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Abstract
The Δ-Springer varieties are a generalization of Springer fibers introduced by Levinson, Woo and the author
that have connections to the Delta Conjecture from algebraic combinatorics. We prove a positive Hall–Littlewood
expansion formula for the graded Frobenius characteristic of the cohomology ring of a Δ-Springer variety. We do
this by interpreting the Frobenius characteristic in terms of counting points over a finite field F𝑞 and partitioning
the Δ-Springer variety into copies of Springer fibers crossed with affine spaces. As a special case, our proof method
gives a geometric meaning to a formula of Haglund, Rhoades and Shimozono for the Hall–Littlewood expansion
of the symmetric function in the Delta Conjecture at 𝑡 = 0.
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1. Introduction

In [10], Levinson, Woo and the author introduced the Δ-Springer varieties 𝑌𝑛,𝜆,𝑠 as a generalization of
Springer fibers that give a compact geometric realization of the Delta Conjecture at 𝑡 = 0. Precisely, they
showed that the symmetric function Δ ′

𝑒𝑘−1𝑒𝑛 |𝑡=0 corresponds under the graded Frobenius characteristic
map to the cohomology ring of a certain Δ-Springer variety, up to a minor twist. In this article, we
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2 S. T. Griffin

give a proof of the expansion, originally announced in [9], of the graded Frobenius characteristic of
the cohomology ring of a Δ-Springer variety as a positive sum of modified Hall–Littlewood symmetric
functions. As a special case, our proof gives a geometric explanation of the Hall–Littlewood expansion
for Δ ′

𝑒𝑘−1𝑒𝑛 |𝑡=0 given by Haglund, Rhoades and Shimozono [12].

1.1. Background and context

Springer fibers B𝜆 are a family of subvarieties of the complete flag variety indexed by partitions 𝜆
that have remarkable connections to representation theory. Notably, Springer [22, 23] constructed an
action of the symmetric group 𝑆𝑛 on the cohomology ring of a Springer fiber and showed that the
top nonzero cohomology group is an irreducible representation of 𝑆𝑛 and that all finite-dimensional
irreducible representations of 𝑆𝑛 appear this way. Furthermore, the graded 𝑆𝑛-module structure of the
cohomology ring is well studied. Under the Frobenius characteristic map that sends an 𝑆𝑛-module to
a symmetric function, the cohomology ring of a Springer fiber corresponds to the Hall–Littlewood
symmetric function [15],

𝐻𝜆 (x; 𝑞) = Frob(𝐻∗(B𝜆;Q); 𝑞).

Alternatively, the modified Hall–Littlewood symmetric functions can be obtained by counting F𝑞-
points. Letting Stein𝜇𝜆 be the Steinberg variety of partial flags of type 𝜇 that are preserved by a fixed
nilpotent matrix of Jordan type 𝜆, it is well known that for all prime powers q,

𝐻𝜆(x; 𝑞) =
∑
𝜇�𝑛

|Stein𝜇𝜆 (F𝑞) |𝑚𝜇 (x), (1.1)

where 𝑚𝜇 is the monomial symmetric function and Stein𝜇𝜆 (F𝑞) stands for the set of F𝑞 points of Stein𝜇𝜆 .
Similar interpretations have been given for the modified Macdonald polynomials 𝐻𝜆 (x; 𝑞, 𝑡), which

are a generalization of modified Hall-Littlewood symmetric functions with coefficients in two parameters
q and t. Haiman proved that 𝐻𝜆 (x; 𝑞, 𝑡) is the bi-graded Frobenius characteristic of the fiber of a certain
tautological bundle on the Hilbert scheme of points in the plane [13, 14]. Mellit realized 𝐻𝜆(x; 𝑞, 𝑡) as
a weighted count of points in an affine Springer fiber [18].

In a related line of work, the Delta Conjecture of Haglund, Remmel and Wilson [11] gives two
combinatorial formulas for a symmetric function Δ ′

𝑒𝑘−1𝑒𝑛, where Δ ′
𝑒𝑘−1 is a certain eigenoperator that

diagonalizes the modified Macdonald polynomial basis. There has been recent progress on realizing this
symmetric function naturally as the Frobenius characteristic of an 𝑆𝑛-module. Haglund, Rhoades and
Shimozono [12] found a graded ring 𝑅𝑛,𝑘 whose graded Frobenius characteristic is rev𝑞◦𝜔(Δ ′

𝑒𝑘−1𝑒𝑛 |𝑡=0),
where 𝜔 is the involution that swaps elementary symmetric functions 𝑒𝑛 with complete homogeneous
symmetric functions ℎ𝑛, and rev𝑞 reverses the coefficients as a polynomial in q. Pawlowski and Rhoades
subsequently defined the space of spanning line configurations, which is a smooth noncompact variety
whose cohomology is 𝑅𝑛,𝑘 . Additionally, Zabrocki [24] has conjectured that the graded Frobenius
characteristic of the superspace coinvariant ring in the 𝑛 − 𝑘 fermionic degree is Δ ′

𝑒𝑘−1𝑒𝑛, and Bergeron
[1] has conjectured that Δ ′

𝑒𝑘−1𝑒𝑛 can be obtained via skewing operators. See [20] for a survey of these
and related results.

In [9], the author generalized the ring 𝑅𝑛,𝑘 to a family of quotient rings 𝑅𝑛,𝜆,𝑠 that also include
Tanisaki’s presentation of the cohomology ring of a Springer fiber as a special case. Each ring 𝑅𝑛,𝜆,𝑠
has the structure of a graded 𝑆𝑛-module whose graded Frobenius characteristic has several combinatorial
formulas that extend previously known formulas forΔ ′

𝑒𝑘−1𝑒𝑛 |𝑡=0 and𝐻𝜆 (x; 𝑞). In particular, there are two
monomial symmetric function expansions in terms of inversions and diagonal inversions, respectively,
of labeled diagrams called partial row-decreasing fillings. We recall the relevant notation and statistics
in Section 2.
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Theorem 1.1 [9]. We have

Frob(𝑅𝑛,𝜆,𝑠; 𝑞) =
∑
𝜇�𝑛

∑
𝜑∈PRD𝜇

𝑛,𝜆,𝑠

𝑞inv(𝜑)𝑚𝜇 (x) =
∑
𝜇�𝑛

∑
𝜑∈PRD𝜇

𝑛,𝜆,𝑠

𝑞dinv(𝜑)𝑚𝜇 (x).

Levinson, Woo and the author [10] then constructed a compact variety𝑌𝑛,𝜆,𝑠 , the Δ-Springer variety,
whose cohomology ring is 𝑅𝑛,𝜆,𝑠 . In the special case of 𝜆 = (1𝑘 ) and 𝑠 = 𝑘 , the variety 𝑌𝑛, (1𝑘 ) ,𝑘
gives a compact geometric realization of the Delta Conjecture symmetric function at 𝑡 = 0, since
𝐻∗(𝑌𝑛, (1𝑘 ) ,𝑘 ) � 𝑅𝑛,𝑘 . It was also shown that 𝑌𝑛,𝜆,𝑠 has many of the same geometric and representation-
theoretic properties as Springer fibers, including a characterization of the 𝑆𝑛-module structure of the
top cohomology group.

Theorem 1.2 [10]. The variety 𝑌𝑛,𝜆,𝑠 is equidimensional of complex dimension

𝑑 = 𝑛(𝜆) + (𝑠 − 1) (𝑛 − 𝑘),

where 𝑛(𝜆) =
∑
𝑖

(𝜆′𝑖
2
)
. For 𝑠 > ℓ(𝜆), we have an isomorphism of 𝑆𝑛-modules

𝐻2𝑑 (𝑌𝑛,𝜆,𝑠;Q) � Ind↑𝑆𝑛𝑆𝑘×𝑆𝑛−𝑘 (𝑆𝜆),

where 𝑆𝜆 is considered as a 𝑆𝑘 × 𝑆𝑛−𝑘 -module in which 𝑆𝑛−𝑘 acts trivially.

1.2. Results of this paper

Our main theorem is a positive expansion of the graded Frobenius characteristic of 𝐻∗(𝑌𝑛,𝜆,𝑠;Q)
(equivalently of 𝑅𝑛,𝜆,𝑠) into modified Hall–Littlewood symmetric functions, a result that was announced
in [9].

Theorem 1.3. We have

Frob(𝐻∗(𝑌𝑛,𝜆,𝑠;Q); 𝑞) = rev𝑞

⎡⎢⎢⎢⎢⎢⎣
∑

𝜈∈Par(𝑛,𝑠) ,
𝜈⊇𝜆

𝑞𝑛(𝜈/𝜆)
∏
𝑖≥0

[
𝜈′𝑖 − 𝜆′𝑖+1
𝜈′𝑖 − 𝜈′𝑖+1

]
𝑞

𝐻𝜈 (x; 𝑞)

⎤⎥⎥⎥⎥⎥⎦ (1.2)

=
∑

𝜈∈Par(𝑛,𝑠) ,
𝜈⊇𝜆

𝑞
∑

𝑖 (𝑠−𝜈
′
𝑖) (𝜈

′
𝑖+1−𝜆

′
𝑖+1)

∏
𝑖≥0

[
𝜈′𝑖 − 𝜆′𝑖+1
𝜈′𝑖 − 𝜈′𝑖+1

]
𝑞

𝐻𝜈 (x; 𝑞), (1.3)

where 𝜈′0 � 𝑠.

A special case of this formula has been used to verify the construction of higher Specht bases for
some infinite subfamilies of the rings 𝑅𝑛,𝜆,𝑠 [8].

The outline of the proof of Theorem 1.3 is as follows. We start with the fact that the left-hand side
of (1.2) is given by the inversion formula in Theorem 1.1. We then show that 𝑌 𝜇𝑛,𝜆,𝑠 , the projection of
𝑌𝑛,𝜆,𝑠 down to a partial flag variety, has an affine paving such that the dimension of a cell is computed
by the inversion statistic inv. We use this to show that the 𝑚𝜇 (x) coefficient of the inversion formula
in Theorem 1.1 can be computed by counting F𝑞 points of 𝑌 𝜇𝑛,𝜆,𝑠 . We then show that the F𝑞 points of
𝑌
𝜇
𝑛,𝜆,𝑠 can alternatively be computed by partitioning𝑌 𝜇𝑛,𝜆,𝑠 into a disjoint union of copies of affine spaces

crossed with Steinberg varieties.
When 𝜆 = (1𝑘 ) and 𝑠 = 𝑘 , the right-hand side of (1.2) is the right-hand side of [12, Theorem 6.14], the

formula for Frob(𝑅𝑛,𝑘 ; 𝑞) proven by Haglund, Rhoades and Shimozono. Since 𝑅𝑛,𝑘 � 𝐻∗(𝑌𝑛, (1𝑘 ) ,𝑘 ;Q)
(up to doubling the degree), this can be seen as a solution to Problem 9.9 in [19], but with the space of
spanning line configurations 𝑋𝑛,𝑘 replaced by the Δ-Springer variety 𝑌𝑛, (1𝑘 ) ,𝑘 .
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2. Background

2.1. Compositions and partitions

Let us recall basic notions about symmetric functions and their connections to 𝑆𝑛-modules. A composi-
tion 𝛼 of n of length s is a tuple 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑠) of nonnegative integers such that 𝛼1 + · · · +𝛼𝑠 = 𝑛.
We write |𝛼 | = 𝑛 for the size of 𝛼. Let Comp(𝑛, 𝑠) be the set of compositions of n with length s. We say
𝛼 is a strong composition if 𝛼𝑖 > 0 for all 𝑖 ≤ 𝑠. Given 𝛼 a strong composition of n, let

𝛼[𝑖] � {𝛼1 + · · · + 𝛼𝑖−1 + 1, 𝛼1 + · · · + 𝛼𝑖−1 + 2, . . . , 𝛼1 + · · · + 𝛼𝑖}

be the ith block of 𝛼.
A partition is a composition 𝜆 such that 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑠 ≥ 0. The length of 𝜆, written ℓ(𝜆),

is the number of positive parts of 𝜆. We sometimes write 𝜆 � 𝑛 to mean that 𝜆 is a partition of n. The
conjugate partition 𝜆′ is the partition of n whose ith entry 𝜆′𝑖 is the number of indices j such that 𝜆 𝑗 ≥ 𝑖.
Occasionally, we write (𝑎𝑏) to mean the partition (𝑎, 𝑎, . . . , 𝑎) with b many a’s. We write (𝜆, 𝑎) to
mean the partition obtained by appending a to the end of 𝜆. Let Par(𝑛, 𝑠) be the set of partitions 𝜆 of n
such that ℓ(𝜆) ≤ 𝑠, where we identify partitions up to adding trailing 0s.

Given 𝛼 ∈ Comp(𝑛, 𝑠) and 𝜆 ∈ Par(𝑘, 𝑠) for some 𝑘 ≤ 𝑛, we write 𝜆 ⊆ 𝛼 if 𝜆𝑖 ≤ 𝛼𝑖 for all 𝑖 ≤ 𝑠. A
coinversion of 𝛼 is a pair (𝑖, 𝑗) such that 1 ≤ 𝑖 < 𝑗 ≤ 𝑠 and 𝛼𝑖 < 𝛼 𝑗 . Let coinv(𝛼) be the number of
coinversions of 𝛼. For example, for 𝑛 = 10, 𝑘 = 4 and 𝑠 = 5, we have 𝜆 = (2, 1, 1, 0, 0) ∈ Par(4, 5), and
𝛼 = (2, 3, 1, 0, 4) ∈ Comp(10, 5) such that 𝜆 ⊆ 𝛼. It can be checked that coinv(𝛼) = 5.

2.2. Symmetric functions and q-analogues

A symmetric function f is a formal power series in the variables x � {𝑥1, 𝑥2, . . . } that is invariant
under any permutation of the variables. Let 𝑚𝜆 (x), ℎ𝜆 (x) and 𝑠𝜆 (x) be the usual monomial, complete
homogeneous and Schur symmetric functions, each of which forms a basis of the ring of symmetric
functions as 𝜆 ranges over all partitions of n. See [17] for their definitions.

