individuals with asymptomatic heart diseases,

the American Heart Association recommends for primary

prevention the consumption of at least two fishmeals per

week (preferably oily fish), which would provide an average

of 500 mg/d of EPAþDHA. For secondary prevention, aiming

to reduce the risk of death from CVD, the American Heart

Association recommends about 1000 mg/d of EPAþDHA(13).

The present study aimed to determine which dosage of

canned sardines, 11 and 22 % (w/w), is best to achieve a pre-

ventive effect on CVD by means of beneficially influencing

inflammatory markers in the Wistar rat model. An additional

goal of the present study was to explore in which way these

sardine dosages modulate the fatty acid profiles of key meta-

bolic tissues (liver, muscle, adipose tissue and brain) and

affect erythrocyte fatty acid composition and, therefore, the

omega-3 index, a recognised marker for the evaluation of

cardiovascular risk.

Experimental methods

Experimental diets

Canned sardines from the same lot were purchased from

COFACO/CORESA (Lisbon, Portugal), and the experimental

diets were manufactured by Sparos, Lda (Faro, Portugal).

The composition of the granules was based on the commercial

formula of the AIN-93G diet and lipid and protein levels

were adjusted to obtain isoenergetic diets. After disposing

the oil from cans, sardines were minced and mixed with

other food ingredients to obtain a maximum incorporation

of 22 g of sardines per 100 g of diet. In addition to the high-sar-

dine (HS) diet (22 %, w/w), another diet with half the amount

of sardines, 11 % (w/w) (low sardine; LS), was prepared. The

proportion of EPAþDHA in the three experimental diets was

as follows: 0 % in the control diet; 7·7 % in the LS diet;

19·2 % in the HS diet. The proximate chemical composition

of the diets was determined according to the AOAC(14), and

the fatty acid composition was assessed as described by Ban-

darra et al.(15) (Table 1).

Animals and sample collection

A total of twenty-seven male Wistar rats (Harlan Interfauna

Iberica SL), aged 28 d, were housed individually under a

12 h light–12 h dark cycle and at a temperature of 22–258C.

After an adaptation period of 1 week, the rats were fed one

of the three experimental diets (nine animals per group).

Body weight and feed intake were recorded twice a week.

At the end of 10 weeks, the rats were fasted for 12 h and

killed by decapitation, under light isoflurane anaesthesia.

The trunk blood was collected in lithium heparin tubes

and was left to stand for 30 min. Plasma was obtained after

centrifugation at 1500g for 10 min. Erythrocytes were

obtained after washing the pellet twice with 0·9 % NaCl and

centrifuging at 1500 g for 15 min. Erythrocyte aliquots were

flash-frozen in liquid N2 and stored at 2808C for further anal-

ysis. After the collection of blood samples, liver, longissimus

dorsi (LD) muscle, retroperitoneal adipose tissue and brain

were removed, weighed and stored at 2808C for fatty acid

determination.

The experimental procedure was reviewed by the Ethics

Commission of CIISA/FMV and approved by the Animal Care

Committee of the National Veterinary Authority (Direcção-

Geral de Veterinária, Portugal), following the appropriate

European Union guidelines (2010/63/EU Directive).

Table 1. Chemical and fatty acid composition of the experimental diets

Control LS HS

Ingredients (g/100 g)
Casein 20·0 12·6 5·3
Maize starch 37·9 38·7 39·5
Maltodextrin 13·2 13·2 13·2
Sucrose 10·0 10·0 10·0
Cellulose 5·0 5·0 5·0
Soyabean oil 8·9 4·5 0·0
L-Cys 0·3 0·3 0·3
Mineral AIN-93G mix 3·5 3·5 3·5
Vitamin AIN-93G mix 1·0 1·0 1·0
Choline bitartrate 0·3 0·3 0·3
TBHQ (antioxidant) 0·001 0·001 0·001
Canned sardines 0 11 22

Chemical composition (g/100 g)
Gross energy 15·7 15·2 14·7
Crude protein 23·1 15·5 12·2
Crude fat 8·0 5·7 4·7
Carbohydrates 54·9 65·6 68·2
Crude ash 2·6 3·1 3·0

Fatty acid profile (g/100 g total fatty acids)
14 : 0 0·569 1·89 4·16
15 : 0 ND 0·197 0·386
16 : 0 12·6 14·6 18·7
16 : 1n-9þn-7 ND 1·35 3·32
16 : 0iso ND ND 0·550
16 : 2n-4 ND ND 0·380
17 : 0 ND ND 0·647
16 : 4n-3 ND ND 0·596
18 : 0 4·30 4·52 4·49
18 : 1 23·1 21·6 18·3
18 : 2n-6 51·3 39·0 17·7
18 : 3n-3 4·96 3·84 2·84
18 : 4n-3 ND 0·935 2·54
20 : 0 ND ND 0·868
20 : 1 ND ND 1·75
20 : 2n-6 ND ND 0·278
20 : 4n-6 ND ND ND
20 : 4n-3 ND 0·383 1·02
20 : 5n-3 ND 3·44 8·67
22 : 6n-3 ND 4·31 10·5

Control, 0 % (w/w) of canned sardines in the diet; LS, low sardine, 11 % (w/w) of
canned sardines in the diet; HS, high sardine, 22 % (w/w) of canned sardines in
the diet; TBHQ, tertiary butyl hydroquinone; ND, not detected.
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Plasma biochemical assays

The plasma concentrations of total cholesterol, HDL-

cholesterol, LDL-cholesterol, TAG, glucose, creatinine, urea,

aspartate aminotransferase (AST) and alanine aminotransferase

(ALT) were determined using standard diagnostic test kits

obtained from Roche Diagnostics (Mannheim, Germany) in

the Modular Hitachi Analytical System (Roche Diagnostics).

