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Abstract. Given the pair (P, η) of (0, 2) tensors, where η defines a volume element,
we consider a new variational problem varying η only. We then have Einstein metrics
and slant immersions as critical points of the 1st variation. We may characterize Ricci
flat metrics and Lagrangian submanifolds as stable critical points of our variational
problem.
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1. Introduction. The variational problems to obtain typical geometric objects,
such as minimal surfaces, harmonic mappings, Einstein metrics and Yang-Mills
connections, are the central topics in Riemannian geometry. The important geometric
structure for the geometric objects is the curvature tensor of the metric. However, since
the curvature tensor itself is too complicated and difficult to treat, one may consider
the Ricci tensor, denoted by Ric, which is easier to treat than the curvature tensor. In
1916, Albert Einstein used the Ricci tensor to describe the gravitational field equation.
When the spacetime is empty and the cosmological constant is zero, Einstein’s field
equation becomes Ric − S

2 g = 0 [2], where g is the Lorentzian metric and S is the trace
of Ric with respect to g called a scalar curvature, and consequently Ric = 0 holds.
A Riemannian or Lorentzian metric satisfying the latter condition is called a Ricci
flat metric. The existence of such a Ricci flat metric is ensured for a compact Kähler
manifold with zero 1st Chern class because of the solution for the Calabi conjecture by
S. T. Yau [5], which led to the concept of the Calabi-Yau manifold in mirror symmetry.
More generally, a Riemannian or Lorentzian metric g satisfying Ric = S

n g is called an
Einstein metric, where n is the dimension of the manifold. It is known that Einstein
metric is a solution for the variational problem of the function of the total scalar
curvature divided by the n−2

n -power of the volume of the Riemannian manifold (we
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consider only the case of compact Riemannian manifold). In mirror symmetry, the
Lagrangian submanifolds of the symplectic manifold play an important role. We then
ask the question “Is the Lagrangian submanifold the solution of certain variational
problem?”.

In this paper, we introduce a new variational problem on the space T0
2 × T0∗

2 of the
tensor product of the bundle of smooth (0, 2)-tensors and the bundle of smooth (0, 2)-
tensors with non-zero determinant. Given a (P, η) ∈ T0

2 × T0∗
2 , fixing P we consider

the function E(η)(see Section 1). Varying the tensor η, we calculate the 1st and 2nd
variation formulae for the variational problem. Consequently, the critical point of
the 1st variation is given by the equation P = 2p

n η. From this, we obtain an Einstein
metric or a slant immersion as the critical point when P is the Ricci tensor or f ∗�N ,
respectively (for details, see Corollaries in Section 4). For the stability problem of the
critical points, we prove that if n � 3 and p is a non-zero, then the critical point of
E(η) is unstable (Theorem 5.5). As corollaries of this theorem, we may characterize the
Ricci flat metric or a Lagrangian immersion as the stable critical point of E(η), where
we take η to be a Riemannian metric or a symplectic form, respectively (see Corollaries
in Section 5).

2. New variational problem. Let (M, g) be an n-dimensional Riemannian
manifold. Choose a local coordinate system {x1, x2, . . . xn} of M. Then, the
Riemannian metric g is expressed as g = ∑n

i,j=1 gijdxidxj. The standard measure dμg

of (M, g) is given by

dμg =
√

det(gij) dx1dx2 . . . dxn.

We denote by R, Ric and S the curvature tensor, the Ricci tensor and the scalar
curvature of (M, g), respectively. A famous variational problem in Riemannian
geometry is to extremise the function

J(g) =

∫
M

S dμg(∫
M

dμg

) n−2
n

.

The critical point of J(g) is a metric g, which satisfies Ric = S
n g, that is, g is an Einstein

metric.
We now introduce a new variational problem. Let M be an n-dimensional smooth

manifold. We assume that, in this paper, M is connected. Let T0
2 = T0

2(M) be the set
of all smooth (0, 2)-tensors on M. Denote by T0∗

2 = T0∗
2 (M) the subset of all smooth

(0, 2)-tensors η′s with detη �= 0. Choose a local coordinate system {x1, x2, . . . xn} of
M. Given an η = ∑n

i,j=1 ηijdxi ⊗ dxj ∈ T0∗
2 , we define a dμη by

dμη =
√

|det(ηij)| dx1dx2 . . . dxn. (2.1)

We then define a function I on T0
2 × T0∗

2 by

I(P, η) =
∫

M
traceηP dμη for (P, η) ∈ T0

2 × T0∗
2 , (2.2)
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where traceηP = ∑m
i,j=1 Pijη

ji and ηij is the component of the inverse matrix of the
matrix (ηij). We normalize I so that it is invariant under the homothetic transformation
η �→ λη. Next, fixing P ∈ T0

2, we define E(η) by

E(η) :=

∫
M

traceηP dμη(∫
M

dμη

) n−2
n

. (2.3)

For applications, we mainly consider the case where η is a symmetric tensor or a
skew-symmetric tensor.