To each finite-dimensional representation of 𝑆𝑛 over Q, we associate a symmetric function via the
Frobenius characteristic map as follows. For 𝜆 � 𝑛, let 𝑆𝜆 be the Specht module, which is the irreducible
representation of 𝑆𝑛 indexed by 𝜆. Given a finite-dimensional vector space V overQ that has the structure
of an 𝑆𝑛-module, it decomposes as a direct sum of Specht modules, 𝑉 �

⊕
𝜆�𝑛 (𝑆

𝜆)⊕𝑎𝜆 , where 𝑎𝜆 is
the multiplicity of 𝑆𝜆 in V. The Frobenius characteristic of V is then defined to be

Frob(𝑉) �
∑
𝜆�𝑛

𝑎𝜆𝑠𝜆(x).

Given a graded vector space 𝑉 =
⊕

𝑖≥0𝑉
(𝑖) where 𝑉 (𝑖) is finite dimensional, its Hilbert series is

the generating function

Hilb(𝑉 ; 𝑞) �
∑
𝑖≥0

dim(𝑉 (𝑖) )𝑞𝑖 .

If each 𝑉 (𝑖) also has the structure of a finite-dimensional 𝑆𝑛-module, its graded Frobenius character-
istic is

Frob(𝑉 ; 𝑞) �
∑
𝑖≥0

Frob(𝑉 (𝑖) )𝑞𝑖 .

The ring ΛQ(𝑞) has a basis given by the Hall–Littlewood symmetric functions 𝑃𝜇 (x; 𝑞), which
have the property that

𝑠𝜆 (x) =
∑
𝜇�𝑛

𝐾𝜆,𝜇 (𝑞)𝑃𝜇 (x; 𝑞),
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where 𝐾𝜆,𝜇 (𝑞) is the Kostka–Foulkes polynomial; see [17] for more details. The dual Hall–Littlewood
symmetric functions are defined by

𝐻𝜇 (x; 𝑞) =
∑
𝜆�𝑛

𝐾𝜆,𝜇 (𝑞)𝑠𝜆(x).

These symmetric functions are sometimes alternatively denoted by 𝑄 ′
𝜇 (x; 𝑞) = 𝐻𝜇 (x; 𝑞). Given a

polynomial 𝑓 (𝑞) = 𝑎0 + 𝑎1𝑞 + · · · + 𝑎𝑚𝑞
𝑚 with symmetric function coefficients such that 𝑎𝑚 ≠ 0, the q-

reversal of f is rev𝑞 ( 𝑓 ) = 𝑎𝑚 + 𝑎𝑚−1𝑞 + · · · + 𝑎1𝑞
𝑚−1 + 𝑎0𝑞

𝑚. In the case of Hall-Littlewood symmetric
functions, the degree of 𝐻𝜇 (x; 𝑞) as a polynomial in q is 𝑛(𝜇) �

∑
𝑖

(𝜇′𝑖
2
)
. The reversal of 𝐻𝜇 (x; 𝑞) is

the modified (dual) Hall–Littlewood symmetric function, written

𝐻𝜇 (x; 𝑞) = rev𝑞
(
𝐻𝜇 (x; 𝑞)

)
= 𝑞𝑛(𝜇)𝐻𝜇 (x; 𝑞−1).

We use the following standard q-analogues of integers, factorials and binomial coefficients.

[𝑛]𝑞 � 1 + 𝑞 + · · · + 𝑞𝑛−1, (2.1)
[𝑛]𝑞! � [𝑛]𝑞 [𝑛 − 1]𝑞 · · · [2]𝑞 [1]𝑞 , (2.2)[
𝑛

𝑘

]
𝑞

�
[𝑛]𝑞!

[𝑘]𝑞![𝑛 − 𝑘]𝑞!
. (2.3)

2.3. Flag varieties and Schubert cells

Given a field F, a partial flag in F𝐾 is a nested sequence of vector subspaces of F𝐾 ,

𝑉• = (𝑉1 ⊂ 𝑉2 ⊂ · · · ⊂ 𝑉𝑚). (2.4)

Given a strong composition 𝜇 = (𝜇1, . . . , 𝜇𝑚) such that |𝜇 | = 𝜇1 + · · · + 𝜇𝑚 ≤ 𝐾 , define the partial flag
variety to be the set of partial flags of F𝐾 such that the dimensions of the successive quotients 𝑉𝑖/𝑉𝑖−1
are recorded by the parts of 𝜇,

B𝜇 (F𝐾 ) � {𝑉• = (𝑉1 ⊂ · · · ⊂ 𝑉𝑚) |𝑉𝑖 ⊆ F
𝐾 , dim(𝑉𝑖/𝑉𝑖−1) = 𝜇𝑖 for 𝑖 ≤ 𝑚}. (2.5)

Here, by convention, we define 𝑉0 � 0. (Note that we have switched to using 𝜇 as a strong composition
here, since the symbol 𝛼 will be reserved later to denote a different composition.) We occasionally write
B𝜇 � B𝜇 (F𝐾 ) when |𝜇 | = 𝐾 and the field F is clear from context.

The partial flag variety is realized as a projective algebraic variety as𝐺/𝑃𝜇, where𝐺 = 𝐺𝐿𝐾 and 𝑃𝜇
is the parabolic subgroup of block upper triangular matrices with blocks of sizes 𝜇1, 𝜇2, . . . , 𝜇𝑚, 𝐾− |𝜇 |.
We remark that although B𝜇 (F𝐾 ) is isomorphic to B𝜇,𝐾−|𝜇 | , it will be notationally convenient for us to
distinguish the two spaces. In the case when 𝐾 = 𝑛 and 𝜇 = (1𝑛), B (1𝑛) is the complete flag variety.

Returning to the general case when |𝜇 | ≤ 𝐾 , let 𝑛 � |𝜇 | and let [𝑛] � {1, 2, . . . , 𝑛}. Given an
injective map 𝑤 : [𝑛] → [𝐾], we say that w is 𝜇-increasing if for each 𝑖 ≤ ℓ(𝜇), w is increasing on the
ith block of 𝜇; that is, 𝑤 𝑗 < 𝑤𝑘 for all elements 𝑗 < 𝑘 of 𝜇[𝑖]. Given any w, let sort𝜇 (𝑤) be the unique
injective 𝜇-increasing function such that the images of the set 𝜇[𝑖] under w and sort𝜇 (𝑤) are the same
for each i.

Define 𝑓1, 𝑓2, . . . , 𝑓𝐾 to be the standard ordered basis of F𝐾 . Given a 𝜇-increasing injective
map 𝑤 : [𝑛] → [𝐾], let the coordinate flag 𝐹 (𝑤)

• ∈ B𝜇 (F𝐾 ) be defined by setting 𝐹 (𝑤)
𝑝 =

span{ 𝑓𝑤 (1) , . . . , 𝑓𝑤 (𝜇1+···+𝜇𝑝) } for all p such that 1 ≤ 𝑝 ≤ ℓ(𝜇). Now define the Schubert cell 𝐶𝑤
to be the 𝑃𝜇 orbit of 𝐹 (𝑤)

• . When F = C, the Schubert cells are the cells of an affine paving (in fact, a
CW-complex) of the partial flag variety.

There is another description of the Schubert cells that will be useful for us. Given a vector 𝑣 =∑
𝑖 𝑎𝑖 𝑓𝑖 ∈ F

𝐾 , we say its leading term is the term 𝑎𝑖 𝑓𝑖 with i maximal such that 𝑎𝑖 ≠ 0. Given any
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𝑉• ∈ 𝐶𝑤 ⊆ B𝜇 (F𝐾 ), for each i such that 1 ≤ 𝑖 ≤ ℓ(𝜇), there exist unique vectors 𝑣1, . . . , 𝑣𝑛 ∈ F𝐾 such
that for 𝑝 ∈ 𝜇[𝑖], we have 𝑣𝑝 ∈ 𝑉𝑖 \𝑉𝑖−1, 𝑣𝑝 has leading term 𝑓𝑤 (𝑝) , and

𝑣𝑝 = 𝑓𝑤 (𝑝) +

𝑤 (𝑝)−1∑
ℎ=1

𝛽𝑤 (𝑝) ,ℎ 𝑓ℎ , (2.6)

for some 𝛽𝑤 (𝑝) ,ℎ such that 𝛽𝑤 (𝑝) ,ℎ = 0 if ℎ ∈ {𝑤(1), . . . , 𝑤(𝑝−1)}. Note𝑉𝑖 = span{𝑣1, . . . , 𝑣𝜇1+···+𝜇𝑖 }.
The 𝛽𝑤 (𝑝) ,ℎ that are not required to be 0 can be taken as algebraically independent coordinates on 𝐶𝑤 .
We will say that (2.6) is the standard coordinate representation of 𝑉• and that the 𝛽𝑤 (𝑝) ,ℎ are the
standard coordinates of the Schubert cell. Equivalently, if 𝑉• is represented as a matrix whose first
𝜇1 + · · · + 𝜇𝑖 many columns span 𝑉𝑖 , then the 𝛽𝑤 (𝑝) ,ℎ are the matrix entries after column reducing.

Note that we have a projection map

𝜋𝜇 : B (1𝑛) (F𝐾 ) → B𝜇 (F𝐾 )

defined by sending 𝑉• to (𝑉𝜇1 , 𝑉𝜇1+𝜇2 , . . . , 𝑉𝑛). Given w a 𝜇-increasing injective function, it is evident
from the coordinate description of the Schubert cell𝐶𝑤 ⊆ B (1𝑛) (F𝐾 ) that𝐶𝑤 is mapped isomorphically
under 𝜋𝜇 onto the corresponding Schubert cell 𝐶𝑤 ⊆ B𝜇 (F𝐾 ) (which justifies our abuse of notation by
not decorating 𝐶𝑤 with 𝜇).

2.4. Springer fibers and Steinberg varieties

Springer fibers are subvarieties of the complete flag variety studied by Springer [22, 23]. Given a
nilpotent 𝑛 × 𝑛 matrix N over F, the Springer fiber associated to it is

B𝑁 (F) � {𝑉• ∈ B (1𝑛) | 𝑁𝑉𝑖 ⊆ 𝑉𝑖 for 𝑖 ≤ 𝑛}

with the reduced induced scheme structure. Given two nilpotent matrices whose Jordan block sizes are
recorded by the partition 𝜆 � 𝑛, their associated Springer fibers are isomorphic, so we simply denote
the Springer fiber by B𝜆 � B𝑁 , where 𝜆 is the Jordan type of N. Springer showed that although the
symmetric group 𝑆𝑛 does not act directly on B𝜆, it does act on the cohomology ring 𝐻∗(B𝜆 (C);Q),
and used this action to geometrically construct the irreducible representations of 𝑆𝑛. The connection
between Springer fibers and symmetric functions is summed up in the following elegant formula [6, 15]:

𝐻𝜆 (x; 𝑞) = Frob(𝐻∗(B𝜆 (C);Q); 𝑞). (2.7)

Here, and throughout the paper, we define the grading on cohomology so that 𝐻2𝑘 is in degree k. This
is possible since the odd degree cohomology groups of all of the varieties mentioned in this paper are 0.

It can be shown by induction that the Springer fiber has an alternative definition as a variety where
the conditions 𝑁𝑉𝑖 ⊆ 𝑉𝑖 are replaced with the conditions 𝑁𝑉𝑖 ⊆ 𝑉𝑖−1 for all i, since N is nilpotent and
we are considering complete flags. For partial flags of type 𝜇 a composition of K, these conditions give
rise to two different varieties, which we refer to as the Steinberg and the Spaltenstein varieties, defined
respectively as

Stein𝜇𝜆 (F) � {𝑉• ∈ B𝜇 | 𝑁𝑉𝑖 ⊆ 𝑉𝑖 for 1 ≤ 𝑖 ≤ ℓ(𝜇)},

Spalt𝜇𝜆 (F) � {𝑉• ∈ B𝜇 | 𝑁𝑉𝑖 ⊆ 𝑉𝑖−1 for 1 ≤ 𝑖 ≤ ℓ(𝜇)}.

We note that Spalt𝜇𝜆 is denoted by B𝜆𝜇 in [10]. By the construction of the Springer action, there is an
isomorphism of graded vector spaces [2, 4]

𝐻∗(Stein𝜇𝜆 (C);Q) � 𝐻∗(B𝜆 (C);Q)𝑆𝜇 , (2.8)
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where the superscript 𝑆𝜇 denotes taking the fixed subspace under the action of the Young subgroup
𝑆𝜇 � 𝑆𝜇 [1] × · · · × 𝑆𝜇 [ℓ (𝜇) ] ⊆ 𝑆𝑛 permuting the elements in the sets 𝜇[1], . . . , 𝜇[ℓ(𝜇)] independently.
Similarly, there is an identification of the cohomology of Spalt𝜇𝜆 (C) with the 𝑆𝜇-anti-invariants of the
cohomology of the Springer fiber, up to a grading shift.

For X a complex variety, an affine paving of X is a filtration of X by closed subvarieties

∅ = 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ · · · ⊆ 𝑋𝑚 = 𝑋

such that for all i, 𝑋𝑖 \ 𝑋𝑖−1 �
⊔
𝑗 𝐶𝑖, 𝑗 , a disjoint union where 𝐶𝑖, 𝑗 � C𝑎𝑖, 𝑗 for some 𝑎𝑖, 𝑗 . If a compact

complex variety X has an affine paving, then the dimensions of the even degree cohomology groups can
be computed by counting dimensions of cells,

dimQ 𝐻2𝑑 (𝑋;Q) = #{(𝑖, 𝑗) | dimC(𝐶𝑖, 𝑗 ) = 𝑑},

and the odd degree cohomology groups are 0.
It is well known [4, 5, 21] that both Stein𝜇𝜆 (C) and Spalt𝜇𝜆 (C) have affine pavings. Hence, their odd

degree cohomology groups are 0.

2.5. Δ-Springer varieties and affine pavings

We now recall the definition of the Δ-Springer variety𝑌𝑛,𝜆,𝑠 and the affine pavings of𝑌𝑛,𝜆,𝑠 constructed
in [10].

Fix an integer 𝑛 ≥ 0, a partition𝜆 of size |𝜆 | = 𝑘 ≤ 𝑛 and an integer 𝑠 ≥ ℓ(𝜆). DefineΛ � Λ(𝑛, 𝜆, 𝑠) =
(𝜆1 + 𝑛 − 𝑘, 𝜆2 + 𝑛 − 𝑘, . . . , 𝜆𝑠 + 𝑛 − 𝑘), where 𝜆𝑖 � 0 for 𝑖 > ℓ(𝜆), and define 𝐾 � |Λ| = 𝑘 + (𝑛 − 𝑘)𝑠.
Given F a field and a nilpotent matrix 𝑁Λ over F of Jordan type Λ, the Δ-Springer variety over F is
defined to be

𝑌𝑛,𝜆,𝑠 (F) � {𝑉• ∈ B (1𝑛) (F𝐾 ) | 𝑁Λ𝑉𝑖 ⊆ 𝑉𝑖 for all 𝑖, 𝑁𝑛−𝑘Λ F𝐾 ⊆ 𝑉𝑛}.