The concentrations of VLDL-cholesterol and total lipids were

calculated according to the Friedewald et al.(16) and Covaci

et al.(17) formulas, respectively. The serum/plasma concen-

trations of adipokines were determined using a LINCOplex

kit (RADPK-81K; Linco Research) with the Luminex xMAP

technology (Lincoplex 200; Linco Research), which allowed

the simultaneous determination of the concentrations of insulin,

leptin, IL-1b, IL-6, TNF-a, monocyte chemoattractant protein-1

and plasminogen activator inhibitor-1. The concentrations of

adiponectin were measured using a commercial ELISA kit

(EZRADP-62K; Linco Research). The degree of insulin resist-

ance was calculated by the homeostasis model assessment

using the insulin resistance index (HOMA-IR)(18):

Fasting serum glucose ðmmol=lÞ

£ fasting serum insulin ðmU=lÞ=22·5:

Analysis of fatty acid composition of erythrocytes and tissues

The fatty acid composition of the erythrocytes, liver, LD muscle,

retroperitoneal adipose tissue and brain was analysed. Fatty

acid methyl esters (FAME) were prepared according to the

method of Bandarra et al.(10). The samples were lyophilised

(2608C and 2·0 hPa) to a constant weight. FAME were obtained

through the addition of 1 ml of anhydrous methanol and 0·5 ml

of sodium methoxide (1 mol/l in methanol), swirling for 5 min

and 1 h reaction in the dark under the conditions described by

Christie(19). Layer separation was improved by placing the con-

tents in an ultrasonic bath for 10 min and centrifuging at 1500 g

for 5 min. The n-hexane layer was collected and the aqueous

phase re-extracted with 2·5 ml of n-hexane and centrifuged

again. FAME were concentrated to a final volume of 25ml in

n-heptane, and 2ml of the sample were injected on a capillary

DB-Wax capillary column (30 m, 0·25 mm internal diameter

and 0·25mm film thickness; J&W Scientific/Agilent) in a Varian

CP-3800 gas chromatograph equipped with a flame ionisation

detector (Varian). The temperature of the injector and detector

was set at 2508C. The adequate separation of FAME was

achieved over a 40 min period, with 5 min at 1808C, followed

by an increase of 48C/min until 2208C, and keeping the

sample at this temperature for 25 min. The quantification of

total fatty acids was based on the internal standard technique,

using the heneicosanoic acid (21 : 0). Total fatty acids and

individual fatty acids are expressed as a percentage of tissue

dry weight and a percentage of total fatty acids, respectively.

Calculation of the tissue contents and
deposition ratios of EPA and DHA

The contents of EPA and DHA in the tissues were calculated as

mg/g of dry weight. The deposition ratios of the same fatty

acids were calculated by dividing the percentage of each

fatty acid by the percentage in the feed as described by

Berge et al.(20). A deposition ratio of 1 corresponds to a fatty

acid being deposited in tissue lipids at the same rate as the

fatty acid supplied in the lipids of the feed. A value ,1 corre-

sponds to a relative depletion of the fatty acid and a value .1

corresponds to a relative synthesis of the fatty acid.

Statistical analysis

Statistical analysis was carried out using the Statistical Analysis

Systems (SAS) software package, version 9.1 (SAS Institute).

All data were checked for normal distribution and variance

homogeneity and reported as means with their standard

errors. The generalised linear model procedure was used

to carry out variance analysis and differences between the

groups were calculated using Tukey’s post hoc test at P,0·05.

Results

Animal body composition

As shown in Table 2, the consumption of the LS and HS

diets did not affect the daily feed intake, growth parameters

or final body and tissue (liver, muscle, and epididymal and

retroperitoneal fats) weights of the rats (P.0·05).

Plasma metabolite profiles

The plasma metabolite values of each dietary treatment group

are also given in Table 2. Rats fed the canned sardine-

supplemented diets had consistently lower concentrations

of total cholesterol and LDL-cholesterol (P,0·001). The

HS group had the lowest concentration of HDL-cholesterol

than the other two experimental groups (P,0·001). However,

these changes resulted in a lower total cholesterol:HDL-

cholesterol ratio in the LS and HS groups in relation to the

control group (P,0·05). Moreover, the dietary treatments

did not induce any significant change in TAG, total lipid,

glucose, insulin, creatinine, and urea concentrations and

HOMA-IR values (P.0·05). Higher concentrations of circu-

lating ALT were found in both the sardine-supplemented

groups than in the control group (P,0·05). However, the

AST:ALT ratio did not differ among the three dietary treatment

groups (P.0·05, data not shown).

Regarding the most important cytokines mainly produced

by the adipose tissue, sardine supplementation did not

affect the concentrations of leptin (P.0·05), but increased

those of adiponectin (P,0·01). Nevertheless, the LS and

HS groups had similar concentrations of adiponectin, and

the leptin:adiponectin ratio in these two groups was lower

than that in the control group (P,0·05). The concentrations

of pro-inflammatory markers IL-1b, IL-6, TNF-a, mono-

cyte chemoattractant protein-1 and plasminogen activator

inhibitor-1 are also summarised in Table 2. IL-1b was the

only IL the concentration of which was significantly affected

by sardine supplementation, with the HS group having a

higher concentration than the control and LS groups (P,0·05).

Health effects of canned sardines 311
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Fatty acid composition of erythrocytes and tissues

The total fatty acid composition of erythrocytes and tissues

was not altered by the dietary treatments (P.0·05), except

for that of the retroperitoneal adipose tissue, with the HS

group having higher values than the control and LS groups

(P,0·01) (Tables 3–7).

The relative percentage of FAME in erythrocytes is

summarised in Table 3. Contrarily to those of total SFA and

MUFA, the percentage of total PUFA was affected by the diet-

ary treatments, with the LS group having higher values than

the control group (P,0·05). While the percentage of n-6

PUFA, such as linoleic acid (LA, 18 : 2n-6) and AA, decreased

with sardine supplementation (P,0·05), that of n-3 PUFA

increased, especially the sum of n-3 LC-PUFA (P,0·05). The

percentage of EPA was significantly higher in the HS group

than in the LS group (P,0·001). However, the percentage of

DHA in the LS and HS groups was similar, but was significantly

higher than that in the control group (P,0·001). With an

increase in sardine intake, the percentage of EPAþDHA in

erythrocytes increased 4·5-fold between the control and LS

groups and 2·1-fold between the LS and HS groups (P,0·001).

The fatty acid profile of the liver is summarised in Table 4.