3. Slant immersion. Let (M,�) be a 2m-dimensional symplectic manifold, that
is, � is a closed real nondegenerate 2-form. It is known that M admits an almost
Kähler structure (g, J) with �(X, Y ) = g(JX, Y ) (cf. [4]). Let (M,�M) and (N,�N)
be symplectic manifolds. We may give almost Kähler structures (gM, JM) and (gN, JN)
on M and N in the standard way, respectively. Consider an isometric immersion
ϕ : (M, gM) −→ (N, gN). For any X ∈ TxM, x ∈ M, ϕ∗(X) is a vector in ϕ∗(TxM) ⊂
Tϕ(x)N. However, JNϕ∗(X) is not necessarily in ϕ∗(TxM) but in Tϕ(x)N. With respect
to the orthogonal direct sum decomposition Tϕ(x)N = ϕ∗(TxM) + Nx, denote by πx :
Tϕ(x)N −→ ϕ∗(TxM) the orthogonal projection along M. We denote by θX the angle
between JNϕ∗(X) and ϕ∗(TxM). For X of unit length, we have

cosθX = 〈JNϕ∗(X), π (JNϕ∗(X))〉
|π (JNϕ∗(X))| .

Since |π (JNϕ∗(X))| = cos θX , we obtain the following.

cos2 θX = 〈JNϕ∗(X), π (JNϕ∗(X))〉 =
2m∑
i=1

〈JNϕ∗(X), ϕ∗(ei)〉2,

where {e1, e2, . . . , e2m} is an orthonormal basis of TxM.

DEFINITION. An isometric immersion ϕ : (M, gM) −→ (N, gN, JN) is called slant if θX

is constant for any non-zero X . When ϕ is slant, the angle θ = θX for non-zero X is
called slant angle.

LEMMA 3.1 (cf. [3]). Let K be a non-negative real number. Then, ϕ is slant with slant
angle cos−1(K) if and only if

2m∑
k=1

〈JNϕ∗(ei), ϕ∗(ek)〉〈JNϕ∗(ej), ϕ∗(ek)〉 = K2δij

for i, j = 1, 2, . . . , 2m.

REMARK. If ϕ∗�N = K �M for some real number K , then it follows from Lemma
3.1 that ϕ is slant with slant angle cos−1(|K|).
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4. 1st variation formulae. For the variation {ηt} of η ∈ T0∗
2 with η0 = η, we denote

by δη the section d
dt

∣∣
t=0 ηt ∈ T0

2. Assume that M is an n-dimensional compact manifold
with an η ∈ T0∗

2 . Take P ∈ T0
2. Define V, p, U and c by

V =
∫

M
dμη, p = 1

2

n∑
i,j=1

Pijη
ji, U =

∫
M

p dμη, c = n − 2
n

.

We then see that E(η) = 2U/Vc. Fixing η ∈ T0∗
2 , we now introduce the inner products

〈, 〉 and 〈〈, 〉〉 on T0
2 by

〈p, q〉 =
n∑

i,j,k,l=1

pijη
jkqklη

li,

〈〈p, q〉〉 =
∫

M
〈p, q〉dμη for p, q ∈ T0

2.

Using the relation
∑n

j=1 ηijη
jk = δk

i , we have the following fundamental fact.

LEMMA 4.1. ⎧⎨
⎩

δηij = −∑n
k,l=1 ηikδηklη

lj,

δ
(
dμη

) = 1
2

∑n
i,j=1 ηijδηjidμη.

Using Lemma 4.1 we obtain the following.

LEMMA 4.2. ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δp = − 1
2 〈P, δη〉,

δV = 1
2 〈〈η, δη〉〉,

δU = 1
2 〈〈pη − P, δη〉〉.

Using Lemma 4.2, we now calculate the 1st variation of the function E(η) fixing
P ∈ T0

2.

δE(η) = 2δU · Vc − 2U · δVc

V2c

= 1
V2c

(〈〈pη − P, δη〉〉Vc − cUVc−1〈〈η, δη〉〉)
= 1

Vc+1
〈〈V (pη − P) − cUη, δη〉〉.

Consequently, we obtain the following formulae.

PROPOSITION 4.3. δE(η) = 0 if and only if P = (p − c U
V )η = 2p

n η, where p is equal
to a constant U

V for n �= 2.
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The unproved assertion in Proposition 4.3 follows from multiplying P = (p − c U
V )η

by η−1 and taking the trace of the resulting equation.

COROLLARY 4.4. Consider the case where P is the Ricci tensor of a Riemannian
manifold (M, g), and take η = g. Then, δE(g) = 0 if and only if g is an Einstein metric.

COROLLARY 4.5. Consider the case where P is the Ricci form of an almost Kähler
manifold (M, gM, JM,�M), that is, P(X, Y ) = Ric(JMX, Y ), and take η = �M. Then,
δE(�M) = 0 if and only if gM is an Einstein metric.