When 𝑛 = |𝜆 | = 𝑘 and s is arbitrary, the Δ-Springer variety specializes to B𝜆, the usual Springer fiber.
The Δ-Springer variety can equivalently be defined as the projection of a certain Spaltenstein variety.

Letting (1𝑛, (𝑠 − 1)𝑛−𝑘 ) = (1𝑛, 𝑠 − 1, 𝑠 − 1, . . . , 𝑠 − 1), where 𝑠 − 1 is repeated 𝑛 − 𝑘 many times, and
𝜋 : B (1𝑛 , (𝑠−1)𝑛−𝑘 ) → B (1𝑛) (F𝐾 ) be the projection map that forgets all but the first n parts of the flag, we
have [10, Lemma 5.8]

𝑌𝑛,𝜆,𝑠 = 𝜋
(
Spalt(1

𝑛 , (𝑠−1)𝑛−𝑘 )
Λ

)
. (2.9)

To briefly illustrate why (2.9) holds, given 𝑉• ∈ Spalt(1
𝑛 , (𝑠−1)𝑛−𝑘 )

Λ , then by definition 𝑁Λ𝑉𝑖 ⊆ 𝑉𝑖−1 for
all i and𝑉2𝑛−𝑘 = C𝐾 . Combining these conditions for the 𝑛− 𝑘 many indices 𝑖 = 𝑛 + 1, . . . , 2𝑛− 𝑘 gives
𝑁𝑛−𝑘Λ C𝐾 = 𝑁𝑛−𝑘Λ 𝑉2𝑛−𝑘 ⊆ 𝑉𝑛, which is the same condition as in 𝑌𝑛,𝜆,𝑠 . Additionally, the conditions
𝑁Λ𝑉𝑖 ⊆ 𝑉𝑖−1 for 𝑖 = 1, . . . , 𝑛 are equivalent to the conditions 𝑁Λ𝑉𝑖 ⊆ 𝑉𝑖 for 𝑖 = 1, . . . , 𝑛 since 𝑁Λ is
nilpotent so the action of 𝑁Λ on the 1-dimensional space 𝑉𝑖/𝑉𝑖−1 must be 0.

We denote by [Λ] the Young diagram of Λ according to English convention, which formally is the set

[Λ] = {(𝑖, 𝑗) | 1 ≤ 𝑖 ≤ ℓ(Λ), 1 ≤ 𝑗 ≤ Λ𝑖},

where (𝑖, 𝑗) is the cell in the ith row from the top and the jth column from the left. There are two copies
of [𝜆] inside of [Λ] that we will consider, which are respectively left justified and right justified inside
of [Λ],

[𝜆] � {(𝑖, 𝑗) | 1 ≤ 𝑖 ≤ ℓ(𝜆), 1 ≤ 𝑗 ≤ 𝜆𝑖},

[𝜆]𝑟 � {(𝑖, 𝑗) | 1 ≤ 𝑖 ≤ ℓ(𝜆),Λ𝑖 − 𝜆𝑖 + 1 ≤ 𝑗 ≤ Λ𝑖}.
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Figure 1. An example of [Λ] for 𝑛 = 7, 𝜆 = (2, 1), 𝑠 = 3, with the two copies of the Young diagram of
𝜆 shaded.

Figure 2. The reading order filling T of [Λ(7, (2, 2), 4)], and the associated labelings 𝑇 (𝑖) .

The affine pavings of 𝑌𝑛,𝜆,𝑠 = 𝑌𝑛,𝜆,𝑠 (C) are defined in terms of specific choices of the nilpotent
matrix 𝑁Λ. Recall 𝑓1, . . . , 𝑓𝐾 ∈ C𝐾 is the standard basis, and let [𝐾] � {1, 2, . . . , 𝐾}. Given a bijection
𝑇 : [Λ] → [𝐾], define two nilpotent matrices 𝑁𝑇 and 𝑁 𝑡𝑇 by

𝑁𝑇 ( 𝑓𝑇 (𝑖, 𝑗) ) �

{
0 if 𝑗 = Λ𝑖
𝑓𝑇 (𝑖, 𝑗+1) otherwise.

(2.10)

𝑁 𝑡𝑇 ( 𝑓𝑇 (𝑖, 𝑗) ) �

{
0 if 𝑗 = 1
𝑓𝑇 (𝑖, 𝑗−1) otherwise.

(2.11)

For example, for T as in Figure 2, we have 𝑁𝑇 𝑓5 = 𝑓3 and 𝑁𝑇 𝑓1 = 0, whereas 𝑁 𝑡𝑇 𝑓3 = 𝑓5 and 𝑁 𝑡𝑇 𝑓16 = 0.
Observe that both 𝑁𝑇 and 𝑁 𝑡𝑇 have Jordan type Λ by construction and that 𝑁 𝑡𝑇 is simply the transpose
of the matrix 𝑁𝑇 . We define 𝑌𝑁𝑇 and 𝑌𝑁 𝑡

𝑇
to be the Δ-Springer varieties for 𝑁𝑇 and 𝑁 𝑡𝑇 , respectively,

where we are abusing notation by suppressing the data of n, 𝜆 and s.

Definition 2.1. We say that T is (𝑛, 𝜆, 𝑠)-Schubert compatible if

◦ T restricts to a bijection between [𝜆]𝑟 and [𝑘].
◦ T is decreasing along each row from left to right.
◦ For all (𝑖, 𝑗) ∈ [𝜆]𝑟 , the label 𝑇 (𝑖, 𝑗) is greater than all labels in column 𝑗 + 1.
◦ For 𝑖′ < 𝑖, we have 𝑇 (𝑖′,Λ𝑖′ ) < 𝑇 (𝑖,Λ𝑖).
◦ Whenever 𝑇 (𝑎, 𝑏) > 𝑇 (𝑐, 𝑑) for 𝑏, 𝑑 > 1, then 𝑇 (𝑎, 𝑏 − 1) > 𝑇 (𝑐, 𝑑 − 1).

When n, 𝜆 and s are clear from context, we simply say T is Schubert compatible.

Definition 2.2. The reading order of [Λ] is the sequence of cells obtained by reading down each
column of [Λ], ordering the columns from right to left. The reading order filling of [Λ] is the unique
bijection 𝑇 : [Λ] → [𝐾] such that 𝑇 (𝑖, 𝑗) = ℓ if and only if (𝑖, 𝑗) is the ℓth cell in reading order.

It is noted in [10] that the reading order filling is Schubert compatible. See the filling T in Figure 2
for an example of the reading order filling.

When T is Schubert compatible, the intersection of a Schubert cell with 𝑌𝑁𝑇 is either empty or a
copy of affine space, and the nonempty intersections are the cells of an affine paving of 𝑌𝑁𝑇 . In fact,
these cells have a recursive structure which we state next.
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Let T be Schubert compatible. For 1 ≤ 𝑖 ≤ 𝑠, define the flattening function fl(𝑖)𝑇 and filling 𝑇 (𝑖) as
follows. If 𝑖 ≤ ℓ(𝜆), then fl(𝑖)𝑇 is the unique order-preserving function with the following domain and
codomain:

fl(𝑖)𝑇 : [𝐾] \ {𝑇 (𝑖,Λ𝑖)} → [𝐾 − 1] .

Let 𝑇 (𝑖) be the filling obtained by deleting the cell (𝑖,Λ𝑖), applying fl(𝑖)𝑇 to the label in each remaining
cell and reordering the rows so that the labels in the right-most cells increase from top to bottom. If
𝑖 > ℓ(𝜆), then fl(𝑖)𝑇 is the unique order-preserving function

fl(𝑖)𝑇 : [𝐾] \ ({𝑇 (𝑖,Λ𝑖)} ∪ {𝑇 (𝑖′, 1) | 𝑖′ ≠ 𝑖}) → [𝐾 − 𝑠] .

We define 𝑇 (𝑖) in the same way as the previous case, except we also delete the cells (𝑖′, 1) for 𝑖′ ≠ 𝑖 and
shift those rows to the left by one unit before applying fl(𝑖)𝑇 and reordering the rows. See Figure 2 for
examples.

Given an injective map 𝑤 : [𝑛] → [𝐾], we say w is admissible with respect to T if the image of w
contains [𝑘], and whenever 𝑇 (𝑎, 𝑏) = 𝑤(𝑖) for some i, then either 𝑏 = Λ𝑎 or 𝑇 (𝑎, 𝑏 + 1) = 𝑤(𝑖′) for
some 𝑖′ < 𝑖. It is proven in [10].

We have the following recursion for the cells 𝐶𝑤 ∩ 𝑌𝑁𝑇 .

Lemma 2.3 [10]. Let T be Schubert compatible. The intersection 𝐶𝑤 ∩ 𝑌𝑁𝑇 is nonempty if and only if
w is admissible with respect to T. If 𝐶𝑤 ∩ 𝑌𝑁𝑇 is nonempty, then there is an isomorphism

𝐶𝑤 ∩ 𝑌𝑁𝑇 � C
𝑖−1 × (𝐶fl(𝑖)𝑇 (𝑤)

∩ 𝑌𝑁
𝑇 (𝑖)

), (2.12)

where i is such that 𝑤(1) = 𝑇 (𝑖,Λ𝑖).

Remark 2.4. The proof of Lemma 2.3 given in [10] can be used without change to show that for any
field F, there is a bijection

𝐶𝑤 ∩ 𝑌𝑁𝑇 (F) � F
𝑖−1 × (𝐶fl(𝑖)𝑇 (𝑤)

∩ 𝑌𝑁
𝑇 (𝑖)

(F)). (2.13)

We use the symbol � throughout the paper to mean a bijection between sets, but all bijections below are
easily seen to be isomorphisms of complex algebraic varieties in the case when F = C. Furthermore,
the term ‘isomorphism’ should be translated as ‘bijection’ in the general setting and as ‘isomorphism
of complex algebraic varieties’ in the case F = C.

A partial row-decreasing filling (PRD) of [Λ] is a filling of a subset of size n of the cells of
[Λ] = [Λ(𝑛, 𝜆, 𝑠)] with positive integers such that the filled cells are right justified in each row, the
labeling weakly decreases along each row, and each cell of [𝜆]𝑟 is filled. A PRD is standard if the
filling uses the labels 1, 2, . . . , 𝑛 without repeats.

Given w admissible with respect to T, let PRD𝑇 (𝑤) be the standard partial row-decreasing filling of
[Λ] such that, for 1 ≤ 𝑖 ≤ 𝑛, if 𝑤(𝑖) = 𝑇 (𝑎, 𝑏), then the cell (𝑎, 𝑏) of [Λ] is labeled by i. It can be
checked that the map PRD𝑇 gives a bijection between admissible w and standard partial row-decreasing
fillings. Hence, standard partial row-decreasing fillings of [Λ] also index the cells of 𝑌𝑁𝑇 . See Figure 3
for an example of PRD𝑇 (𝑤) for T the reading order filling of [Λ(7, (2, 2), 4)] and 𝑤 = 2713594 (where
we have listed out the images of 1, 2, . . . , 7 in order).

2.6. Monomial symmetric function formulas

In [10], it is shown that the map on cohomology induced by inclusion of varieties

𝐻∗(B (1𝑛) (C𝐾 );Q) � 𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q)
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Figure 3. For T as in Figure 2, the partial row-decreasing filling PRD𝑇 (𝑤) associated to the admissible
function 𝑤 = 2713594.

is surjective. There is a well-defined 𝑆𝑛 action on 𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q) which is the unique one that makes
the above map 𝑆𝑛-equivariant. Thus, 𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q) has the structure of a graded 𝑆𝑛-module. In [9],
several formulas for the graded Frobenius characteristic of 𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q) are given, which we recall
next.

For 𝜇 � 𝑛, let PRD𝜇
𝑛,𝜆,𝑠 be the set of partial row-decreasing fillings of Λ = Λ(𝑛, 𝜆, 𝑠) with 𝜇𝑖 many

i’s. Given such a labeling 𝜑 ∈ PRD𝜇
𝑛,𝜆,𝑠 , let 𝜑𝑖, 𝑗 be the label in cell (𝑖, 𝑗). Given a pair of cells ((𝑖, 𝑗),

(𝑝, 𝑞)) of [Λ], we say they are an attacking pair if either 𝑗 = 𝑞 and 𝑖 < 𝑝, or if 𝑗 = 𝑞 + 1 and 𝑖 > 𝑝.

Definition 2.5. Given 𝜑 ∈ PRD𝜇
𝑛,𝜆,𝑠 , a diagonal inversion of 𝜑 is an attacking pair ((𝑖, 𝑗), (𝑝, 𝑞)) of

cells of [Λ] such that one of the following hold:

(D1) (𝑖, 𝑗) and (𝑝, 𝑞) are filled such that 𝜑𝑖, 𝑗 > 𝜑𝑝,𝑞 ,
(D2) (𝑖, 𝑗) is not filled and (𝑝, 𝑞) is filled.

Let dinv(𝜑) be the number of diagonal inversions of 𝜑.

For 𝜑 = PRD𝑇 (2713594) as in Figure 3, 𝜑 has three diagonal inversions of type (D1);
((1, 5), (2, 5)), ((2, 4), (1, 3)), and ((1, 3), (3, 3)); and three of type (D2); ((2, 3), (3, 3)), ((4, 3), (1, 2)),
and ((2, 3), (1, 2)), so dinv(𝜑) = 6.

We have the following restatement of Theorem 1.1.

Theorem 2.6 [10]. We have

Frob(𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q); 𝑞) =
∑
𝜇�𝑛

∑
𝜑∈PRD𝜇

𝑛,𝜆,𝑠

𝑞dinv(𝜑)𝑚𝜇 (x).

Remark 2.7. In Corollary 3.7, we show that the statistic dinv counts the dimensions of the cells of
𝑌𝑁𝑇 when T is the reading order of [Λ]. There is another inversion statistic inv defined in [9, 10] that
also gives a monomial expansion of the graded Frobenius characteristic of 𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q). We do not
define it here because it does not immediately come from a Schubert compatible filling of the cells of
[Λ]. However, it may still be possible to show it counts dimensions of cells of 𝑌𝑁𝑇 for some choice of
filling T.