The percentage of total SFA did not change (P.0·05), but that

of total MUFA in the LS group was lower than that in the HS

group, mainly due to 16 : 1 and 18 : 1 fatty acids (P,0·001).

A significant increase in the percentages of the major n-3

LC-PUFA, EPA, 22 : 5n-3 and DHA (P,0·001), and a significant

decrease in the percentages of the main n-6 PUFA, LA and AA

(P,0·001), were observed. The percentage of EPAþDHA

increased 3·6-fold between the control and LS groups and

1·6-fold between the LS and HS groups.

There were significant differences in the percentages of

the majority of fatty acids identified in the LD muscle among

the dietary treatment groups (Table 5). The percentage of

total SFA, and particularly 14 : 0 and 16 : 0 fatty acids, was sig-

nificantly higher in the LS and HS groups than in the control

group (P,0·001). In relation to that of total MUFA, there

was no difference in the percentage of 18 : 1 fatty acid, the

major MUFA, among the dietary treatment groups (P.0·05).

Table 2. Body composition parameters and plasma metabolite values

Control LS HS SEM P

Growth parameters and tissue weight (g)
Initial body weight 190 189 190 4·30 NS
Final body weight 397 379 392 11·1 NS
Daily body weight gain 3·38 2·98 3·15 0·158 NS
Daily feed intake 19·9 19·6 20·1 0·660 NS
Liver 10·2 9·22 10·1 0·389 NS
LD muscle 12·3 11·8 12·6 0·574 NS
Retroperitoneal fat 8·70 7·30 8·31 0·836 NS
Epididymal fat 7·58 6·45 6·54 0·932 NS

Plasma biochemistry profile
Total cholesterol (mg/l) 728a 523b 359c 33·6 ,0·001
HDL-cholesterol (mg/l) 164a 157a 108b 9·09 ,0·001
LDL-cholesterol (mg/l) 422a 317b 200c 3·46 ,0·001
VLDL-cholesterol (mg/l)* 155 162 151 20·1 NS
Total cholesterol:HDL-C 4·43a 3·35b 3·34b 0·084 ,0·001
TAG (mg/l) 77·7 80·8 75·3 10·0 NS
Total lipids (mg/l)† 3328 3141 2883 146 NS
Glucose (mg/l) 1420 1550 1450 85·6 NS
Insulin (pg/ml) 298 286 311 42·8 NS
HOMA-IR (mmol/l £ mU/l)‡ 3·08 3·22 3·10 0·559 NS
Creatinine (mg/l) 3·78 3·97 4·08 0·220 NS
Urea (mg/l) 348 358 334 20·6 NS

Plasma hepatic markers
AST (U/l) 80·8 105 106 10·0 NS
ALT (U/l) 27·0b 36·0a 35·8a 2·29 ,0·01

Plasma inflammatory markers
Leptin (ng/ml) 2·45 1·83 2·20 0·192 NS
Adiponectin (mg/ml) 18·7b 24·5a 21·8a 1·20 ,0·01
Leptin:adiponectin 128a 80·7b 89·7b 12·4 ,0·05
IL-1b (pg/ml) 58·5b 66·8b 177a 12·1 ,0·001
IL-6 (pg/ml) 129 126 131 7·47 NS
TNF-a (pg/ml) 22·9 22·7 23·2 0·267 NS
MCP-1 (pg/ml) 106 97·5 108 7·27 NS
PAI-1 (pg/ml) 114 119 142 14·4 NS

Control group, 0 % (w/w) of canned sardines in the diet; LS, low-sardine group, 11 % (w/w) of canned sardines in the diet;
HS, high-sardine group, 22 % (w/w) of canned sardines in the diet; LD, longissimus dorsi; HOMA-IR, homeostasis model
assessment of insulin resistance index; AST, aspartate aminotransferase; ALT, alanine aminotransferase; MCP-1, monocyte
chemoattractant protein-1; PAI-1, plasminogen activator inhibitor-1.

a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05; Tukey’s post hoc test).
* VLDL-cholesterol ¼ 1/5 (TAG).
† Total lipids ¼ (total cholesterol) £ 1·12 þ (TAG) £ 1·33 þ 148.
‡ HOMA-IR ¼ (fasting serum glucose) £ (fasting serum insulin)/22·5.
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Conversely, there was a significant decrease in the percen-

tage of total PUFA with an increase in sardine content in

the diet (P,0·001). The percentage of n-3 PUFA increased

(P,0·001), whereas that of n-6 PUFA decreased (P,0·001),

resulting in a significant increase in the n-3:n-6 ratio with

sardine intake (P,0·001). There was a decrease in the percen-

tages of LA and AA in the LS and HS groups with respect

to those in the control group (P,0·001). The sardine-

supplemented diets altered the relative proportions of EPA

and DHA (P,0·001). The percentage of EPAþDHA increased

2·2-fold between the control and LS groups and 1·7-fold

between the LS and HS groups.

The fatty acid profile of the retroperitoneal adipose tissue is

summarised in Table 6. The HF and LF groups had signifi-

cantly higher percentages of SFA and MUFA than the control

group, except for 18 : 1 fatty acid, which was present at similar

values in the LS and control groups (P,0·001). The percen-

tage of LA, the most prevalent PUFA in retroperitoneal fat

cells, decreased dramatically with sardine intake (P,0·001).

There were no variations in the percentage of AA between

the LS and HS groups, but the percentage was significantly

lower than that in the control group (P,0·001). The percen-

tage of n-3 PUFA (a-linolenic acid, 20 : 4n-3, EPA, 22 : 5n-3

and DHA) was higher in the sardine-supplemented groups

(P,0·001). Interestingly, the percentage of stearidonic acid

(18 : 4n-3) was lower in the LS and HS groups than in the

control group (P,0·001). As the percentage of n-3 PUFA

increased and that of n-6 PUFA decreased, the n-3:n-6

ratio increased progressively (P,0·001). The percentage of

EPAþDHA increased 22·1-fold between the control and LS

groups and 3·9-fold between the LS and HS groups.

The fatty acid profile of the brain is summarised in Table 7.

