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Every Real Algebraic Integer Is a Difference
of Two Mahler Measures

Paulius Drungilas and Artaras Dubickas

Abstract. 'We prove that every real algebraic integer « is expressible by a difference of two Mahler
measures of integer polynomials. Moreover, these polynomials can be chosen in such a way that they
both have the same degree as that of , say d, one of these two polynomials is irreducible and another
has an irreducible factor of degree d, so that « = M(P) — bM(Q) with irreducible polynomials P, Q €
7[X] of degree d and a positive integer b. Finally, if d < 3, then one can take b = 1.

1 Introduction

Let (3 be an algebraic number of degree d over the field of rational numbers Q) with
minimal polynomial by X? + - -+ + by X + by = bg(X — 1) - (X — B4) € Z[X]. Its
Mabhler measure is defined by M(8) = by H;l:l max{1, |3;|}. It is well known that
M(3) is a real algebraic integer greater than or equal to 1 (see [1]). Likewise, the
Mahler measure of R(X) = by(X — (31)--- (X — B4) € C[X], where the numbers
B; € C are not necessarily distinct, is defined by M(R) = |b,| H;]:l max{1, |3;|}.
Clearly, M(RT) = M(R)M(T) for any polynomials R, T € C[X], but the numbers
M(3v) and M(B)M(7y), where 3,y € Q, are not necessarily equal.

Let M be the set of all Mahler measures of algebraic numbers, and let M* be
a monoid under multiplication generated by M. By the multiplicative property of
Mahler measures, M* is the set of all Mahler measures of integer polynomials.
Throughout, we say that « is a Mahler measure if « € M. (Sometimes « is called a
measure if & € M*, but these definitions define different sets, because M = M* [6].)
Generally speaking, the structure of the sets M and M* is not known, although
the elements of M* (and so of M too) must satisfy several necessary conditions
(see [1,3-8]).

The question whether an algebraic integer is in M* or not was answered in [6].
It was proved there that if « € M*, then a = M(F) for some separable polynomial
F(X) € Z[X] of degree bounded by a function in d = dega only. Therefore, one
can determine whether o belongs to M* or not by a finite computation. However,
no method is known to decide on whether a given algebraic integer « is in M. The
question remains open even for o of degree two, say for a = 1 + /17. In this
direction, Schinzel [16] obtained partial results for quadratic «, whereas the second
named author [10] studied a corresponding question for cubic algebraic integers «.
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(See also [1,3-9] for other partial results concerning Mahler measures and the review
paper [11].)

Although the structure of the sets M and M* is not known, some derived sets
are quite simple. The second named author proved in [9] that every positive alge-
braic number « can be written as a quotient of two elements of M, so the small-
est multiplicative group containing M is the multiplicative group of all positive al-
gebraic numbers. Furthermore, it is shown in [9] that every real algebraic inte-
ger can be written as a linear form in four elements of M with integer coefficients:
a = bM(B) + cM(y) — bM(B') — cM(v'), where 3,7, 8’,v" € Q(«) and b, c € N.
Since gM(n) € M* for any ¢ € Nand n € @), the set of measures M* forms an ad-
ditive basis of order at most 4 for the ring of integers of real algebraic numbers. (The
set U is said to be an additive basis of order £ of the set V' if each element of V can be
written as +u; £ - -- £+ u;, where uy,...,u, € U, t < ¢, and where £ is the smallest
positive integer with this property.) In connection with this, we asked in [9] whether
every algebraic integer o can be expressed by a difference of two Mahler measures.
The next theorem implies that this order is equal to 2 and partially answers the above
question.

Theorem 1  Every real algebraic integer o of degree d can be written as « = M(P) —
M(Q), where P,Q € Z[X], degP = degQ = d, P is irreducible in 7[X] and Q has an
irreducible factor of degree d. Furthermore, if d < 3 then both P and Q can be chosen to
be irreducible.

Theorem 1 implies that every real algebraic integer is expressible in the form
m —m* with m € M and m* € M*. Since bM(T) = M(bT) € M* for b € N
and T € Z[X], Theorem 1 follows from the next result which is even more precise.

Theorem 2 Suppose that o is a real algebraic integer of degree d. Then there exist two
generalized Pisot numbers 3,y € Q(«) of degree d and a positive integer b such that
o = M(0B) — bM(7). Furthermore, if d < 3 then we can choose b = 1, so that o can be
expressed by a difference of two Mahler measures.

Recall that o > 1 is called a Pisot number if it is an algebraic integer whose other
conjugates all lie strictly inside the unit circle. As in [9] (see also [12]) we call & > 1
a generalized Pisot number if it satisfies the above definition but without assumption
that « is an algebraic integer. Finally, following [13] an algebraic integer is called an
e-Pisot number, where 0 < € < 1, if its conjugates have absolute value less than ¢, so
that the usual Pisot numbers correspond to 1-Pisot numbers.