3. Counting F𝑞-points of projected Δ-Springer varieties

In this section, we analyze the projections of the Δ-Springer variety to other partial flag varieties.
We then show that the graded Frobenius characteristic of 𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q) can be written in terms of
counting F𝑞 points of these projected varieties.

Fix 𝑛, 𝜆, 𝑠, and 𝑘 = |𝜆 | as in Subsection 2.5, let Λ � Λ(𝑛, 𝜆, 𝑠) and let 𝐾 � |Λ| = 𝑘 + (𝑛 − 𝑘)𝑠 =
𝑛 + (𝑛 − 𝑘) (𝑠 − 1).

Definition 3.1. Let 𝜇 be a strong composition of n and let 𝑁Λ is a nilpotent matrix of type Λ. Define
the projected Δ-Springer variety to be

𝑌
𝜇
𝑛,𝜆,𝑠 (F) � {𝑉• ∈ B𝜇 (F𝐾 ) | 𝑁Λ𝑉𝑖 ⊆ 𝑉𝑖 for 𝑖 ≤ ℓ(𝜇), and 𝑁𝑛−𝑘Λ F𝐾 ⊆ 𝑉ℓ (𝜇) }. (3.1)
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Lemma 3.2. We have

𝑌
𝜇
𝑛,𝜆,𝑠 = 𝜋𝜇

(
Spalt(1

𝑛 , (𝑠−1)𝑛−𝑘 )
Λ

)
,

where 𝜋𝜇 : B (1𝑛 , (𝑠−1)𝑛−𝑘 ) → B𝜇 (F𝐾 ) is the usual projection map of partial flag varieties.

Proof. Let 𝜌𝜇 : B (1𝑛) (F𝐾 ) → B𝜇 (F𝐾 ) be the usual projection map, which factors through 𝜋𝜇 (i.e.,
𝜋𝜇 = 𝜌𝜇 ◦ 𝜋), where 𝜋 is the projection in (2.9). By (2.9), it is immediate that 𝜋𝜇 (Spalt(1

𝑛 , (𝑠−1)𝑛−𝑘 )
Λ ) =

𝜌𝜇 (𝑌𝑛,𝜆,𝑠), which is contained in the right-hand side of (3.1). For the other containment, it is necessary
to show that any 𝑉• ∈ B𝜇 (F𝐾 ) on the right-hand side can be extended to an element of 𝑌𝑛,𝜆,𝑠 . This
follows from the fact that

(𝜌𝜇)−1(𝑉•) ∩ 𝑌𝑛,𝜆,𝑠 � B𝑁1 × · · · × B𝑁ℓ ,

where 𝑁𝑖 is the nilpotent operator induced by 𝑁Λ on 𝑉𝑖/𝑉𝑖−1. Indeed, since each of the Springer fibers
in the product is nonempty, then 𝑉• can be extended to an element 𝑊• ∈ 𝑌𝑛,𝜆,𝑠 so that 𝜌𝜇 (𝑊•) = 𝑉•.
Thus, we have equality of the two sets. �

For 𝑇 : [Λ] → [𝐾] a bijection, we denote by 𝑌
𝜇
𝑁𝑇

the projected Δ-Springer variety 𝑌
𝜇
𝑛,𝜆,𝑠 for the

specific choice of nilpotent 𝑁𝑇 , and similarly for 𝑁 𝑡𝑇 .

Lemma 3.3. Let T be Schubert compatible and w admissible with respect to T. The projection 𝜌𝜇 :
𝑌𝑁𝑇 → 𝑌

𝜇
𝑁𝑇

maps𝐶𝑤 ∩𝑌𝑁𝑇 to𝐶sort𝜇 (𝑤) ∩𝑌
𝜇
𝑁𝑇

. When w is 𝜇-increasing,𝐶𝑤 ∩𝑌𝑁𝑇 maps isomorphically
onto 𝐶𝑤 ∩ 𝑌

𝜇
𝑁𝑇

. Thus, when F = C, the subspaces 𝐶𝑤 ∩ 𝑌
𝜇
𝑛,𝜆,𝑠 (C) for w admissible and 𝜇-increasing

are the cells of an affine paving of 𝑌 𝜇𝑛,𝜆,𝑠 (C).

Proof. The first part of the lemma is immediate from the fact that 𝜌𝜇 maps 𝐶𝑤 to 𝐶sort𝜇 (𝑤) and the
definition of 𝑌 𝜇𝑁𝑇

. Let w be 𝜇-increasing. Since 𝜌𝜇 : B (1𝑛) (F𝐾 ) → B𝜇 (F𝐾 ) maps 𝐶𝑤 isomorphically
onto 𝐶𝑤 ⊆ B𝜇 (F𝐾 ), then the restriction of 𝜌𝜇 to 𝐶𝑤 ∩ 𝑌𝑁𝑇 maps 𝐶𝑤 ∩ 𝑌𝑁𝑇 isomorphically onto its
image, so it suffices to show that 𝐶𝑤 ∩ 𝑌𝑁𝑇 maps surjectively onto 𝐶𝑤 ∩ 𝑌

𝜇
𝑁𝑇

.
Let 𝑉• ∈ 𝐶𝑤 ∩ 𝑌

𝜇
𝑁𝑇

. For each i, let 𝑣1, . . . , 𝑣𝑛 be the vectors such that for 𝑝 ∈ 𝜇[𝑖], we have
𝑣𝑝 ∈ 𝑉𝑖 \𝑉𝑖−1, 𝑣𝑝 has leading term 𝑓𝑤 (𝑝) , and

𝑣𝑝 = 𝑓𝑤 (𝑝) +

𝑤 (𝑝)−1∑
ℎ=1

𝛽𝑤 (𝑝) ,ℎ 𝑓ℎ (3.2)

for some 𝛽𝑤 (𝑝) ,ℎ such that 𝛽𝑤 (𝑝) ,ℎ = 0 if ℎ ∈ {𝑤(1), . . . , 𝑤(𝑝 − 1)}. We claim that the partial flag
𝑊• ∈ B (1𝑛) (F𝐾 ) defined by 𝑊𝑖 = span{𝑣1, . . . , 𝑣𝑖} for 𝑖 ≤ 𝑛 is in 𝑌𝑁𝑇 . Indeed, since 𝑁𝑇𝑉𝑖 ⊆ 𝑉𝑖 ,
then 𝑁𝑇𝑊𝜇𝑖 ⊆ 𝑊𝜇𝑖 for all i. For 𝜇1 + · · · + 𝜇𝑖−1 + 1 ≤ 𝑝 ≤ 𝜇1 + · · · + 𝜇𝑖 , then 𝑁𝑇 𝑣𝑝 ∈ 𝑊𝜇𝑖 . Let
(𝑎, 𝑏) be the coordinates of the label 𝑤(𝑝) in T, so 𝑤(𝑝) = 𝑇 (𝑎, 𝑏). Since T is Schubert compatible,
either 𝑁𝑇 𝑣𝑝 = 0 or the leading term of 𝑁𝑇 𝑣𝑝 is 𝑁𝑇 𝑓𝑤 (𝑝) = 𝑓𝑇 (𝑎,𝑏+1) . In the latter case, since w is
admissible with respect to T, then 𝑇 (𝑎, 𝑏 + 1) = 𝑤(𝑝′) for some 𝑝′ < 𝑝. Since w is 𝜇-increasing, we
have 𝑤(𝑝′) ∉ {𝑝 + 1, . . . , 𝜇𝑖}, so the expansion of 𝑁𝑇 𝑣𝑝 into the 𝑣𝑖 vectors cannot have any terms
with nonzero coefficient on 𝑣𝑝+1, . . . , 𝑣𝜇𝑖 (otherwise the leading term would not be 𝑓𝑤 (𝑝′) ); hence,
𝑁𝑇 𝑣𝑝 ∈ 𝑊𝑝 . Therefore, we have the containment 𝑁𝑇𝑊𝑝 ⊆ 𝑊𝑝 for all p.

Since 𝑁𝑛−𝑘𝑇 F |Λ | ⊆ 𝑉ℓ (𝜇) = 𝑊𝑛, then we have 𝑊• ∈ 𝑌𝑛,𝜆,𝑠 and by construction, 𝜌𝜇 (𝑊•) = 𝑉•, so 𝜌𝜇

maps 𝐶𝑤 ∩ 𝑌𝑛,𝜆,𝑠 surjectively, hence isomorphically, onto 𝐶𝑤 ∩ 𝑌
𝜇
𝑛,𝜆,𝑠 .

When F = C, since 𝐶𝑤 ∩ 𝑌𝑛,𝜆,𝑠 is isomorphic to an affine space, then 𝐶𝑤 ∩ 𝑌
𝜇
𝑛,𝜆,𝑠 is as well. Since

the 𝐶𝑤 are cells of an affine paving of B𝜇 (C𝐾 ), then the intersections 𝐶𝑤 ∩ 𝑌
𝜇
𝑛,𝜆,𝑠 (C) for 𝜇-increasing

w are the cells of an affine paving of 𝑌 𝜇𝑛,𝜆,𝑠 (C). �
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Recall that for T Schubert compatible and w admissible with respect to T, PRD𝑇 (𝑤) is defined to
be the row-decreasing filling of [Λ] such that if 𝑤(𝑖) = 𝑇 (𝑝, 𝑞), then the cell (𝑝, 𝑞) is labeled by i.
Equivalently, if we let PRD𝑇 (𝑤)−1(𝑎) be the position of the label a in PRD𝑇 (𝑤), we have

𝑤(𝑎) = 𝑇 (PRD𝑇 (𝑤)−1(𝑎)). (3.3)

Definition 3.4. For T Schubert compatible and w admissible with respect to T, an inversion of w with
respect to T is a pair (𝑐, 𝑖) with 1 ≤ 𝑐 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑠 such that one of the following conditions holds:

(IT1) There exists a label ℓ > 𝑐 of PRD𝑇 (𝑤) in row i such that 𝑤(ℓ) < 𝑤(𝑐),
(IT2) The condition (IT1) does not hold, and there exists an empty cell (𝑖, 𝑗) of PRD𝑇 (𝑤) in row i such

that 𝑇 (𝑖, 𝑗) < 𝑤(𝑐).

Define inv𝑇 (𝑤) to be the number of such pairs.

For example, letting T be as in Figure 2 (reading order for Λ(7, (2, 2), 4)) and 𝑤 = 2713594 as in
Figure 3, then the inversions of w with respect to T of type (IT1) are (𝑐, 𝑖) = (1, 1), (2, 1) and (5, 2),
and those of type (IT2) are (𝑐, 𝑖) = (2, 2), (6, 2) and (6, 4). Thus, inv𝑇 (𝑤) = 6.

Lemma 3.5. Let T be a Schubert-compatible filling of [Λ]. If w is admissible with respect to T and
𝜇-increasing, then

𝐶𝑤 ∩ 𝑌
𝜇
𝑁𝑇
� Finv𝑇 (𝑤) .

Proof. By Lemma 3.3, it suffices to prove the result for the case 𝜇 = (1𝑛). We proceed by induction on
n. In the base case when 𝑛 = 0 (and s is arbitrary), then 𝜆 = ∅, and the unique admissible w is the empty
function 𝑤 = ∅. Furthermore, 𝐶∅ ∩ 𝑌𝑁𝑇 = 𝑌𝑁𝑇 is a single point and inv𝑇 (𝑤) = 0. Thus, the base case
holds.

Let 𝑛 ≥ 1 and T and w be arbitrary with 𝑤(1) = 𝑇 (𝑖,Λ𝑖). To complete the induction, by Lemma 2.3,
it suffices to show

inv𝑇 (𝑤) − inv𝑇 (𝑖)

(
fl(𝑖)𝑇 (𝑤)

)
= 𝑖 − 1. (3.4)

First, we claim that the left-hand side of (3.4) is the number of inversions of w with respect to T that
are of the form (1, 𝑖′). Indeed, there is an injective map from the inversions of fl(𝑖)𝑇 (𝑤) with respect to
𝑇 (𝑖) to the inversions of w with respect to T by sending (𝑐, 𝑟) to (𝑐 + 1, 𝑟 ′), where 𝑟 ′ is the row of T
corresponding to row r of 𝑇 (𝑖) in the row-sorting step of forming 𝑇 (𝑖) . The inversions of w that are not in
the image of this map are those of the form (1, 𝑖′), together with inversions of w of the form (𝑐, 𝑟) with
𝑐 > 1 of type (IT2) that involve an empty cell (𝑝, 1) that was deleted from T to form 𝑇 (𝑖) in the case
when 𝑖 > ℓ(𝜆). However, observe that [Λ]/[𝜆]𝑟 has 𝑛 − 𝑘 cells in each row, and the number of labels
in [Λ]/[𝜆]𝑟 is 𝑛 − 𝑘 . Therefore, since both 1 and c are not in row p, both entries (𝑝, 1) and (𝑝, 2) are
empty, and 𝑇 (𝑝, 2) < 𝑇 (𝑝, 1) < 𝑤(𝑐), so (𝑐, 𝑝) is in the image of the injective map described above.
Thus, the left-hand side of (3.4) only counts inversions of w of the form (1, 𝑖′).

Second, we claim that (1, 𝑖′) is an inversion if and only if 𝑖′ < 𝑖. Indeed, if 𝑖′ < 𝑖, then 𝑇 (𝑖′,Λ𝑖′ ) <
𝑇 (𝑖,Λ𝑖) = 𝑤(1) since T is Schubert compatible. If (𝑖′,Λ𝑖′ ) is filled in PRD𝑇 (𝑤), let its label be ℓ. Since
w is injective, then ℓ > 1. Furthermore, 𝑤(ℓ) = 𝑇 (PRD𝑇 (𝑤)−1(ℓ)) = 𝑇 (𝑖′,Λ𝑖′ ) < 𝑤(1); thus, (1, 𝑖′)
is an inversion of type (IT1). Otherwise, (𝑖′,Λ𝑖′ ) is not filled in PRD𝑇 (𝑤), so since 𝑇 (𝑖′,Λ𝑖′ ) < 𝑤(1),
then (1, 𝑖′) is an inversion of type (IT2).