The SFA 16 : 0 was the only fatty acid that exhibited an

increase in its percentage in the HS group compared with

that in the control group (P,0·05). In fact, the percentage

of total SFA did not differ among the three dietary treatment

groups (P.0·05). With regard to MUFA, the highest percen-

tage of 20 : 1 fatty acid was observed in the control group

(P,0·001). However, the percentages of 16 : 1 and 18 : 1 fatty

acids were much higher in the HS group than in the LS or

control group (P,0·01). The same trend was observed for

the percentage of total MUFA (P,0·01). In addition, the

lowest percentages of LA, AA, 22 : 4n-6 and total n-6 PUFA

were observed in the HS group (P,0·001). Moreover, there

was no significant change in the sum of n-3 PUFA (P.0·05).

Furthermore, a-linolenic acid (18 : 3n-3) and 20 : 4n-3 were

Table 4. Total fatty acids (percentage of dry weight) and fatty acid
composition (percentage of total fatty acids) of the liver

Control LS HS SEM P

Total fatty acids 20·8 15·8 22·4 2·04 NS
Fatty acid composition

14 : 0 0·373b 0·424b 0·655a 0·065 ,0·05
16 : 0 17·5b 18·8a,b 22·6a 1·26 ,0·05
18 : 0 11·8b 13·9a 11·4b 0·529 ,0·01
Other SFA 0·998 0·757 0·731 0·118 NS
SSFA 30·7 33·8 35·4 1·44 NS
16 : 1 1·05b 1·18b 2·66a 0·337 ,0·01
18 : 1 13·9a 11·5b 14·8a 0·473 ,0·001
20 : 1 0·292 0·220 0·213 0·068 NS
Other MUFA 0·354 0·251 1·27 0·578 NS
SMUFA 15·6b 13·2b 19·0a 0·850 ,0·001
18 : 2n-6 30·1a 24·3b 14·4c 0·630 ,0·001
18 : 3n-3 0·419 0·171 0·235 0·121 NS
18 : 4n-3 0·656a 0·633a 0·125b 0·134 ,0·05
20 : 4n-6 16·4a 11·8b 5·89c 0·766 ,0·001
20 : 4n-3 0·019b 0·038b 0·312a 0·028 ,0·001
20 : 5n-3 0·332c 3·27b 7·68a 0·702 ,0·001
22 : 4n-6 0·164 0·038 0·146 0·044 NS
22 : 5n-3 0·445c 1·78b 2·35a 0·188 ,0·001
22 : 6n-3 3·02c 8·81b 11·2a 0·939 ,0·001
Other PUFA 1·48 1·47 1·22 0·448 NS
SPUFA 53·0a 52·2a 43·6b 1·68 ,0·01
SUnidentified 0·743b 0·743b 2·06a 0·336 ,0·05
Sn-3* 4·96c 14·7b 22·0a 1·20 ,0·001
Sn-3 LC-PUFA† 3·82c 13·9b 21·6a 1·19 ,0·001
Sn-6‡ 47·4a 37·2b 21·0c 0·933 ,0·001
n-3:n-6 0·105c 0·395b 1·05a 0·052 ,0·001
EPAþDHA 3·35c 12·1b 18·9a 1·05 ,0·001

Control group, 0 % (w/w) of canned sardines in the diet; LS, low-sardine group,
11 % (w/w) of canned sardines in the diet; HS, high-sardine group, 22 % (w/w) of
canned sardines in the diet; LC-PUFA, long-chain PUFA.

a,b,c Mean values within a row with unlike superscript letters were significantly
different (P,0·05; Tukey’s post hoc test).

*Sn-3 ¼ S(18 : 3n-3, 18 : 4n-3, 20 : 4n-3, 20 : 5n-3, 22 : 5n-3, 22 : 6n-3).
†Sn-3 LC-PUFA ¼ S(20 : 4n-3, 20 : 5n-3, 22 : 5n-3, 22 : 6n-3).
‡Sn-6 ¼ S(18 : 2n-6, 20 : 4n-6, 22 : 4n-6).

Table 3. Total fatty acids (percentage of dry weight) and fatty acid
composition (percentage of total fatty acids) of the erythrocytes

Control LS HS SEM P

Total fatty acids 0·541 0·728 0·570 0·106 NS
Fatty acid composition

14 : 0 0·091 0·082 0·147 0·048 NS
16 : 0 25·1a 20·9b 24·9a,b 1·17 ,0·05
18 : 0 16·4a 14·7a,b 13·6b 0·609 ,0·05
Other SFA 0·761 1·12 1·03 0·286 NS
SSFA 42·3 36·8 39·7 1·64 NS
16 : 1 0·084 0·040 0·093 0·069 NS
18 : 1 9·01a,b 8·77b 10·1a 0·345 ,0·05
20 : 1 ND 0·067 0·072 0·031 NS
Other MUFA 1·47 2·18 1·82 0·634 NS
SMUFA 10·6 11·1 12·1 0·433 NS
18 : 2n-6 9·52a 10·5a 7·05b 0·377 ,0·001
18 : 3n-3 2·48 3·50 2·80 0·804 NS
18 : 4n-3 1·77 3·34 2·79 1·06 NS
20 : 4n-6 19·3a 16·1b 10·4c 0·679 ,0·001
20 : 4n-3 ND 1·40 0·033 0·804 NS
20 : 5n-3 ND 1·81b 6·23a 0·286 ,0·001
22 : 4n-6 0·779 0·304 ND 0·235 NS
22 : 5n-3 0·533b 1·66a,b 2·35a 0·321 ,0·01
22 : 6n-3 1·15b 3·41a 4·47a 0·362 ,0·001
Other PUFA 7·04 7·17 6·99 0·581 NS
SPUFA 42·6b 49·2a 43·1a,b 1·75 ,0·05
SUnidentified 4·53 2·90 5·07 0·688 NS
Sn-3* 10·1b 18·7a 23·0a 1·33 ,0·001
Sn-3 LC-PUFA† 1·68c 8·29b 13·1a 1·14 ,0·001
Sn-6‡ 32·3a 30·3a 20·0b 0·792 ,0·001
n-3:n-6 0·310c 0·622b 1·15a 0·047 ,0·001
EPAþDHA 1·15c 5·22b 10·7a 0·594 ,0·001

Control group, 0 % (w/w) of canned sardines in the diet; LS, low-sardine group,
11 % (w/w) of canned sardines in the diet; HS, high-sardine group, 22 % (w/w) of
canned sardines in the diet; ND, not detected; LC-PUFA, long-chain PUFA.

a,b,c Mean values within a row with unlike superscript letters were significantly
different (P,0·05; Tukey’s post hoc test).

