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Every Real Algebraic Integer Is a Difference
of Two Mahler Measures

Paulius Drungilas and Artūras Dubickas

Abstract. We prove that every real algebraic integer α is expressible by a difference of two Mahler

measures of integer polynomials. Moreover, these polynomials can be chosen in such a way that they

both have the same degree as that of α, say d, one of these two polynomials is irreducible and another

has an irreducible factor of degree d, so that α = M(P) − bM(Q) with irreducible polynomials P, Q ∈

Z[X] of degree d and a positive integer b. Finally, if d 6 3, then one can take b = 1.

1 Introduction

Let β be an algebraic number of degree d over the field of rational numbers Q with

minimal polynomial bdXd + · · · + b1X + b0 = bd(X − β1) · · · (X − βd) ∈ Z[X]. Its

Mahler measure is defined by M(β) = bd

∏d
j=1

max{1, |β j |}. It is well known that

M(β) is a real algebraic integer greater than or equal to 1 (see [1]). Likewise, the

Mahler measure of R(X) = bd(X − β1) · · · (X − βd) ∈ C[X], where the numbers

βi ∈ C are not necessarily distinct, is defined by M(R) = |bd|
∏d

j=1
max{1, |β j |}.

Clearly, M(RT) = M(R)M(T) for any polynomials R, T ∈ C[X], but the numbers

M(βγ) and M(β)M(γ), where β, γ ∈ Q, are not necessarily equal.

Let M be the set of all Mahler measures of algebraic numbers, and let M∗ be

a monoid under multiplication generated by M. By the multiplicative property of

Mahler measures, M
∗ is the set of all Mahler measures of integer polynomials.

Throughout, we say that α is a Mahler measure if α ∈ M. (Sometimes α is called a

measure if α ∈ M∗, but these definitions define different sets, because M 6= M∗ [6].)

Generally speaking, the structure of the sets M and M∗ is not known, although

the elements of M
∗ (and so of M too) must satisfy several necessary conditions

(see [1, 3–8]).

The question whether an algebraic integer is in M∗ or not was answered in [6].

It was proved there that if α ∈ M∗, then α = M(F) for some separable polynomial

F(X) ∈ Z[X] of degree bounded by a function in d = deg α only. Therefore, one

can determine whether α belongs to M∗ or not by a finite computation. However,

no method is known to decide on whether a given algebraic integer α is in M. The

question remains open even for α of degree two, say for α = 1 +
√

17. In this

direction, Schinzel [16] obtained partial results for quadratic α, whereas the second

named author [10] studied a corresponding question for cubic algebraic integers α.

Received by the editors February 18, 2005; revised February 17, 2006.
This research was partially supported by the Lithuanian State Science and Studies Foundation.
AMS subject classification: 11R04, 11R06, 11R09, 11R33, 11D09.
Keywords: Mahler measures, Pisot numbers, Pell equation, abc-conjecture.
c©Canadian Mathematical Society 2007.

191

https://doi.org/10.4153/CMB-2007-020-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-020-0


192 P. Drungilas and A. Dubickas

(See also [1,3–9] for other partial results concerning Mahler measures and the review

paper [11].)

Although the structure of the sets M and M∗ is not known, some derived sets

are quite simple. The second named author proved in [9] that every positive alge-

braic number α can be written as a quotient of two elements of M, so the small-

est multiplicative group containing M is the multiplicative group of all positive al-

gebraic numbers. Furthermore, it is shown in [9] that every real algebraic inte-

ger can be written as a linear form in four elements of M with integer coefficients:

α = bM(β) + cM(γ) − bM(β ′) − cM(γ ′), where β, γ, β ′, γ ′ ∈ Q(α) and b, c ∈ N.

Since gM(η) ∈ M
∗ for any g ∈ N and η ∈ Q , the set of measures M

∗ forms an ad-

ditive basis of order at most 4 for the ring of integers of real algebraic numbers. (The

set U is said to be an additive basis of order ℓ of the set V if each element of V can be

written as ±u1 ± · · · ± ut , where u1, . . . , ut ∈ U , t 6 ℓ, and where ℓ is the smallest

positive integer with this property.) In connection with this, we asked in [9] whether

every algebraic integer α can be expressed by a difference of two Mahler measures.