Suppose (1, 𝑖′) is an inversion for some 𝑖′ ≥ 𝑖. Then in either of the cases (IT1) or (IT2), there exists
a cell (𝑖′, 𝑗 ′) in row 𝑖′ such that 𝑇 (𝑖′, 𝑗 ′) < 𝑤(1) = 𝑇 (𝑖,Λ𝑖) (where 𝑇 (𝑖′, 𝑗 ′) = 𝑤(ℓ) in the (IT1) case).
By Schubert compatibility, we have 𝑇 (𝑖,Λ𝑖) ≤ 𝑇 (𝑖′,Λ𝑖′ ) ≤ 𝑇 (𝑖′, 𝑗 ′), a contradiction. Therefore, (1, 𝑖′)
is an inversion if and only if 𝑖′ < 𝑖, so the number of inversions counted by the left-hand side of (3.4) is
𝑖 − 1. The inductive step is thus complete. �
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Lemma 3.6. Let T be the reading order filling of [Λ]. For all w admissible with respect to T, we have
inv𝑇 (𝑤) = dinv(PRD𝑇 (𝑤)).

Proof. Let 𝜑 = PRD𝑇 (𝑤). We define a map from diagonal inversions of 𝜑 to inversions of w with
respect to T as follows. For each diagonal inversion ((𝑖, 𝑗), (𝑝, 𝑞)), let its corresponding inversion of w
be (𝜑𝑝,𝑞 , 𝑖). The pair (𝜑𝑝,𝑞 , 𝑖) is indeed an inversion. If ((𝑖, 𝑗), (𝑝, 𝑞)) is a type (D1) inversion, then
(𝜑𝑝,𝑞 , 𝑖) is a type (IT1) inversion, where ℓ = 𝜑𝑖, 𝑗 . If ((𝑖, 𝑗), (𝑝, 𝑞)) is type (D2), then (𝜑𝑝,𝑞 , 𝑖) is type
(IT1) or type (IT2) depending on whether there exists a label ℓ > 𝜑𝑝,𝑞 in row i of 𝜑 or not, respectively.
We claim that the map defined above is a bijection between diagonal inversions of 𝜑 and inversions of
w with respect to T.

To show bijectivity, we give the inverse bijection, as follows. Given (𝑐, 𝑖) an inversion of w, let (𝑝, 𝑞)
be the coordinates of the label c in 𝜑. If (𝑐, 𝑖) is of type (IT1), then there exists a label ℓ > 𝑐 in row i
of 𝜑 such that 𝑤(ℓ) < 𝑤(𝑐). Since 𝑤(ℓ) < 𝑤(𝑐), then either 𝑖 < 𝑝 and ℓ is in a cell above and weakly
to the right of c, or 𝑖 > 𝑝 and ℓ is in a cell below and strictly to the right of c. In the first case, (𝑐, 𝑖)
corresponds to the diagonal inversion ((𝑖, 𝑞), (𝑝, 𝑞)). Indeed, the cell (𝑖, 𝑞) is either empty in 𝜑, so
((𝑖, 𝑞), (𝑝, 𝑞)) is a type (D2) diagonal inversion, or the cell (𝑖, 𝑞) is labeled and 𝜑𝑖,𝑞 ≥ ℓ > 𝑐 by the row-
decreasing property of 𝜑 so ((𝑖, 𝑞), (𝑝, 𝑞)) is a type (D1) diagonal inversion. In the second case when
𝑖 > 𝑝, then (𝑐, 𝑖) corresponds to the diagonal inversion ((𝑖, 𝑞 + 1), (𝑝, 𝑞)). Indeed, the cell (𝑖, 𝑞 + 1) is
either empty in 𝜑, so ((𝑖, 𝑞 + 1), (𝑝, 𝑞)) is a type (D2) diagonal inversion, or the cell (𝑖, 𝑞 + 1) is labeled
and 𝜑𝑖,𝑞+1 ≥ ℓ > 𝑐 so ((𝑖, 𝑞 + 1), (𝑝, 𝑞)) is a type (D1) diagonal inversion.

Finally, if (𝑐, 𝑖) is of type (IT2), then there exists an empty cell (𝑖, 𝑗) in 𝜑 such that 𝑇 (𝑖, 𝑗) < 𝑤(𝑐).
Then either 𝑖 < 𝑝 and ((𝑖, 𝑞), (𝑝, 𝑞)) is a diagonal inversion of type (D2), or 𝑖 > 𝑝 and ((𝑖, 𝑞+1), (𝑝, 𝑞))
is a diagonal inversion of type (D2). It can then be checked that this is the inverse map, and hence, the
number of inversions of w with respect to T is equal to the number of diagonal inversions of 𝜑. �

Combining Lemma 3.6 with Lemma 3.5, we see that dinv has geometric meaning: it counts the
dimensions of cells in 𝑌𝑁𝑇 .

Corollary 3.7. For T the reading order filling of [Λ] and w that is 𝜇-increasing and admissible with
respect to T, we have

𝐶𝑤 ∩ 𝑌
𝜇
𝑁𝑇
� Fdinv(PRD𝑇 (𝑤)) . (3.5)

We are now able to prove the main theorem of this section.

Theorem 3.8. For all prime powers q, we have

Frob(𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q); 𝑞) =
∑
𝜇�𝑛

|𝑌
𝜇
𝑛,𝜆,𝑠 (F𝑞) |𝑚𝜇 (x).

Proof. Let T be the reading order filling of [Λ] and let 𝜇 � 𝑛. We claim that∑
𝜑∈PRD𝜇

𝑛,𝜆,𝑠

𝑞dinv(𝜑) =
∑

𝑤 admissible wrt 𝑇 ,
𝜇-increasing

𝑞dinv(PRD𝑇 (𝑤)) . (3.6)

Indeed, given w admissible with respect to T that is 𝜇-increasing, define 𝜑 ∈ PRD𝜇
𝑛,𝜆,𝑠 by replacing the

labels 𝜇1 + · · · + 𝜇𝑖−1 +1, 𝜇1 + · · · + 𝜇𝑖−1 +2, . . . , 𝜇1 + · · · + 𝜇𝑖 in PRD𝑇 (𝑤) with i for each 𝑖 ≤ ℓ(𝜇). Since
w is 𝜇-increasing, then the labels 𝜇1 + · · · + 𝜇𝑖−1 + 1, 𝜇1 + · · · + 𝜇𝑖−1 + 2, . . . , 𝜇1 + · · · + 𝜇𝑖 in PRD𝑇 (𝑤)
are increasing in reading order, so there are no diagonal inversions among these labels. Therefore, it
follows from the definition of dinv that dinv(𝜑) = dinv(PRD𝑇 (𝑤)).

https://doi.org/10.1017/fms.2024.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.1


14 S. T. Griffin

Using (3.6), we have

Frob(𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q); 𝑞) =
∑
𝜇�𝑛

∑
𝜑∈PRD𝜇

𝑛,𝜆,𝑠

𝑞dinv(𝜑)𝑚𝜇 (x) (3.7)

=
∑
𝜇�𝑛

∑
𝑤 admissible wrt 𝑇 ,

𝜇-increasing

|𝐶𝑤 ∩ 𝑌
𝜇
𝑁𝑇

(F𝑞) |𝑚𝜇 (x) (3.8)

=
∑
𝜇�𝑛

|𝑌
𝜇
𝑁𝑇

(F𝑞) |𝑚𝜇 (x). (3.9)

The first equality is Theorem 2.6, the second follows from Corollary 3.7 and the fact that PRD𝑇 restricts
to a bijection between the set of w that are admissible and 𝜇-increasing and PRD𝜇

𝑛,𝜆,𝑠 , and the third
equality follows from the fact that the intersections 𝐶𝑤 ∩ 𝑌

𝜇
𝑁𝑇

for w that are admissible with respect to
T and 𝜇-increasing partition the space 𝑌 𝜇𝑁𝑇

by Lemma 3.3. �

As a corollary, we obtain the following generalization of Borho and Macpherson’s result (2.8).

Corollary 3.9. For all 𝜇 � 𝑛, we have an isomorphism of graded vector spaces

𝐻∗(𝑌
𝜇
𝑛,𝜆,𝑠 (C);Q) � 𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q)𝑆𝜇 . (3.10)

Proof. By Frobenius reciprocity (see, for example, [3]), the 𝑚𝜇 (x) coefficient of the graded Frobenius
characteristic of a graded 𝑆𝑛-module is the Hilbert series of the 𝑆𝜇-invariant subspace. By Theorem
3.8, applying this fact to the cohomology of 𝑌𝑛,𝜆,𝑠 (C) yields

|𝑌
𝜇
𝑛,𝜆,𝑠 (F𝑞) | = Hilb(𝐻∗(𝑌𝑛,𝜆,𝑠 (C);Q)𝑆𝜇 ; 𝑞) (3.11)

for all prime powers q. By the last part of Lemma 3.3,

Hilb(𝐻∗(𝑌
𝜇
𝑛,𝜆,𝑠 (C);Q); 𝑞) =

∑
𝑤 admissible wrt 𝑇 ,

𝜇-increasing

𝑞
dimC (𝐶𝑤∩𝑌

𝜇
𝑁𝑇

(C))
.

By (2.13), it can be checked by induction that |𝐶𝑤 ∩𝑌
𝜇
𝑁𝑇

(F𝑞) | = 𝑞
dimC (𝐶𝑤∩𝑌

𝜇
𝑁𝑇

(C)) for each w admissible
and 𝜇-increasing. Since the 𝐶𝑤 ∩ 𝑌

𝜇
𝑁𝑇

(F𝑞) partition F𝑞 , we have

|𝑌
𝜇
𝑛,𝜆,𝑠 (F𝑞) | = Hilb(𝐻∗(𝑌

𝜇
𝑛,𝜆,𝑠 (C);Q); 𝑞). (3.12)

Combining (3.11) and (3.12), the two spaces have the same Hilbert series and are hence isomorphic as
graded vector spaces. �

Remark 3.10. We note that a second proof of Corollary 3.9 has been given by Gillespie and the author
[7] by realizing 𝑌𝑛,𝜆,𝑠 as a special case of a variety studied by Borho and MacPherson in their study of
partial resolutions of nilpotent orbit closures [2].

4. A Springer fiber decomposition of 𝑌𝑛,𝜆,𝑠
In this section, we decompose the Δ-Springer variety 𝑌

𝜇
𝑛,𝜆,𝑠 into subspaces that are isomorphic to

Steinberg varieties crossed with affine spaces, so, in particular,𝑌𝑛,𝜆,𝑠 decomposes into copies of Springer
fibers crossed with affine spaces. We then use this to prove our expansion of the graded Frobenius
characteristic of the cohomology ring in terms of Hall-Littlewood polynomials in Section 5.
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Figure 4. The reverse reading order filling T for [Λ(7, (2, 2), 4)], with [𝜆] = [(2, 2)] shaded in orange.
The diagram of 𝛼 = (2, 4, 0, 1) ∈ Comp(7, 4) is the union of the orange and blue cells.

Definition 4.1. The reverse reading order of [Λ] is the sequence of cells obtained by reading down
each column of [Λ], ordering the columns from left to right. The reverse reading order filling of [Λ]
is the unique bijection 𝑇 : [Λ] → [𝐾] such that 𝑇 (𝑖, 𝑗) = ℓ if and only if (𝑖, 𝑗) is the ℓth cell in reverse
reading order.

Note that in reverse reading order, only the order of the columns are reversed (not the order of the
rows). See Figure 4 for the reverse reading order filling of [Λ(7, (2, 2), 4].

Throughout this section, we let T be the reverse reading order filling of [Λ]. For notational conve-
nience, we use the simplified notation 𝑁 � 𝑁𝑇 and 𝑁 𝑡 � 𝑁 𝑡𝑇 .

Given 𝛼 ∈ Comp(𝑛, 𝑠) such that 𝜆 ⊆ 𝛼, let [𝛼] be the subdiagram of [Λ] defined by

[𝛼] � {(𝑖, 𝑗) : 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝛼𝑖}.

Note that the inequality 𝛼𝑖 ≤ Λ𝑖 = (𝑛 − 𝑘) + 𝜆𝑖 is guaranteed for all i by the fact that 𝛼 has size n and
contains 𝜆 (which has size k), so [𝛼] is indeed a subdiagram of [Λ].

Let F𝛼 ⊆ F𝐾 , which is the subspace spanned by 𝑓𝑖 for i a label of T contained in [𝛼]. Similarly, let
F𝜆 � (𝑁 𝑡 )𝑛−𝑘 F𝐾 be the subspace spanned by 𝑓𝑖 for i a label of T contained in [𝜆].

Let 𝑤 : [𝑛] → [𝐾] be the unique (𝑛)-increasing injective function whose image is the set of labels
of T in [𝛼], and let 𝐶𝑤 be the corresponding Schubert cell in the Grassmannian B (𝑛,𝐾−𝑛) = Gr(𝑛, F𝐾 ).
Define

𝑍
𝜇
𝛼 � {𝑉• ∈ 𝑌

𝜇
𝑁 𝑡 |𝑉𝑛 = F

𝛼}, (4.1)

𝑍
𝜇
𝛼 � {𝑉• ∈ 𝑌

𝜇
𝑁 𝑡 |𝑉𝑛 ∈ 𝐶𝑤 }. (4.2)

Note that since 𝑁 𝑡 restricts to a nilpotent matrix on the subspace F𝛼 with Jordan type sort(𝛼), then
𝑍
𝜇
𝛼 � Stein𝜇sort(𝛼) .

The following is the main theorem of this section. In the case 𝜇 = (1𝑛), it says that the subspaces
𝑍𝛼, which partition 𝑌𝑛,𝜆,𝑠 , are isomorphic to a Springer fiber crossed with an affine space.

Theorem 4.2. We have

𝑍
𝜇
𝛼 � F

ℓ × 𝑍
𝜇
𝛼,

where ℓ =
∑
𝑖 (𝑠 − 𝛼′

𝑖 ) (𝛼
′
𝑖+1 − 𝜆′𝑖+1) + coinv(𝛼) (where coinv was defined at the end of Subsection 2.1)

and 𝛼′
𝑖 is the number of cells of [𝛼] in the ith column where 𝛼′

0 � 𝑠.

In order to prove Theorem 4.2, we need several definitions and lemmata.

Definition 4.3. A pair (𝑖, 𝑗) with 𝑖 > 𝑗 is a free pair for 𝛼 if the cell with label i of T is in [𝛼]/[𝜆] and
the cell with label j of T is the leftmost cell of [Λ] \ [𝛼] in j’s own row.