*Sn-3 ¼ S(18 : 3n-3, 18 : 4n-3, 20 : 4n-3, 20 : 5n-3, 22 : 5n-3, 22 : 6n-3).
†Sn-3 LC-PUFA ¼ S(20 : 4n-3, 20 : 5n-3, 22 : 5n-3, 22 : 6n-3).
‡Sn-6 ¼ S(18 : 2n-6, 20 : 4n-6, 22 : 4n-6).
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not detected in the brain. Interestingly, EPA was the only n-3

PUFA that exhibited an increase in its percentage in the dietary

treatment groups fed the sardine-supplemented diets, while

DHA did not exhibit any change in its percentage. In fact,

the n-3:n-6 ratio increased significantly (P,0·001), but there

was no change in the sum of EPAþDHA contents (P.0·05).

Tissue contents and deposition ratios of EPA and DHA

In general, the increase in canned sardine intake from 11 %

(LS diet) to 22 % (HS diet) led to an effective increase in

tissue EPA and DHA contents (Fig. 1). However, the DHA

contents of the erythrocytes, muscle and brain were similar

in both the LS and HS groups (P.0·05). In comparative

terms, the brain was richer in DHA than in EPA, among the

tissues. The increases in EPA and DHA contents were signifi-

cantly higher in the liver and retroperitoneal adipose tissue

when comparing the LS and HS groups (P,0·05).

In Fig. 2, the deposition ratios of EPA and DHA in the tissues

are shown. Overall, EPA was deposited at lower rates (,1)

in each tissue. In contrast, the values of EPA deposition

ratio in the erythrocytes and liver were much higher than

those observed in other tissues. The values of EPA deposition

ratio in the erythrocytes and liver were similar in both

the LS and HS groups (P.0·05); however, in the LD muscle,

retroperitoneal adipose tissue and brain, the values were

slightly increased with a higher dosage of sardine (P,0·05).

The deposition ratio of DHA was greater than 1 in the liver,

LD muscle and brain. The increase in dietary sardine content

did not reflect an increase in the tissue deposition ratio,

except for the retroperitoneal adipose tissue. In the latter,

the deposition ratio of DHA was higher in the HS group

than in the LS group (P,0·05).

Discussion

Based on the n-3 LC-PUFA dietary recommendations made

by the American Heart Association for the primary and

secondary prevention of CVD(13) and taking into account that

the average of energy provided per day should be about

8374 kJ (2000 kcal) for humans v. 1256 kJ (300 kcal) for rats,

the EPA and DHA dietary intakes were extrapolated to the

rat model. The values calculated were found to be 76 and

151 mg/d of EPAþDHA and were very similar to the amounts

of EPAþDHA used in the present study, 70 and 152 mg/d

of EPAþDHA, corresponding to diets with 11 % (w/w) of

canned sardines (LS) and 22 % (w/w) of canned sardines

(HS), respectively.

In the present study, the consumption of both LS and

HS diets by Wistar rats modified the profiles of systemic

Table 5. Total fatty acids (percentage of dry weight) and fatty acid composition (percentage of total fatty
acids) of the longissimus dorsi muscle

Control LS HS SEM P

Total fatty acids 7·62 6·30 5·59 0·809 NS
Fatty acid composition

14 : 0 0·954c 1·44b 2·06a 0·079 ,0·001
16 : 0 18·8c 22·2b 25·8a 0·472 ,0·001
18 : 0 7·73 7·71 6·94 0·642 NS
Other SFA 1·62b 1·77a,b 2·09a 0·115 ,0·05
SSFA 29·1c 33·1b 36·9a 0·833 ,0·001
16 : 1 2·71b 3·66b 6·31a 0·355 ,0·001
18 : 1 20·0 20·6 19·4 0·875 NS
20 : 1 0·235b 0·399a,b 0·517a 0·064 ,0·05
Other MUFA 0·117a 0·015b ND 0·016 ,0·001
SMUFA 23·0 24·6 26·3 1·12 NS
18 : 2n-6 31·2a 25·9b 13·6c 0·965 ,0·001
18 : 3n-3 1·53a 1·28a 0·910b 0·096 ,0·01
18 : 4n-3 ND 0·030b 0·315a 0·021 ,0·001
20 : 4n-6 7·42a 3·63b 2·89b 0·526 ,0·001
20 : 4n-3 ND 0·014b 0·305a 0·014 ,0·001
20 : 5n-3 0·020c 0·865b 2·48a 0·061 ,0·001
22 : 4n-6 0·269 ND ND 0·017 ,0·001
22 : 5n-3 1·05b 1·21b 1·73a 0·127 ,0·01
22 : 6n-3 4·01c 7·83b 12·3a 0·735 ,0·001
Other PUFA 0·914 0·956 1·05 0·077 NS
SPUFA 47·0a 41·8b 35·6c 0·956 ,0·001
SUnidentified 1·50 0·510 1·27 0·477 NS
Sn-3* 7·43c 12·0b 18·9a 0·859 ,0·001
Sn-3 LC-PUFA† 5·08c 9·91b 16·5a 0·875 ,0·001
Sn-6‡ 39·4a 29·6b 16·6c 0·660 ,0·001
n-3:n-6 0·190c 0·410b 1·15a 0·047 ,0·001
EPAþDHA 4·03c 8·70b 14·8a 0·770 ,0·001

Control group, 0 % (w/w) of canned sardines in the diet; LS, low-sardine group, 11 % (w/w) of canned sardines in the diet; HS,
high-sardine group, 22 % (w/w) of canned sardines in the diet; ND, not detected; LC-PUFA, long-chain PUFA.

a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05; Tukey’s post hoc test).
*Sn-3 ¼ S(18 : 3n-3, 18 : 4n-3, 20 : 4n-3, 20 : 5n-3, 22 : 5n-3, 22 : 6n-3).
†Sn-3 LC-PUFA ¼ S(20 : 4n-3, 20 : 5n-3, 22 : 5n-3, 22 : 6n-3).
‡Sn-6 ¼ S(18 : 2n-6, 20 : 4n-6, 22 : 4n-6).