The next theorem implies that this order is equal to 2 and partially answers the above

question.

Theorem 1 Every real algebraic integer α of degree d can be written as α = M(P) −
M(Q), where P, Q ∈ Z[X], deg P = deg Q = d, P is irreducible in Z[X] and Q has an

irreducible factor of degree d. Furthermore, if d 6 3 then both P and Q can be chosen to

be irreducible.

Theorem 1 implies that every real algebraic integer is expressible in the form

m̃ − m∗ with m̃ ∈ M and m∗ ∈ M∗. Since bM(T) = M(bT) ∈ M∗ for b ∈ N

and T ∈ Z[X], Theorem 1 follows from the next result which is even more precise.

Theorem 2 Suppose that α is a real algebraic integer of degree d. Then there exist two

generalized Pisot numbers β, γ ∈ Q(α) of degree d and a positive integer b such that

α = M(β)− bM(γ). Furthermore, if d 6 3 then we can choose b = 1, so that α can be

expressed by a difference of two Mahler measures.

Recall that α > 1 is called a Pisot number if it is an algebraic integer whose other

conjugates all lie strictly inside the unit circle. As in [9] (see also [12]) we call α > 1

a generalized Pisot number if it satisfies the above definition but without assumption

that α is an algebraic integer. Finally, following [13] an algebraic integer is called an

ε-Pisot number, where 0 < ε 6 1, if its conjugates have absolute value less than ε, so

that the usual Pisot numbers correspond to 1-Pisot numbers.

It is well known that in every real algebraic number field of degree d, there exist

ε-Pisot numbers of degree d. One can take, for instance, a sufficiently large natural

power of an arbitrary Pisot number lying in a real algebraic number field. (See [15,

p. 3] or [13, Theorem 1.4] for a more subtle statement.) This fact will be used several

times in the proof of Theorem 2.
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2 Proof of Theorem 2

Let α be a real algebraic integer of degree d, where d > 2, with conjugates α1 =

α, α2, . . . , αd, |α| := max16 j6d |α j | > 1 and N := |Norm(α)| ∈ N. Here, as usual,

Norm(α) denotes the product of conjugates of α. Fix ε > 0 (which is a small number

to be defined later). Take an ε-Pisot number θ > 1 of degree d in Q(α). This means

that its other algebraic conjugates θi ∈ Q(αi), i = 2, . . . , d, satisfy |θi| < ε. Set

n := 1 + Nmd−1, b := (nd−1 − 1)/md−1
= N(nd−2 + · · · + n + 1),

β := α/n + m(nd−1 − 1)θ, γ := α/m + ndθ,

where m is a positive integer satisfying m > 2|α| and gcd(m, N) = 1. Clearly, n >
m. With this choice of m, n, β and γ, we obtain that β, γ ∈ Q(α) are generalized

Pisot numbers if ε < 1/(2nd), because then β, γ > 1 (even if α is negative), and

|βi |, |γi| < 1 for each i > 2, because |θi | < ε < 1/(2nd). Moreover, β = F(α), where

F(x) ∈ Q[x], is of degree d, because otherwise we would have that β = F(α) =

F(αi) = βi for some i > 2, which is not the case, because β > 1 > |βi| for any i > 2.

So both β and, by the same argument, γ are generalized Pisot numbers of degree d.

Next, by the choice of n, we deduce that gcd(n, Norm(α)) = 1. It follows that

gcd(n, Norm(α + m(nd − n)θ)) = 1. Thus the leading coefficient of the mini-

mal polynomial of β equals nd and M(β) = nd−1(α + m(nd − n)θ). Likewise,

gcd(m, Norm(α)) = 1 implies that gcd(m, Norm(α + mndθ)) = 1, so the leading

coefficient of the minimal polynomial of γ equals md and M(γ) = md−1(α + ndmθ).

It follows that

M(β) − bM(γ) = nd−1(α + m(nd − n)θ) − nd−1 − 1

md−1
md−1(α + ndmθ) = α.

This proves the first part of the theorem for d > 2. The proof for d = 1 is trivial.