Remark 4.4. Let w be the unique admissible (𝑛)-increasing injective function whose image is the set of
labels of T in [𝛼], as above. Free pairs (𝑖, 𝑗) are defined to correspond to a subset of standard coordinates
𝛽𝑖, 𝑗 of 𝐶𝑤 . Note that 𝛽𝑖, 𝑗 is undefined unless i is in the image of w, and that if i is in the image of w,
then 𝛽𝑖, 𝑗 = 0 if j is a label in [𝛼].
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Example 4.5. For 𝑛 = 7, 𝜆 = (2, 2), 𝑠 = 4 and 𝛼 = (2, 4, 0, 1) as depicted in Figure 4, the free pairs are
(14, 9), (14, 8), (14, 3), (10, 9), (10, 8), (10, 3) and (4, 3).

Lemma 4.6. The number of free pairs of 𝛼 is∑
𝑖

(𝑠 − 𝛼′
𝑖 ) (𝛼

′
𝑖+1 − 𝜆′𝑖+1) + coinv(𝛼). (4.3)

Proof. Let (𝑖, 𝑗) be a free pair for 𝛼. If i and j are not in the same column, in which case j must be in
a column to the left of i, then associate (𝑖, 𝑗) to the pair (𝑖, 𝑗 ′), where 𝑗 ′ is the label in the same row as
j and in the column immediately to the left of the column of i. This correspondence sets up a bijection
between free pairs in which i and j are not in the same column and pairs (𝑖, 𝑗 ′) where i is a label in
[𝛼] \ [𝜆] and 𝑗 ′ is a label in [Λ] \ [𝛼] in the column immediately to the left of i. Counting these latter
pairs by the column containing i, we have the sum∑

𝑝

(𝑠 − 𝛼′
𝑝) (𝛼

′
𝑝+1 − 𝜆′𝑝+1). (4.4)

If i and j are in the same column, then associate the free pair (𝑖, 𝑗) to the coinversion (𝑟, 𝑟 ′) of 𝛼,
where r is the row of j and 𝑟 ′ is the row of i. Indeed, (𝑟, 𝑟 ′) is a coinversion since 𝑟 < 𝑟 ′ by the fact
that 𝑖 > 𝑗 and the definition of reverse reading order, and 𝛼𝑟 < 𝛼𝑟 ′ since i is in [𝛼] and j is not. This
correspondence is a bijection between free pairs with i and j in the same column and coinversions of 𝛼.
Thus, the total number of free pairs is given by (4.3). �

Example 4.7. For 𝛼 as in Example 4.5, the free pairs (10, 9) and (4, 3) contribute to coinv(𝛼) in (4.3).
The terms of (4.4) are: 1 · 0 for 𝑝 = 1, 2 · 1 for 𝑝 = 2 corresponding to pairs (10, 3) and (10, 8), 3 · 1 for
𝑝 = 3 corresponding to pairs (14, 9), (14, 3) and (14, 8), and 1 · 0 for 𝑝 = 4.

Definition 4.8. For (𝑖, 𝑗) a free pair with 𝑖 > 𝑗 , let 𝑈𝑖, 𝑗 (𝑡) be the 𝐾 × 𝐾 matrix such that

𝑈𝑖, 𝑗 (𝑡) (𝑁
𝑚 𝑓𝑖) = 𝑁𝑚( 𝑓𝑖 + 𝑡 𝑓 𝑗 ) for 𝑚 ≥ 0 such that 𝑁𝑚 𝑓𝑖 ≠ 0, (4.5)

𝑈𝑖, 𝑗 (𝑡) ((𝑁
𝑡 )𝑚 𝑓𝑖) = (𝑁 𝑡 )𝑚( 𝑓𝑖 + 𝑡 𝑓 𝑗 ) for 𝑚 ≥ 0, (4.6)

and 𝑈𝑖, 𝑗 (𝑡) 𝑓ℓ = 𝑓ℓ for all labels ℓ of T that are not in the same row as i.
Similarly, let 𝑈𝑖, 𝑗 (𝑡) be the matrix such that

𝑈𝑖, 𝑗 (𝑡) (𝑁
𝑚 𝑓𝑖) = 𝑁𝑚( 𝑓𝑖 + 𝑡 𝑓 𝑗 ) for 𝑚 ≥ 0 such that 𝑁𝑚 𝑓𝑖 ≠ 0 (4.7)

and 𝑈𝑖, 𝑗 (𝑡) 𝑓ℓ = 𝑓ℓ for all labels ℓ of T that are either not in the same row as i or not weakly to the right
of i.

Example 4.9. Continuing our running Example 4.5, the operator 𝑈14,9 (𝑡) is defined by

◦ 𝑈14,9 (𝑡) 𝑓14 = 𝑓14 + 𝑡 𝑓9,
◦ 𝑈14,9 (𝑡) 𝑓16 = 𝑓16 + 𝑡 𝑓13,
◦ 𝑈14,9 (𝑡) 𝑓10 = 𝑓10 + 𝑡 𝑓5,
◦ 𝑈14,9 (𝑡) 𝑓6 = 𝑓6 + 𝑡 𝑓1,
◦ 𝑈14,9 (𝑡) 𝑓2 = 𝑓2 + 0,

and 𝑈14,9 (𝑡) 𝑓ℓ = 𝑓ℓ for all ℓ ∉ {2, 6, 10, 14, 16}. However,

◦ 𝑈14,9 (𝑡) 𝑓14 = 𝑓14 + 𝑡 𝑓9,
◦ 𝑈14,9 (𝑡) 𝑓16 = 𝑓16 + 𝑡 𝑓13,

and 𝑈14,9 (𝑡) 𝑓ℓ = 𝑓ℓ for all ℓ ∉ {14, 16}.

Lemma 4.10. The matrices 𝑈𝑖, 𝑗 (𝑡) and 𝑈𝑖, 𝑗 (𝑡) are unipotent upper triangular.
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Proof. By construction, 𝑈𝑖, 𝑗 (𝑡) has 1s along the diagonal, so it suffices to check it is upper triangular.
Thus, it suffices to check that for all m, the vector 𝑁𝑚 𝑓𝑖 has index greater than the vector 𝑁𝑚 𝑓 𝑗 (if both
are nonzero), and the vector (𝑁 𝑡 )𝑚 𝑓𝑖 has index greater than the vector (𝑁 𝑡 )𝑚 𝑓 𝑗 (if both are nonzero).
Both of these claims follow immediately from the definition of free pairs and reverse reading order. The
same reasoning applies to 𝑈𝑖, 𝑗 (𝑡). �

Lemma 4.11. Let (𝑖1, 𝑗1), (𝑖2, 𝑗2), . . . , (𝑖ℓ , 𝑗ℓ) be the free pairs for 𝛼 listed so that 𝑖1 ≥ 𝑖2 ≥ · · · ≥ 𝑖ℓ .
Then for all 𝑝 ≤ ℓ,

𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝)𝑈𝑖𝑝−1 , 𝑗𝑝−1 (𝑡𝑝−1) · · ·𝑈𝑖1 , 𝑗1 (𝑡1) F
𝛼 = 𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝)𝑈𝑖𝑝−1 , 𝑗𝑝−1 (𝑡𝑝−1) · · ·𝑈𝑖1 , 𝑗1 (𝑡1) F

𝛼 . (4.8)

Proof. We proceed by induction on p. The base case 𝑝 = 0 is trivial, so suppose that for some 𝑝 ≥ 0,
(4.8) holds. It suffices to show that

𝑈𝑖𝑝+1 , 𝑗𝑝+1 (𝑡𝑝+1)𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝) · · ·𝑈𝑖1 , 𝑗1 (𝑡1)F
𝛼 = 𝑈𝑖𝑝+1 , 𝑗𝑝+1 (𝑡𝑝+1)𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝) · · ·𝑈𝑖1 , 𝑗1 (𝑡1)F

𝛼 . (4.9)

Let 𝑣 ∈ 𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝) · · ·𝑈𝑖1 , 𝑗1 (𝑡1)F
𝛼. Since the image of the operator𝑈𝑖𝑝+1 , 𝑗𝑝+1 (𝑡𝑝+1) −𝑈𝑖𝑝+1 , 𝑗𝑝+1 (𝑡𝑝+1)

is contained in the span of the vectors (𝑁 𝑡 )𝑚 𝑓 𝑗𝑝+1 for 𝑚 > 0 (in fact, they are equal when 𝑡𝑝+1 ≠ 0), then

𝑈𝑖𝑝+1 , 𝑗𝑝+1 (𝑡𝑝+1)𝑣 −𝑈𝑖𝑝+1 , 𝑗𝑝+1 (𝑡𝑝+1)𝑣 (4.10)

is a linear combination of the vectors (𝑁 𝑡 )𝑚 𝑓 𝑗𝑝+1 for 𝑚 > 0. For a fixed 𝑚 > 0, let 𝑓 𝑗′ = (𝑁 𝑡 )𝑚 𝑓 𝑗𝑝+1 .
Then 𝑗 ′ is in a column strictly to the left of 𝑖𝑞 for all 𝑞 ≤ 𝑝 + 1. Since the operators 𝑈𝑖𝑞 , 𝑗𝑞 (𝑡𝑞) for
𝑞 ≤ 𝑝 + 1 fix 𝑓 𝑗′ , and since 𝑓 𝑗′ ∈ F

𝛼, then

𝑓 𝑗′ ∈ 𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝) · · ·𝑈𝑖1 , 𝑗1 (𝑡1)F
𝛼 .

Furthermore, since 𝑗 ′ is not in the same row as 𝑖𝑝+1, then 𝑈𝑖𝑝+1 , 𝑗𝑝+1 (𝑡𝑝+1) and 𝑈𝑖𝑝+1 , 𝑗𝑝+1 (𝑡𝑝+1) fix 𝑓 𝑗′ ,
so 𝑓 𝑗′ is in both sides of (4.9). Therefore, (4.10) is in the intersection of the left-hand side and right-
hand side of (4.9). Since 𝑈𝑖𝑝+1 , 𝑗𝑝+1 (𝑡𝑝+1)𝑣 and 𝑈𝑖𝑝+1 , 𝑗𝑝+1 (𝑡𝑝+1)𝑣 are arbitrary elements of the left- and
right-hand sides of (4.9), respectively, then the two sets are equal. The induction is thus complete. �

Example 4.12. For our running example and (𝑖1, 𝑗1) = (14, 9), then𝑈14,9 (𝑡) −𝑈14,9 (𝑡) sends 𝑓10 to 𝑡 𝑓5
and 𝑓6 to 𝑡 𝑓1 (and everything else to 0) but both 𝑡 𝑓5 and 𝑡 𝑓1 are in F𝛼 and fixed by both 𝑈14,9 (𝑡) and
𝑈14,9 (𝑡), so 𝑈14,9 (𝑡)F

𝛼 = 𝑈14,9 (𝑡)F
𝛼 = span{ 𝑓14 + 𝑡 𝑓9, 𝑓10, 𝑓6, 𝑓5, 𝑓4, 𝑓2, 𝑓1}.

Lemma 4.13. Let (𝑖1, 𝑗1), (𝑖2, 𝑗2), . . . , (𝑖ℓ , 𝑗ℓ) be the free pairs for 𝛼, listed so that 𝑖1 ≥ 𝑖2 ≥ · · · ≥ 𝑖ℓ .
Then we have a well-defined map

Fℓ × 𝑍
𝜇
𝛼 → 𝑍

𝜇
𝛼

defined by sending (�𝑡, 𝑉•) to 𝑈𝑖ℓ , 𝑗ℓ (𝑡ℓ) · · ·𝑈𝑖2 , 𝑗2 (𝑡2)𝑈𝑖1 , 𝑗1 (𝑡1)𝑉•.

Proof. Letting 𝑉• ∈ 𝑍
𝜇
𝛼, it suffices to show that 𝑈𝑖ℓ , 𝑗ℓ (𝑡ℓ) · · ·𝑈𝑖2 , 𝑗2 (𝑡2)𝑈𝑖1 , 𝑗1 (𝑡1)𝑉• ∈ 𝑍

𝜇
𝛼. Since each

𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝) is unipotent upper triangular by Lemma 4.10 and 𝑉𝑛 = F𝛼 ∈ 𝐶𝑤 , then

𝑈𝑖ℓ , 𝑗ℓ (𝑡ℓ) · · ·𝑈𝑖2 , 𝑗2 (𝑡2)𝑈𝑖1 , 𝑗1 (𝑡1)𝑉𝑛 ∈ 𝐶𝑤 .

By construction, we have 𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝)𝑁 𝑡 = 𝑁 𝑡𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝) for all 𝑝 ≤ ℓ, so 𝑁 𝑡 preserves each part of the
partial flag 𝑈𝑖ℓ , 𝑗ℓ (𝑡ℓ) · · ·𝑈𝑖2 , 𝑗2 (𝑡2)𝑈𝑖1 , 𝑗1 (𝑡1)𝑉•.

Finally, we must check that 𝑈𝑖ℓ , 𝑗ℓ (𝑡ℓ) · · ·𝑈𝑖2 , 𝑗2 (𝑡2)𝑈𝑖1 , 𝑗1 (𝑡1)𝑉𝑛 ⊇ F𝜆. Indeed, this follows from the
fact that 𝑉𝑛 = F𝛼 ⊇ F𝜆, Lemma 4.11, and the fact that each 𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝) fixes F𝜆. Thus, the map is well
defined. �
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Example 4.14. For our running example with 𝑛 = 7, 𝜆 = (2, 2), 𝑠 = 4 and 𝛼 = (2, 4, 0, 1), one (of
many) partial flags in 𝑍 (17)

𝛼 is the one represented by the 𝐾 × 𝑛 matrix A below (we do not need the full
𝐾 ×𝐾 matrix because the span of the first n columns completely determines the type (1𝑛, 𝐾 − 𝑛) partial
flag). The reader can check that the matrix representative of the partial flag

𝑈4,3 (𝑡7)𝑈10,3(𝑡6)𝑈10,8(𝑡5)𝑈10,9 (𝑡4)𝑈14,3(𝑡3)𝑈14,8(𝑡2)𝑈14,9(𝑡1)

is the matrix B below.

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 3 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 6 1
0 0 0 3 0 1 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡4 𝑡1 3 0 1 0 0
1 0 0 0 0 0 0
0 0 𝑡6 𝑡3 0 0 𝑡7
0 𝑡5 𝑡2 0 0 6 1
0 𝑡4 𝑡1 3 0 1 0
0 1 0 0 0 0 0
0 0 0 𝑡6 0 0 0
0 0 𝑡5 𝑡2 0 0 0
0 0 𝑡4 𝑡1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 𝑡5 0 0 0
0 0 0 𝑡4 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We leave it to the reader to check that B represents a partial flag 𝑍 (17)

𝛼 .