P. O. Rodrigues et al.314

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114514000853  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114514000853


metabolites. The 11 % dosage of canned sardines was suffi-

cient to decrease total cholesterol and LDL-cholesterol con-

centrations and total cholesterol:HDL-cholesterol ratio, as

well as to increase adiponectin concentrations, thus reducing

cardiovascular risk factors. In comparative terms, an additional

decrease in lipid parameters was observed with the higher

dosage of canned sardines. Bandarra et al.(10) also observed

a reduction in total cholesterol concentrations in Wistar rats

fed sardine oil-enriched diets. The mechanism by which EPA

and DHA decrease plasma cholesterol concentrations is not

well established and contradictory results have been reported

by epidemiological studies(12). It has been shown that n-3

LC-PUFA serve as PPAR-a and PPAR-g ligands(12). Therefore,

a possible explanation for our findings is that n-3 LC-PUFA

may lead to PPAR-a stimulation, decreasing the expression

of the active nuclear form of sterol regulatory element-binding

protein-1(21) and increasing the activity of LDL receptor(22).

Dietary EPA and DHA can also decrease plasma TAG con-

centrations by inhibiting the activity of enzymes associated

with fatty acid synthesis or through the reduction of fatty

acid synthesis in the liver, thus decreasing the secretion of

TAG into the bloodstream(23,24). In addition, Qiao et al.(25)

have suggested that adiponectin decreases plasma TAG con-

centrations by increasing skeletal muscle lipoprotein lipase

and VLDL removal from the blood. We found that the 11 %

(w/w) canned sardine diet was able to increase adiponectin

concentrations in the plasma of rats, although no changes

in plasma TAG concentrations were observed in both the

sardine-supplemented groups. Neschen et al.(26) have shown

that supplementation with menhaden fish oil, although at a

higher dosage (27 % (w/w) of fish oil in the diet), increases

plasma adiponectin concentrations in mice as well. Similar

to the results obtained for plasma glucose and insulin concen-

trations, the HOMA-IR index was identical across the dietary

treatment groups, without evidence of insulin resistance,

suggesting that high plasma adiponectin concentrations

enhance insulin sensitivity and play an important role in glu-

cose and lipid metabolism and homeostasis(27,28). In a similar

manner, canned sardines supplementation did not alter creati-

nine and urea concentrations, thus indicating unaffected renal

function(29). Apart from these valid explanations, our findings

regarding the non-variation in the profiles of some plasma

metabolites may have resulted due to the composition of

the basal (control) diet, which could have limited the

occurrence of further reductions.

Considering the prudent and plausible utilisation of n-3

LC-PUFA in the prevention of CVD, it is necessary to guarantee

that their intake leads to no undesirable side effects. In parallel

Table 6. Total fatty acids (percentage of dry weight) and fatty acid composition (percentage of total fatty
acids) of the retroperitoneal adipose tissue

Control LS HS SEM P

Total fatty acids 58·7b 54·0b 73·3a 4·01 ,0·01
Fatty acid composition

14 : 0 0·979c 1·77b 3·08a 0·053 ,0·001
16 : 0 16·8c 21·3b 28·6a 0·406 ,0·001
18 : 0 3·17c 3·70b 4·06a 0·114 ,0·001
Other SFA 0·628c 0·827b 1·01a 0·035 ,0·001
SSFA 21·6c 27·6b 36·7a 0·408 ,0·001
16 : 1 2·19c 3·65b 6·65a 0·243 ,0·001
18 : 1 27·8a 27·8a 26·5b 0·251 ,0·01
20 : 1 0·372c 0·786b 1·08a 0·050 ,0·001
Other MUFA 0·125 0·169 0·183 0·018 NS
SMUFA 30·5c 32·4b 34·4a 0·348 ,0·001
18 : 2n-6 42·4a 32·3b 14·3c 0·539 ,0·001
18 : 3n-3 0·264b 0·207b 0·642a 0·018 ,0·001
18 : 4n-3 2·40a 2·10b 1·70c 0·050 ,0·001
20 : 4n-6 0·585a 0·296b 0·349b 0·024 ,0·001
20 : 4n-3 0·005c 0·140b 0·610a 0·013 ,0·001
20 : 5n-3 0·011c 0·466b 1·97a 0·070 ,0·001
22 : 4n-6 0·047a,b 0·010b 0·056a 0·013 ,0·05
22 : 5n-3 0·055c 0·541b 1·38a 0·048 ,0·001
22 : 6n-3 0·064c 1·20b 4·43a 0·134 ,0·001
Other PUFA 1·14a,b 1·03b 1·23a 0·035 ,0·01
SPUFA 47·0a 38·3b 26·7c 0·591 ,0·001
SUnidentified 0·937c 1·69b 2·18a 0·049 ,0·001
Sn-3* 2·81c 4·67b 10·8a 0·279 ,0·001
Sn-3 LC-PUFA† 0·135c 2·35b 8·40a 0·240 ,0·001
Sn-6‡ 43·6a 32·9b 15·2c 0·538 ,0·001
n-3:n-6 0·065c 0·143b 0·716a 0·019 ,0·001
EPAþDHA 0·075c 1·66b 6·41a 0·190 ,0·001

Control group, 0 % (w/w) of canned sardines in the diet; LS, low-sardine group, 11 % (w/w) of canned sardines in the diet;
HS, high-sardine group, 22 % (w/w) of canned sardines in the diet; LC-PUFA, long-chain PUFA.

a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05; Tukey’s post hoc test).
*Sn-3 ¼ S(18 : 3n-3, 18 : 4n-3, 20 : 4n-3, 20 : 5n-3, 22 : 5n-3, 22 : 6n-3).
†Sn-3 LC-PUFA ¼ S(20 : 4n-3, 20 : 5n-3, 22 : 5n-3, 22 : 6n-3).
‡Sn-6 ¼ S(18 : 2n-6, 20 : 4n-6, 22 : 4n-6).
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with the aforementioned beneficial changes in plasma

metabolite profiles, our experimental data indicated that the

consumption of the 22 % (w/w) canned sardine diet increased

the circulating concentrations of IL-1b, a pro-inflammatory

marker. Despite the well-recognised anti-inflammatory role

of n-3 LC-PUFA in human studies(30), their action can be

mediated by different signalling pathways. It has recently

been reported that IL-1b production can be modulated by

dietary fatty acids. While palmitic acid (16 : 0) has been

shown to be associated with an increase in the concentrations

of IL-1b, DHA has been demonstrated to have an inverse

effect on the secretion of this IL(31). Interestingly, the sum of

SFA, mainly 16 : 0, was increased in the muscle and adipose

tissue in the HS group when compared with that in the LS

group. This could have led to the activation of Toll-like recep-

tors, inducing inflammasome-mediated IL-1b production(31).