It is well known that in every real algebraic number field of degree d, there exist
e-Pisot numbers of degree d. One can take, for instance, a sufficiently large natural
power of an arbitrary Pisot number lying in a real algebraic number field. (See [15,
p- 3] or [13, Theorem 1.4] for a more subtle statement.) This fact will be used several
times in the proof of Theorem 2.
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2 Proof of Theorem 2

Let a be a real algebraic integer of degree d, where d > 2, with conjugates o, =
Q,Q, ..., Qs E = max;gj<d || = 1and N := | Norm(a)| € N. Here, as usual,
Norm(c«) denotes the product of conjugates of av. Fixe > 0 (which is a small number
to be defined later). Take an e-Pisot number § > 1 of degree d in Q)(«). This means
that its other algebraic conjugates 6; € Q(a;),i = 2,...,d, satisfy |0;] < . Set

n:= 1+de71, b= """ — 1)/111‘171 =N®"2+- +n+1),

Bi=a/n+mn'"t —1)0, ~:=a/m+n'0,

where m is a positive integer satisfying m > 2]a| and ged(m, N) = 1. Clearly, n >
m. With this choice of m, n, 3 and 7, we obtain that 3,7 € Q(«) are generalized
Pisot numbers if ¢ < 1/(2n¢), because then 3,7 > 1 (even if « is negative), and
|Bil, |7i| < 1foreachi > 2, because |6;] < ¢ < 1/(2n). Moreover, 3 = F(«), where
F(x) € Q[x], is of degree d, because otherwise we would have that § = F(a) =
F(a;) = B; for some i > 2, which is not the case, because 8 > 1 > | ;| for any i > 2.
So both (3 and, by the same argument, v are generalized Pisot numbers of degree d.

Next, by the choice of n, we deduce that gcd(n, Norm(«)) = 1. It follows that
gcd(n, Norm(a + m(n® — n)#)) = 1. Thus the leading coefficient of the mini-
mal polynomial of 3 equals n® and M(B) = n*(a + m(n? — n)f). Likewise,
gcd(m, Norm(wv)) = 1 implies that ged(m, Norm(« + mni6)) = 1, so the leading
coefficient of the minimal polynomial of v equals m? and M () = m“~(a + n?m#).
It follows that

a1 _

M(B) — bM(v) = o+ mn® — n)o) — " 1m"l*l(a +nmo) = a.

mia—1

This proves the first part of the theorem for d > 2. The proof for d = 1 is trivial.
Indeed, then « is a rational integer. For o > 0, we have « = M(a + 1) — M(1),
whereas, for & < 0, @ = M(1) — M(« — 1). This completes the proof of the first part
of the theorem and proves the second part for d = 1.

Consider the case d = 2. Take a positive integer u and a real number ¢ > 0 such
that u > 2NJal, ged(u, N) = 1and ¢ < (2(Nu + 1)*)~'. Now, choose an e-Pisot
number 6 € Q() of degree d = 2. Then the numbers 3 = a/(Nu+1)+u?0 € Q()
and v = Na/u + (Nu + 1)’ € Q(«) are generalized quadratic Pisot numbers.
Using gcd(u, N) = 1, we deduce as above that the leading coefficient of the minimal
polynomial of v equals u?. Thus M(y) = Nua + u*(Nu+ 1)%0. Similarly, the leading
coefficient of the minimal polynomial of 3 is equal to (Nu + 1)2. It follows that
M(B) = (Nu+ 1)a + u*(Nu + 1)%0, giving o« = M(3) — M(7).

Finally, suppose that d = 3. Consider the Pell equation x> — N(N + 2)y* = 1,
where N = | Norm(a)|. (See, for instance, [2] for an introduction to this equation.)
Since x; = N + 1, y; = 1 is the minimal solution of this Pell equation, its other
solutions xi, yx in positive integers are obtained from the equality

X+ 7/ NN +2) := (N + 1+ /N(N +2))-.
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Now, take a positive integer k and a real number € > 0 (to be chosen later) such
that ged(k, N(N + 2)) = 1 and yx > 2N(N + 2)|a|. Once again there exists a cubic
e-Pisot number 6 € Q(c). Then the numbers § = a/x; + y;0 € Q(a) and v =
N(N +2)a/yx + xi@ € Q(«) are generalized cubic Pisot numbers provided that
e < (in)_l. On the other hand, it is easy to see that the numbers x; — (N + 1)k
and yr — k(N + 1)k=! are divisible by N(N + 2). In particular, N divides x; — 1,
so gcd(xx, N) = 1. Moreover, by the choice of k, we have gcd(k(N + 1)1, N(N +
2)) = 1, so ged(yk, N(N + 2)) = 1. Hence the leading coefficients of the minimal
polynomials of 3 and  are x; and y;}, respectively. Thus M(3) = xja + x}y;0 and
M(y) = N(N+2)yia+x;y36. This yields M(8) —M(v) = (x; —N(N+2)yp)a = o
The proof of Theorem 2 is now complete.

The method used in the proof of the above theorem (concerning the possibility
to express « in the form M(3) — M(7y) for any d) leads to the diophantine equa-
tion ax?~! — by?~! = 1. Here, a, b are positive integers satisfying certain additional
conditions. More precisely, we need the following statement: if g and d are fixed
positive integers then, for every positive integer [, there is a solution of the equa-
tion ax?~! — by?~! = 1 in positive integers a, b, x and y such that gcd(ag,x) =
ged(bg, y) = land x > la, y > Ib.

Unfortunately, there is little hope that this statement holds for any d > 4. The
point is that, for d > 4, it contradicts to the well-known abc-conjecture. (See, for
instance, [14].) Indeed, suppose that there are a,b,x,y € N satisfying ax?~! —
by?~! = 1 and other conditions as above. Then the abc-conjecture implies that
by?! < ax?! < Ce(Hp\abxy p)Te < C.(abxy)'*e, where € > 0 and where C, is a

constant depending on ¢ only. Consequently, (xy)? =372 < C?(ab)'*?*. Hence, for
x > laand y > Ib, we deduce that P4=6—% < C2(ab)*~4*4 which is impossible for I
sufficiently large if d > 5and e < 1/4.

Acknowledgements We thank Michael Bennett for pointing out the connection
with the abc-conjecture.
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