Lemma 4.15. Let 𝑉• ∈ 𝑍
𝜇
𝛼 and let (𝑖1, 𝑗1), (𝑖2, 𝑗2), . . . , (𝑖ℓ , 𝑗ℓ) be the free pairs for 𝛼 listed so that

𝑖1 ≥ 𝑖2 ≥ · · · ≥ 𝑖ℓ . For all 𝑝 ≤ ℓ, the standard coordinate 𝛽𝑖𝑝 , 𝑗𝑝 of𝑈𝑖ℓ , 𝑗ℓ (𝑡ℓ) · · ·𝑈𝑖1 , 𝑗1 (𝑡1)𝑉𝑛 ∈ 𝐶𝑤 is 𝑡𝑝 .

Proof. By construction of𝑈𝑖, 𝑗 (𝑡), the standard coordinates of𝑈𝑖, 𝑗 (𝑡)𝑉 are obtained by applying𝑈𝑖, 𝑗 (𝑡)
directly to each 𝑣𝑝 and collecting terms (in terms of matrix representatives,𝑈𝑖, 𝑗 (𝑡) sends column-reduced
matrices to column-reduced matrices); hence, the standard coordinates of 𝑈𝑖ℓ , 𝑗ℓ (𝑡ℓ) · · ·𝑈𝑖1 , 𝑗1 (𝑡1)𝑉𝑛 =
𝑈𝑖ℓ , 𝑗ℓ (𝑡ℓ) · · ·𝑈𝑖1 , 𝑗1 (𝑡1)𝑉𝑛 are obtained by applying these operators to the standard coordinates of 𝑉𝑛.
Observe the following:

1. The 𝛽𝑖𝑝 , 𝑗𝑝 coordinate of 𝑉𝑛 is 0 since 𝑉𝑛 = F𝛼.
2. The operator𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝) is the only𝑈𝑖𝑞 , 𝑗𝑞 (𝑡𝑞) operator that changes the 𝛽𝑖𝑝 , 𝑗𝑝 coordinate. Otherwise,

there must exist some q and 𝑚 > 0 such that 𝑁𝑚 𝑓𝑖𝑞 = 𝑓𝑖𝑝 and 𝑁𝑚 𝑓 𝑗𝑞 = 𝑓 𝑗𝑝 . But this would imply
that the label 𝑗𝑝 is strictly to the right of the label 𝑗𝑞 in T, contradicting the fact that 𝑗𝑝 is the leftmost
label in [Λ]/[𝜆] in 𝑗𝑝’s row.

3. 𝑈𝑖𝑝 , 𝑗𝑝 (𝑡𝑝) 𝑓𝑖𝑝 = 𝑓𝑖𝑝 + 𝑡𝑝 𝑓 𝑗𝑝 .

Combining 1–3 above, the 𝛽𝑖𝑝 , 𝑗𝑝 coordinate after applying all of these operators is 𝑡𝑝 . �

Lemma 4.16. Let 𝑉 ∈ 𝐶𝑤 such that 𝑁 𝑡𝑉 ⊆ 𝑉 and let (𝑖, 𝑗) be a pair of labels of T such that 𝑖 > 𝑗 , i is
in [𝛼], and j is in [Λ]/[𝛼] (for example, (𝑖, 𝑗) is a free pair of 𝛼). Suppose that for all labels 𝑟 < 𝑖 of
T in [𝛼], we have 𝑓𝑟 ∈ 𝑉 . Then for any 𝑚 > 0, if 𝑁𝑚 𝑓𝑖 = 𝑓𝑖′ and 𝑁𝑚 𝑓 𝑗 = 𝑓 𝑗′ , then the 𝛽𝑖, 𝑗 and 𝛽𝑖′, 𝑗′

coordinates of V are equal.
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Proof. Letting 𝑣𝑞 be the vectors for the standard coordinate representation of V and letting 𝑎ℓ = 𝛽𝑖,ℓ
and 𝑏ℓ′ = 𝛽𝑖′,ℓ′ for notational convenience, we have

𝑣𝑤−1 (𝑖) = 𝑓𝑖 + 𝑎 𝑗 𝑓 𝑗 +
∑
𝑗≠ℓ<𝑖

𝑎ℓ 𝑓ℓ ,

𝑣𝑤−1 (𝑖′) = 𝑓𝑖′ + 𝑏 𝑗′ 𝑓 𝑗′ +
∑

𝑗′≠ℓ′<𝑖′
𝑏ℓ′ 𝑓ℓ′ ,

(𝑁 𝑡 )𝑚𝑣𝑤−1 (𝑖′) = 𝑓𝑖 + 𝑏 𝑗′ 𝑓 𝑗 +
∑

𝑗′≠ℓ′<𝑖′
𝑏ℓ′ ( (𝑁

𝑡 )𝑚 𝑓ℓ′ ).

Since all of the above vectors are in V, then

𝑣𝑤−1 (𝑖) − (𝑁 𝑡 )𝑚𝑣𝑤−1 (𝑖′) = (𝑎 𝑗 − 𝑏 𝑗′ ) 𝑓 𝑗 +
∑
𝑗≠ℓ<𝑖

𝑎ℓ 𝑓ℓ −
∑

𝑗′≠ℓ′<𝑖′
𝑏ℓ′ ( (𝑁

𝑡 )𝑚 𝑓ℓ′ ) ∈ 𝑉. (4.11)

Observe that the 𝑓 𝑗 coefficient of this vector is exactly 𝑎 𝑗 − 𝑏 𝑗′ , since the two sums contain no 𝑓 𝑗 terms.
Suppose by way of contradiction that 𝑎 𝑗 ≠ 𝑏 𝑗′ . Then the vector (4.11) is nonzero, and since it is

in V, its leading term must be a scalar multiple of 𝑓𝑝 for some p a label in [𝛼]. Since 𝑎ℓ = 𝛽𝑖,ℓ = 0
for all ℓ ∈ {𝑤(1), 𝑤(2), . . . , 𝑖}, then no nonzero terms in the first sum correspond to ℓ a label in [𝛼].
Therefore, the leading term must be 𝑏ℓ′ ( (𝑁

𝑡 )𝑚 𝑓ℓ′ ) for some ℓ′ in the second sum. Let ℓ be such that
(𝑁 𝑡 )𝑚 𝑓ℓ′ = 𝑓ℓ , and note that ℓ > 𝑗 since it is the leading term. However, since ℓ′ < 𝑖′ by assumption,
then ℓ < 𝑖 (a property of reverse reading order). Since we necessarily have that ℓ is a label in [𝛼],
then by the hypothesis in the statement of the lemma, we have 𝑓ℓ ∈ 𝑉 . Therefore, we can eliminate the
𝑏ℓ′ 𝑓ℓ = 𝑏ℓ′ ( (𝑁

𝑡 )𝑚 𝑓ℓ′ ) term from (4.11). After repeating this process of eliminating terms from (4.11),
we get a nonzero vector in V whose leading term does not correspond to a label in [𝛼], a contradiction.
Therefore, we must have 𝑎 𝑗 = 𝑏 𝑗′ , which completes the proof. �

Lemma 4.17. Let (𝑖1, 𝑗1), (𝑖2, 𝑗2), . . . , (𝑖ℓ , 𝑗ℓ) be the free pairs for 𝛼, listed so that 𝑖1 ≥ 𝑖2 ≥ · · · ≥ 𝑖ℓ .
Then the map

Fℓ × 𝑍
𝜇
𝛼 → 𝑍

𝜇
𝛼

defined by sending (�𝑡, 𝑉•) to 𝑈𝑖ℓ , 𝑗ℓ (𝑡ℓ) · · ·𝑈𝑖2 , 𝑗2 (𝑡2)𝑈𝑖1 , 𝑗1 (𝑡1)𝑉• is an isomorphism.

Proof. First, observe that the map is well defined by Lemma 4.13. Second, by Lemma 4.15, the 𝛽𝑖𝑚 , 𝑗𝑚
coordinate of 𝑈𝑖ℓ , 𝑗ℓ (𝑡ℓ) · · ·𝑈𝑖2 , 𝑗2 (𝑡2)𝑈𝑖1 , 𝑗1 (𝑡1)𝑉• is 𝑡𝑚 for each m. Therefore, any two pairs that map to
the same partial flag must have the same �𝑡 vector, and since the operators𝑈𝑖, 𝑗 (𝑡) are invertible, the map
is injective.

Finally, we show that the map is surjective. Let𝑉• ∈ 𝑍
𝜇
𝛼 and let 𝑡𝑚 = 𝛽𝑖𝑚 , 𝑗𝑚 be the standard coordinate

of 𝑉𝑛. We claim that 𝑈−1
𝑖1 , 𝑗1

(𝑡1)𝑈
−1
𝑖2 , 𝑗2

(𝑡2) · · ·𝑈
−1
𝑖ℓ , 𝑗ℓ

(𝑡ℓ)𝑉• ∈ 𝑍
𝜇
𝛼. Observe that 𝑈−1

𝑖, 𝑗 (𝑡) = 𝑈𝑖, 𝑗 (−𝑡). Thus, it
is clear that this flag is in 𝑍

𝜇
𝛼, so it suffices to prove that

𝑈𝑖1 , 𝑗1 (−𝑡ℓ)𝑈𝑖2 , 𝑗2 (−𝑡2) · · ·𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛 = F
𝛼 .

This follows from the next claim.
Claim: Letting 𝛽∗,∗ be the standard coordinates of 𝑈𝑖𝑝 , 𝑗𝑝 (−𝑡𝑝) · · ·𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛, for all 1 ≤ 𝑝 ≤

𝑞 ≤ ℓ, we have 𝛽𝑖𝑞 , 𝑗𝑞 = 0, and for all pairs (𝑖𝑞 , 𝑗) with 𝑗 < 𝑖𝑞 that are not free pairs, we have 𝛽𝑖𝑞 , 𝑗 = 0.
We prove the claim by reverse induction on p. In the base case when 𝑝 = 𝑞 = ℓ, then for all 𝑟 < 𝑖ℓ

such that r is a label of T in [𝛼], then 𝑓𝑟 ∈ 𝑉𝑛, so we have 𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛 = 𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛. Since the
standard coordinates of 𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛 are obtained by applying 𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ) to the standard coordinate
representation of 𝑉𝑛, then 𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ) eliminates the 𝛽𝑖ℓ , 𝑗ℓ coordinate by construction, so the first part
of the claim holds in the base case.
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Let (𝑖ℓ , 𝑗) be a pair with 𝑗 < 𝑖ℓ that is not a free pair. If j is a label in [𝛼], then 𝛽𝑖ℓ , 𝑗 = 0 by definition,
so assume j is a label of T in [Λ]/[𝛼]. Let 𝑖′ be the label in the cell immediately to the left of 𝑖ℓ and let
𝑗 ′ be the label of the cell immediately to the left of j (both of which must exist since (𝑖ℓ , 𝑗) is not a free
pair. Notice that if 𝑖ℓ were in the first column, then j would also have to be in the first column). Since, as
we mentioned above, 𝑓𝑟 ∈ 𝑉𝑛 for all 𝑟 < 𝑖ℓ such that r is in [𝛼], then 𝑓𝑟 ∈ 𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛 = 𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛
for 𝑟 < 𝑖′. By Lemma 4.16, we have 𝛽𝑖ℓ , 𝑗 = 𝛽𝑖′, 𝑗′ . Furthermore, by the minimality of 𝑖ℓ , we have that
𝑖′ is in [𝜆] (otherwise, (𝑖′, 𝑗 ′) would be a free pair, contradicting the minimality of 𝑖ℓ). Thus, 𝛽𝑖′, 𝑗′ = 0
and so also 𝛽𝑖ℓ , 𝑗 = 0, which completes the base case.

In the inductive step, suppose the statement of the claim holds for p. Then by the inductive hypothesis,
for all 𝑟 < 𝑖𝑝−1 such that r is a label of T in [𝛼] (note, this may exclude 𝑖𝑝 if 𝑖𝑝 = 𝑖𝑝−1), then all 𝛽𝑟 , 𝑗
coordinates of 𝑈𝑖𝑝 , 𝑗𝑝 (−𝑡𝑝) · · ·𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛 are 0, so 𝑓𝑟 ∈ 𝑈𝑖𝑝 , 𝑗𝑝 (−𝑡𝑝) · · ·𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛. Therefore,

𝑈𝑖𝑝−1 , 𝑗𝑝−1 (−𝑡𝑝−1)𝑈𝑖𝑝 , 𝑗𝑝 (−𝑡𝑝) · · ·𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛

= 𝑈𝑖𝑝−1 , 𝑗𝑝−1 (−𝑡𝑝−1)𝑈𝑖𝑝 , 𝑗𝑝 (−𝑡𝑝) · · ·𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛.

By construction, 𝑈𝑖𝑝−1 , 𝑗𝑝−1 (−𝑡𝑝−1) eliminates the 𝛽𝑖𝑝−1 , 𝑗𝑝−1 coordinate and does not change the coordi-
nates guaranteed to be 0 in the inductive hypothesis. Given a pair (𝑖𝑝−1, 𝑗) such that j is a label of T not
in [𝛼], then there exist m and 𝑞 > 𝑝 − 1 such that (𝑁 𝑡 )𝑚 𝑓𝑖𝑝−1 = 𝑓𝑖𝑞 and (𝑁 𝑡 )𝑚 𝑓 𝑗𝑝−1 = 𝑓 𝑗𝑞 . Note this
implies 𝑁𝑚 𝑓𝑖𝑞 = 𝑓𝑖𝑝−1 and 𝑁𝑚 𝑓 𝑗𝑞 = 𝑓 𝑗𝑝−1 . Since

𝑓𝑟 ∈ 𝑈𝑖𝑝−1 , 𝑗𝑝−1 (−𝑡𝑝−1)𝑈𝑖𝑝 , 𝑗𝑝 (−𝑡𝑝) · · ·𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉𝑛

for all 𝑟 ≤ 𝑖𝑞 such that r is a label in [𝛼], then by Lemma 4.16, the 𝛽𝑖𝑞 , 𝑗𝑞 and 𝛽𝑖𝑝−1 , 𝑗 coordinates of this
subspace are equal and thus are both 0. This completes the induction and the proof of the claim.