The underlying justification for this negative finding may

be directly associated with the amounts of SFA and DHA avail-

able in the HS diet. The contribution of these fatty acids and

their putative interplay to pro- or anti-inflammatory final

events remains unclear.

Recently, a study using Wistar rats has shown both positive

and negative effects after menhaden fish oil supple-

mentation(32). The diet used by Shirazi et al.(32), with 15·9 %

of energy as fish oil, decreased total cholesterol and LDL-

cholesterol concentrations, but induced fatty liver (steatosis)

and the formation of atherogenic lesions, in contrast to the

present results. In accordance with this, plasminogen activator

inhibitor-1 and monocyte chemoattractant protein-1 concen-

trations were similar among the dietary treatment groups of

the present study. Although the fat supplementation dosage

was similar to the value used in the experimental diets

(14·7 % of diet energy), the values of both liver weight and

total fatty acid percentages were not affected, thus excluding

the possibility of hepatic lipotoxicity. The enzymes AST and

ALT have been accepted as the markers of liver injury; the

activity of ALT is more indicative of hepatic diseases than

that of AST. Despite the increase in ALT activity at both

dosages of canned sardines, it is worth noting that the levels

were still within the reference values for rats, which are 35·1

(SD 13·3) U/l(29), and the AST:ALT ratio did not vary among

the three dietary treatment groups.

The sum of EPA and DHA contents in erythrocyte mem-

branes, expressed as a percentage of total fatty acids, is

known as the omega-3 index(33). It appears to be a good bio-

marker of EPAþDHA intake(33). In fact, it can be perceived as

a new surrogate risk factor that is associated with dietary fatty

acids and morbidity and mortality associated with CVD(33).

Harris & von Schacky(33) observed that an omega-3 index

value .8 % is associated with the greatest cardioprotection,

whereas values ,4 % have the least protective capacity. In

the present study, changes in erythrocyte fatty acid compo-

sition were directly related to sardine supplementation, with

omega-3 index values of 5 and 11 % being found in the LS

and HS groups, respectively.

The liver has a pivotal function in the regulation of lipid

and lipoprotein metabolism. The present results indicated

that the fatty acid composition of the liver is very susceptible

Table 7. Total fatty acids (percentage of dry weight) and fatty acid
composition (percentage of total fatty acids) of the brain

Control LS HS SEM P

Total fatty acids 12·2 13·1 14·3 0·648 NS
Fatty acid composition

14 : 0 0·124 0·114 0·128 0·005 NS
16 : 0 17·3b 19·1a,b 19·1a 0·497 ,0·05
18 : 0 19·5 19·4 19·4 0·171 NS
Other SFA 3·37 3·56 3·54 0·113 NS
SSFA 40·3 42·2 42·2 0·641 NS
16 : 1 0·471b 0·513b 0·609a 0·025 ,0·01
18 : 1 20·7b 21·2b 22·6a 0·298 ,0·01
20 : 1 2·58a 2·04b 2·10b 0·080 ,0·001
Other MUFA 0·170 0·102 0·109 0·039 NS
SMUFA 23·9b 23·9b 25·4a 0·317 ,0·01
18 : 2n-6 0·919b 1·02a 0·614c 0·020 ,0·001
18 : 3n-3 ND ND ND – –
18 : 4n-3 ND 0·008 0·016 0·006 NS
20 : 4n-6 10·7a 9·07b 7·90c 0·186 ,0·001
20 : 4n-3 ND ND ND – –
20 : 5n-3 ND 0·078b 0·269a 0·007 ,0·001
22 : 4n-6 0·426a 0·091b 0·050b 0·041 ,0·001
22 : 5n-3 0·672a 0·263b 0·543a 0·062 ,0·001
22 : 6n-3 13·0 12·6 13·0 0·518 NS
Other PUFA 8·54 8·47 7·72 0·362 NS
SPUFA 34·2a 31·6a,b 30·1b 0·785 ,0·01
SUnidentified 1·54b 2·33a 2·33a 0·192 ,0·05
Sn-3* 18·7 19·1 19·6 0·611 NS
Sn-3 LC-PUFA† 13·7 13·0 13·8 0·539 NS
Sn-6‡ 15·5a 12·4b 10·3c 0·269 ,0·001
n-3:n-6 1·21c 1·54b 1·90a 0·034 ,0·001
EPAþDHA 13·0 12·7 13·2 0·522 NS

Control group, 0 % (w/w) of canned sardines in the diet; LS, low-sardine group,
11 % (w/w) of canned sardines in the diet; HS, high-sardine group, 22 % (w/w) of
canned sardines in the diet; ND, not detected; LC-PUFA, long-chain PUFA.

a,b,c Mean values within a row with unlike superscript letters were significantly
different (P,0·05; Tukey’s post hoc test).