Indeed, then α is a rational integer. For α > 0, we have α = M(α + 1) − M(1),

whereas, for α < 0, α = M(1)−M(α− 1). This completes the proof of the first part

of the theorem and proves the second part for d = 1.

Consider the case d = 2. Take a positive integer u and a real number ε > 0 such

that u > 2N|α|, gcd(u, N) = 1 and ε < (2(Nu + 1)2)−1. Now, choose an ε-Pisot

number θ ∈ Q(α) of degree d = 2. Then the numbers β = α/(Nu+1)+u2θ ∈ Q(α)

and γ = Nα/u + (Nu + 1)2θ ∈ Q(α) are generalized quadratic Pisot numbers.

Using gcd(u, N) = 1, we deduce as above that the leading coefficient of the minimal

polynomial of γ equals u2. Thus M(γ) = Nuα + u2(Nu + 1)2θ. Similarly, the leading

coefficient of the minimal polynomial of β is equal to (Nu + 1)2. It follows that

M(β) = (Nu + 1)α + u2(Nu + 1)2θ, giving α = M(β) − M(γ).

Finally, suppose that d = 3. Consider the Pell equation x2 − N(N + 2)y2
= 1,

where N = |Norm(α)|. (See, for instance, [2] for an introduction to this equation.)

Since x1 = N + 1, y1 = 1 is the minimal solution of this Pell equation, its other

solutions xk, yk in positive integers are obtained from the equality

xk + yk

√
N(N + 2) := (N + 1 +

√
N(N + 2))k.
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Now, take a positive integer k and a real number ε > 0 (to be chosen later) such

that gcd(k, N(N + 2)) = 1 and yk > 2N(N + 2)|α|. Once again there exists a cubic

ε-Pisot number θ ∈ Q(α). Then the numbers β = α/xk + y3

kθ ∈ Q(α) and γ =

N(N + 2)α/yk + x3

kθ ∈ Q(α) are generalized cubic Pisot numbers provided that

ε < (2x3

k)−1. On the other hand, it is easy to see that the numbers xk − (N + 1)k

and yk − k(N + 1)k−1 are divisible by N(N + 2). In particular, N divides xk − 1,

so gcd(xk, N) = 1. Moreover, by the choice of k, we have gcd(k(N + 1)k−1, N(N +

2)) = 1, so gcd(yk, N(N + 2)) = 1. Hence the leading coefficients of the minimal

polynomials of β and γ are x3

k and y3

k , respectively. Thus M(β) = x2

kα + x3

k y3

kθ and

M(γ) = N(N +2)y2

kα+x3

k y3

kθ. This yields M(β)−M(γ) = (x2

k −N(N +2)y2

k)α = α.

The proof of Theorem 2 is now complete.

The method used in the proof of the above theorem (concerning the possibility

to express α in the form M(β) − M(γ) for any d) leads to the diophantine equa-

tion axd−1 − byd−1
= 1. Here, a, b are positive integers satisfying certain additional

conditions. More precisely, we need the following statement: if g and d are fixed

positive integers then, for every positive integer l, there is a solution of the equa-

tion axd−1 − byd−1
= 1 in positive integers a, b, x and y such that gcd(ag, x) =

gcd(bg, y) = 1 and x > la, y > lb.

Unfortunately, there is little hope that this statement holds for any d > 4. The

point is that, for d > 4, it contradicts to the well-known abc-conjecture. (See, for

instance, [14].) Indeed, suppose that there are a, b, x, y ∈ N satisfying axd−1 −
byd−1

= 1 and other conditions as above. Then the abc-conjecture implies that

byd−1 < axd−1 < Cǫ(
∏

p|abxy p)1+ǫ ≤ Cǫ(abxy)1+ǫ, where ǫ > 0 and where Cǫ is a

constant depending on ǫ only. Consequently, (xy)d−3−2ǫ < C2

ǫ (ab)1+2ǫ. Hence, for

x > la and y > lb, we deduce that l2d−6−4ǫ < C2

ǫ (ab)4−d+4ǫ which is impossible for l

sufficiently large if d > 5 and ǫ < 1/4.

Acknowledgements We thank Michael Bennett for pointing out the connection

with the abc-conjecture.
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