By the claim, we have for 𝑝 = 1 that𝑈𝑖1 , 𝑗1 (−𝑡1)𝑈𝑖2 , 𝑗2 (−𝑡2) · · ·𝑈𝑖ℓ , 𝑗ℓ (−𝑡ℓ)𝑉• ∈ 𝑍
𝜇
𝛼, so the map in the

statement of the lemma is surjective. In the case when F = C, since the inverse is a regular map, it is an
isomorphism of varieties. �

Proof of Theorem 4.2. The isomorphism 𝑍
𝜇
𝛼 � Fℓ × 𝑍

𝜇
𝛼 follows by combining Lemma 4.6 and

Lemma 4.17. �

5. Proof of Theorem 1.3

In this section, we use the results from Sections 3 and 4 to prove the main theorem, Theorem 1.3.
Throughout this section, we utilize the notation 𝜈′0 � 𝑠 for 𝜈 ∈ Par(𝑛, 𝑠). Recall our convention that we
consider 𝐻2𝑘 (𝑌𝑛,𝜆,𝑠;Q) to be the degree k component of the cohomology ring.
Lemma 5.1. Let 𝜈 ∈ Par(𝑛, 𝑠) such that 𝜆 ⊆ 𝜈. Then∑

𝛼∈Comp(𝑛,𝑠) ,
sort(𝛼)=𝜈,
𝛼⊇𝜆

𝑞coinv(𝛼) =
∏
𝑖≥0

[
𝜈′𝑖 − 𝜆′𝑖+1
𝜈′𝑖 − 𝜈′𝑖+1

]
𝑞

. (5.1)

Proof. We proceed by induction on 𝑚 = 𝜈1. In the base case 𝑚 = 𝜈1 = 1, then 𝜆 = (1𝑘 ) and 𝜈 = (1𝑛).
In this case, each 𝛼 in the summation has parts 0 and 1 such that 𝛼1 = · · · = 𝛼𝑘 = 1. Deleting the first k
parts from 𝛼, we get a weak composition consisting of 0s and 1s of size 𝑛 − 𝑘 and length 𝑠 − 𝑘 (and the
same number of coinversions as 𝛼). Thus, the left-hand side of (5.1) can be rewritten as∑

𝛼∈Comp(𝑛−𝑘,𝑠−𝑘)
𝑞coinv(𝛼) =

[
𝑠 − 𝑘

𝑛 − 𝑘

]
𝑞

=

[
𝑠 − 𝑘

𝑠 − 𝑛

]
𝑞

=

[
𝜈′0 − 𝜆′1
𝜈′0 − 𝜈′1

]
𝑞

,

which equals the right-hand side, so the base case holds.
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Let 𝑚 > 1 and assume by way of induction that the identity holds for all 𝜈 with 𝜈1 = 𝑚 − 1, and let
𝜈 ∈ Par(𝑛, 𝑠) such that 𝜆 ⊆ 𝜈. Define 𝜈 and 𝜆 by removing all cells in column m of the Young diagrams
of 𝜈 and 𝜆, respectively. Then 𝛼 ∈ Comp(𝑛, 𝑠) such that 𝜆 ⊆ 𝛼 and sort(𝛼) = 𝜈 is obtained uniquely by
the following process:

◦ Start with 𝛼 ∈ Comp(𝑛 − 𝜈′𝑚, 𝑠) such that 𝜆 ⊆ 𝛼 and sort(𝛼) = 𝜈,
◦ Append one cell to the first 𝜆′𝑚 rows of [𝛼],
◦ Append one cell to (𝜈′𝑚 − 𝜆′𝑚) many of the remaining rows of [𝛼] that have length 𝑚 − 1.

There are (𝜈′𝑚−1 −𝜆
′
𝑚) many rows of [𝛼] with length 𝑚 − 1 (apart from the first 𝜆′𝑚 rows). Furthermore,

the difference coinv(𝛼) − coinv(𝛼) is the number of pairs 𝑖 < 𝑗 such that 𝛼𝑖 = 𝑚 − 1 and 𝛼 𝑗 = 𝑚. For a
fixed 𝛼, the total contribution to the left-hand side of (5.1) is thus

𝑞coinv(𝛼)
[
𝜈′𝑚−1 − 𝜆′𝑚
𝜈′𝑚 − 𝜆′𝑚

]
𝑞

= 𝑞coinv(𝛼)
[
𝜈′𝑚−1 − 𝜆′𝑚
𝜈′𝑚−1 − 𝜈′𝑚

]
𝑞

,

which is 𝑞coinv(𝛼) times the 𝑖 = 𝑚 − 1 factor on the right-hand side of (5.1). An application of the
inductive hypothesis then completes the proof. �

Theorem 5.2. We have

Frob(𝐻∗(𝑌𝑛,𝜆,𝑠;Q); 𝑞) =
∑

𝜈∈Par(𝑛,𝑠) ,
𝜈⊇𝜆

𝑞
∑

𝑖 (𝑠−𝜈
′
𝑖) (𝜈

′
𝑖+1−𝜆

′
𝑖+1)

∏
𝑖≥0

[
𝜈′𝑖 − 𝜆′𝑖+1
𝜈′𝑖 − 𝜈′𝑖+1

]
𝑞

𝐻𝜈 (x; 𝑞). (5.2)

Proof. Combining (1.1), Theorem 3.8, Theorem 4.2 and Lemma 5.1, we have for all prime powers q
the following string of identities.

Frob(𝐻∗(𝑌𝑛,𝜆,𝑠;Q); 𝑞) (5.3)

=
∑
𝜇�𝑛

|𝑌
𝜇
𝑛,𝜆,𝑠 (F𝑞) |𝑚𝜇 (x) (5.4)

=
∑
𝜇�𝑛

∑
𝛼∈Comp(𝑛,𝑠) ,

𝛼⊇𝜆

|𝑍
𝜇
𝛼 (F𝑞) |𝑚𝜇 (x) (5.5)

=
∑
𝜇�𝑛

∑
𝛼∈Comp(𝑛,𝑠) ,

𝛼⊇𝜆

𝑞
∑

𝑖 (𝑠−𝛼
′
𝑖) (𝛼

′
𝑖+1−𝜆

′
𝑖+1)+coinv(𝛼) |𝑍

𝜇
𝛼 (F𝑞) |𝑚𝜇 (x) (5.6)

=
∑

𝛼∈Comp(𝑛,𝑠) ,
𝛼⊇𝜆

𝑞
∑

𝑖 (𝑠−𝛼
′
𝑖) (𝛼

′
𝑖+1−𝜆

′
𝑖+1)+coinv(𝛼)

(∑
𝜇�𝑛

|𝑍
𝜇
𝛼 (F𝑞) |𝑚𝜇 (x)

)
(5.7)

=
∑

𝛼∈Comp(𝑛,𝑠) ,
𝛼⊇𝜆

𝑞
∑

𝑖 (𝑠−𝛼
′
𝑖) (𝛼

′
𝑖+1−𝜆

′
𝑖+1)+coinv(𝛼)𝐻sort(𝛼) (x; 𝑞) (5.8)

=
∑

𝜈∈Par(𝑛,𝑠) ,
𝜈⊇𝜆

𝑞
∑

𝑖 (𝑠−𝜈
′
𝑖) (𝜈

′
𝑖+1−𝜆

′
𝑖+1)

∑
𝛼∈Comp(𝑛,𝑠) ,

sort(𝛼)=𝜈,
𝛼⊇𝜆

𝑞coinv(𝛼)𝐻𝜈 (x; 𝑞) (5.9)

=
∑

𝜈∈Par(𝑛,𝑠) ,
𝜈⊇𝜆

𝑞
∑

𝑖 (𝑠−𝜈
′
𝑖) (𝜈

′
𝑖+1−𝜆

′
𝑖+1)

∏
𝑖≥0

[
𝜈′𝑖 − 𝜆′𝑖+1
𝜈′𝑖 − 𝜈′𝑖+1

]
𝑞

𝐻𝜈 (x; 𝑞). (5.10)

In (5.9), we have used the fact that if sort(𝛼) = 𝜈, then 𝛼′
𝑖 = 𝜈′𝑖 for all i. Since the identities hold for

infinitely many values of q, the final identity holds for q a formal parameter. �
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Corollary 5.3. We have

Frob(𝐻∗(𝑌𝑛,𝜆,𝑠;Q); 𝑞) = rev𝑞

⎡⎢⎢⎢⎢⎢⎣
∑

𝜈∈Par(𝑛,𝑠) ,
𝜈⊇𝜆

𝑞𝑛(𝜈/𝜆)
∏
𝑖≥0

[
𝜈′𝑖 − 𝜆′𝑖+1
𝜈′𝑖 − 𝜈′𝑖+1

]
𝑞

𝐻𝜈 (x; 𝑞)

⎤⎥⎥⎥⎥⎥⎦ , (5.11)

where 𝜈′0 � 𝑠, 𝜆′0 � 𝑠, and 𝑛(𝜈/𝜆) �
∑
𝑖

(𝜈′𝑖−𝜆′𝑖
2

)
.

Proof. By [10, Theorem 1.2], the degree of Frob(𝐻∗(𝑌𝑛,𝜆,𝑠;Q); 𝑞) is 𝑛(𝜆) + (𝑠−1) (𝑛− 𝑘). By Theorem
5.2, it suffices to show that rev𝑞 applied to the right-hand side of (5.2) is equal to the expression in the
right-hand side of (5.11) inside of rev𝑞 . In other words, it suffices to prove that

𝑞𝑛(𝜆)+(𝑠−1) (𝑛−𝑘)
∑

𝜈∈Par(𝑛,𝑠) ,
𝜈⊇𝜆

𝑞−
∑

𝑖 (𝑠−𝜈
′
𝑖) (𝜈

′
𝑖+1−𝜆

′
𝑖+1)

∏
𝑖≥0

[
𝜈′𝑖 − 𝜆′𝑖+1
𝜈′𝑖 − 𝜈′𝑖+1

]
𝑞−1

𝐻𝜈 (x; 𝑞−1) = (5.12)

∑
𝜈∈Par(n,s) ,

𝜈⊇𝜆

𝑞𝑛(𝜈/𝜆)
∏
𝑖≥0

[
𝜈′𝑖 − 𝜆′𝑖+1
𝜈′𝑖 − 𝜈′𝑖+1

]
𝑞

𝐻𝜈 (x; 𝑞). (5.13)

Since 𝐻𝜈 (x; 𝑞−1) = 𝑞−𝑛(𝜈)𝐻𝜈 (x; 𝑞) and
[𝑎
𝑏

]
𝑞−1 = 𝑞−𝑏 (𝑎−𝑏)

[𝑎
𝑏

]
𝑞

, we are reduced to proving that

𝑛(𝜈/𝜆) = 𝑛(𝜆) + (𝑠 − 1) (𝑛 − 𝑘) −
∑
𝑖

(𝑠 − 𝜈′𝑖 ) (𝜈
′
𝑖+1 − 𝜆′𝑖+1) −

∑
𝑖

(𝜈′𝑖 − 𝜈′𝑖+1) (𝜈
′
𝑖+1 − 𝜆′𝑖+1) − 𝑛(𝜈), (5.14)

which follows by a straightforward calculation using the facts that
∑
𝑖 𝜈

′
𝑖 = 𝑛 and

∑
𝑖 𝜆

′
𝑖 = 𝑘 . Indeed,

combining terms in the right-hand side of (5.14), we have

1
2

(∑
𝑖

𝜆′𝑖 (𝜆
′
𝑖 − 1) − 2(𝑠 − 1) (𝑛 − 𝑘) −

∑
𝑖

2(𝑠 − 𝜈′𝑖+1) (𝜈
′
𝑖+1 − 𝜆′𝑖+1) −

∑
𝑖

𝜈′𝑖 (𝜈
′
𝑖 − 1)

)

=
1
2

(
−2(𝑠 − 1) (𝑛 − 𝑘) +

∑
𝑖

(
2𝑠(𝜈′𝑖+1 − 𝜆′𝑖+1) + 𝜈

′
𝑖 − 𝜆′𝑖 + (𝜆′𝑖)

2 + (𝜈′𝑖)
2 − 2𝜈′𝑖+1𝜆

′
𝑖+1

))

=
1
2

(
−2(𝑠 − 1) (𝑛 − 𝑘) + 2𝑠𝑛 − 2𝑠𝑘 + 2

∑
𝑖

(𝜈′𝑖 − 𝜆′𝑖) +
∑
𝑖

((𝜆′𝑖)
2 + (𝜈′𝑖)

2 − 2𝜈′𝑖𝜆
′
𝑖 − 𝜈′𝑖 − 𝜆′𝑖)

)

=
1
2

(
0 +

∑
𝑖

(𝜈′𝑖 − 𝜆′𝑖) (𝜈
′
𝑖 − 𝜆′𝑖 − 1)

)
= 𝑛(𝜈/𝜆).

The proof is thus complete. �

6. Further directions

We list a few open problems and possible further connections with geometry and combinatorics:

◦ Counting partial flags also has connections with the q-Burge correspondence by work of Karp and
Thomas [16]. Is there a generalization of the q-Burge correspondence that corresponds to counting
pairs of points of the Δ-Springer varieties?

◦ The proof of Theorem 1.3 given in this article is geometric, relying on counting the points of the
Δ-Springer variety over F𝑞 using different ways to partition the space. A more direct combinatorial
proof should be possible starting from Theorem 1.1. Such a combinatorial proof would find a
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weight-preserving bijection that collects terms of this formula into sums that can be identified as
monomial expansions of Hall-Littlewood symmetric functions.

◦ Formulas for Macdonald polynomials, which are two-parameter generalizations of Hall-Littlewood
symmetric functions, have been obtained by Mellit [18] as weighted sums over points of affine Springer
fibers. It may be possible to define generalizations of Δ-Springer varieties in the setting of affine flag
varieties. One can then ask whether weighted point counts over these varieties yield symmetric
functions that can simultaneously be defined using Macdonald eigenoperators. In particular, since
Δ ′
𝑒𝑘−1𝑒𝑛 |𝑡=0 is, up to a minor twist, the graded Frobenius characteristic of the cohomology of𝑌𝑛, (1𝑘 ) ,𝑘 ,

one might hope that extending the definition of 𝑌𝑛, (1𝑘 ) ,𝑘 to the affine setting and taking a weighted
point count can recover the full symmetric function Δ ′

𝑒𝑘−1𝑒𝑛.
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