*Sn-3 ¼ S(18 : 3n-3, 18 : 4n-3, 20 : 4n-3, 20 : 5n-3, 22 : 5n-3, 22 : 6n-3).
†Sn-3 LC-PUFA ¼ S(20 : 4n-3, 20 : 5n-3, 22 : 5n-3, 22 : 6n-3).
‡Sn-6 ¼ S(18 : 2n-6, 20 : 4n-6, 22 : 4n-6).
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Fig. 1. Tissue contents (mg/g dry weight) of EPA and DHA in the erythro-

cytes, liver, longissimus dorsi muscle, retroperitoneal adipose tissue and

brain of Wistar rats fed graded levels of canned sardines: low sardine (LS,

11 % (w/w)) and high sardine (HS, 22 % (w/w)). Values are means, with their

standard errors represented by vertical bars. a,b,c For EPA, mean values with

unlike letters were significantly different among the control, LS and HS

groups (P,0·05; Tukey’s post hoc test). A,B,C For DHA, mean values with

unlike letters were significantly different among the control, LS and HS

groups (P,0·05; Tukey’s post hoc test). , EPA – control group; , EPA –

LS group; , EPA – HS group; , DHA – control group; , DHA – LS

group; , DHA – HS group.
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to diets with graded levels of canned sardines, with an almost

2-fold increase in the tissue contents of EPA and DHA.

However, the deposition ratio of DHA was not proportional

to the correspondent levels of sardine supplementation.

The skeletal muscle is mainly involved in lipid oxidation to

produce chemical energy. Although DHA was incorporated

at amounts (in absolute values) higher than those of EPA,

only the deposition ratio of EPA increased with an increase

in sardine content in the diet. In addition, the retroperitoneal

adipose tissue under study was a visceral fat depot closely

associated with the metabolic syndrome, which is largely

due to its immune response potential and lower number

of insulin receptors(34). The incorporation of both EPA and

DHA in this tissue was highly significant, resulting in a pro-

portional increase in the deposition ratio. This is probably

the result of the ability of adipose tissue to accumulate dietary

fatty acids in cell membranes and cytosolic lipid droplets,

given its nature as an energy storage organ(35).

The fatty acid composition of the brain was less affected

by the dietary treatments when compared with that of other

tissues. This finding has previously been reported in rats

administered DHA(36,37). In fact, Suzuki et al.(38) suggested

that DHA intake increases per se the DHA content in brain

membranes more rapidly than the intake of associated pre-

cursors in rats fed a low-n-3 LC-PUFA diet. In the present

study, EPA and DHA contents were increased by the graded

levels of canned sardines, although the small magnitude of

the increment reveals that the fatty acid composition of the

brain is tightly regulated and probably more selective towards

DHA uptake from the bloodstream. It is important to note

that, even without sardine supplementation, the brain had

the highest DHA content among all the tissues studied. The

accumulation of DHA in the brain is in line with the results

reported by Barceló-Coblijn et al.(39) and Rapoport et al.(40).

Interestingly, EPA and DHA had distinct deposition ratios in

the various tissues studied, suggesting unequal metabolic

regulation. The lower deposition ratios of EPA may reflect a

different degree of depletion of this fatty acid in all the tissues.

The 22 % (w/w) dosage of canned sardines was able to

increase EPA deposition in the muscle, retroperitoneal adipose

tissue and brain. Conversely, DHA deposition was not

enhanced by the LS and HS diets, except in the retroperitoneal

adipose tissue. This is probably the consequence of dividing

the tissue content by a higher value of sardine incorporation

in the diet. The same trend was observed in the liver and

muscle. Notwithstanding this, DHA had the highest deposition

ratio in both the muscle and liver compared with EPA, regard-

less of the dietary treatment. This is probably due to the long-

est acyl chain length and the highest degree of unsaturation of

DHA, which together could lead to stereoisomeric difficulties

and, consequently, to b-oxidation resistance(41). Alternatively,

it may also be the result of a higher specificity of fatty acyl

transferase for this fatty acid(41).

Conclusions

The present study reports as novel findings the different

responses of the fatty acid metabolism in different tissues to

two different dosages of canned sardines. After a 10-week

period of 11 and 22 % (w/w) of canned sardine supplemen-

tation in Wistar rats, each tissue had a specific fatty acid com-

position reflecting different EPA and DHA deposition ratios,

and all these ratios were distinct from that of erythrocytes.

The fatty acid composition was influenced in a dose-depen-

dent manner by n-3 LC-PUFA and the profiles were tissue

specific. The brain seemed to be the most conservative and

the least responsive organ, while the adipose tissue was the

most sensitive to EPA and DHA dietary intake.

At the systemic level, the consumption of the 11 % (w/w)

canned sardine diet improved blood lipid and lipoprotein

profiles and adiponectin concentrations, suggesting that this

dietary approach may be a cost-effective and feasible option

for the primary prevention of CVD. In addition, the higher

dosage of canned sardines (22 % (w/w) in the diet), which

mimics a secondary prevention approach for CVD, resulted

in a higher omega-3 index value. Besides the unexpected

increase in plasma IL-1b concentrations observed in rats

fed the HS diet, the absence of an association of IL-1b with

other pro-inflammatory biomarkers, insulin resistance, and

liver and renal dysfunctions is a finding that deserves further

pathophysiological understanding.
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Fig. 2. Deposition ratios of EPA and DHA in the erythrocytes, liver, longissi-

mus dorsi muscle, retroperitoneal adipose tissue and brain of Wistar rats fed

graded levels of canned sardines: low sardine (LS, 11 % (w/w) in the diet)

and high sardine (HS, 22 % (w/w) in the diet). Values are means, with their

standard errors represented by vertical bars. a,b For EPA, mean values with

unlike letters were significantly different between the LS and HS groups

(P,0·05; Tukey’s post hoc test). A,B For DHA, mean values with unlike letters

were significantly different between the LS and HS groups (P,0·05; Tukey’s

post hoc test). , EPA – LS group; , EPA – HS group; , DHA – LS

group; , DHA – HS group.
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39. Barceló-Coblijn G & Murphy EJ (2009) Alpha-linolenic acid
and its conversion to longer chain n-3 fatty acids: benefits
for human health and a role in maintaining tissue n-3 fatty
acid levels. Prog Lipid Res 48, 355–374.

40. Rapoport SI, Chang MCJ & Spector AA (2001) Delivery and
turnover of plasma-derived essential PUFAs in mammalian
brain. J Lipid Res 42, 678–685.

41. Bandarra NM, Rema P, Batista I, et al. (2011) Effects of
dietary n-3:n-6 ratio on lipid metabolism of gilthead seab-
ream (Sparus aurata). Eur J Lipid Sci Technol 113,
1332–1341.

Health effects of canned sardines 319

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114514000853  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114514000853