COROLLARY 4.6. Let ϕ : (M, gM, JM,�M) −→ (N, gN, JN,�N) be an isometric
immersion from a 2m-dimensional compact almost Kähler manifold into an almost Kähler
manifold. Consider the case where P = ϕ∗�N and m � 2. If δE(�M) = 0 then ϕ is slant
with slant angle cos−1

( U
mV

)
.

In these corollaries, we considered the variations of η in the space of symmetric
tensors or skew-symmetric tensors accordingly as P is symmetric or skew-symmetric.
However, since the local minimum of E(η) is not always zero, it is possible to consider
the variation of η in the other direction than P.

COROLLARY 4.7. Consider the case where P is the Ricci tensor of an almost Kähler
manifold (M, gM, JM,�M). Then, δE(�M) = 0 if and only if gM is a Ricci flat metric.

COROLLARY 4.8. Let (N,�N) be a symplectic manifold and (M, g) be a Riemannian
manifold with dimM = 1

2 dimN. Let ϕ : M −→ N be an immersion. Consider the case
where P = ϕ∗�N and η = g. Then, δE(g) = 0 if and only if ϕ is a Lagrangian immersion.

5. 2nd variation formulae. We calculate the second variation of E(η) under the
condition that η is an element of T0∗

2 with δE(η) = 0. Set

H = V (pη − P) − cUη.

Then, since δE(η) = 1
Vc+1 〈〈H, δη〉〉 by Proposition 4.3, we see that δE(η) = 0 if and

only if H = 0. Therefore, we obtain the following.

δ2E(η) = 1
Vc+1

〈〈δH, δη〉〉. (5.1)

We use the notation that 〈〈f 〉〉 = ∫
M f dμg for any smooth function on M. We then

may write

〈〈η, δη〉〉 =
∫

M
traceηδη dμη = 〈〈traceηδη〉〉, U =

∫
M

p dμη = 〈〈p〉〉.

Now, it is enough to calculate δH. From Lemma 4.2, we calculate

δH = δV · (pη − P) + V · δp · η + Vp · δη

− cδU · η − cU · δη

= 1
2
〈〈η, δη〉〉(pη − P) − 1

2
V〈P, δη〉η + Vpδη

− c
2
〈〈pη − P, δη〉〉η − cUδη.
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Thus, it follows that

Vc+1δ2E(η) = 1
2
〈〈traceηδη〉〉〈〈pη − P, δη〉〉 − 1

2
V〈〈(traceηδη)P, δη〉〉

+ V〈〈pδη, δη〉〉 − c
2
〈〈traceηδη〉〉〈〈pη − P, δη〉〉 − cU〈〈δη, δη〉〉 (5.2)

= 1 − c
2

〈〈traceηδη〉〉〈〈pη − P, δη〉〉 − 1
2

V〈〈(traceηδη)P, δη〉〉
+ V〈〈pδη, δη〉〉 − cU〈〈δη, δη〉〉

We now consider the case n �= 2. In this case, p is a constant and P = 2p

n η holds. We
hence obtain the following.

Vc+1δ2E(g) = (n − 2)p
n2

〈〈traceηδη〉〉2

− pV
n

〈〈(traceηδη)2〉〉 + 2pV
n

〈〈δη, δη〉〉. (5.3)

Next, consider the case n = 2. In this case, we have c = 0 and P = pη. Therefore, we
obtain the following.

Vc+1δ2E(η) = −V
2

〈〈p(traceηδη)2〉〉 + V〈〈pδη, δη〉〉.

Consequently, we conclude the following.

THEOREM 5.4. Fixing P, under the condition that δE(η) = 0 the 2nd variation
formulae is given by

δ2E(η)

= 1
Vc+1

{
n − 2
n2V

〈〈p〉〉〈〈traceηδη〉〉2 − V
n

〈〈p(traceηδη)2〉〉 + 2V
n

〈〈pδη, δη〉〉
}

,

where p is a constant when n �= 2. In particular, if n = 1, 2 and p is a non-negative(resp.
non-positive) constant then δ2E(η) � 0 (resp. δ2E(η) � 0) holds.

The last assertion in Theorem 5.4 follows from the Cauchy-Schwarz inequality

〈〈(traceηδη)2〉〉 � n〈〈δη, δη〉〉.

When n � 3 we have the following.

THEOREM 5.5. Assume that n � 3 and p is a non-zero. Then, the critical point of
E(η) is unstable.

Proof. Note that p is a constant when n � 3. First of all, consider the case where
p is a negative constant. In this case, if we choose δη so that traceηδη = 0 holds, then
we see that δ2E(η) < 0. In the following, we consider the case where p is a positive
constant. Choose two domains V1, V2 in M with V1 ∩ V2 = φ. Choose ε > 0 so that

ε <
n − 2

n
· Vol(V1) and ε <

n − 2
n

· Vol(V2) (5.6)
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hold. Next, we choose two domains U1, U2 in M so that they satisfy

{
V1 ⊃ U1, Vol(V1) − Vol(U1) < ε

V2 ⊃ U2, Vol(V2) − Vol(U2) < ε.
(5.7)

We define a f̃ ∈ C∞(M) by

f̃ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 on U1

� 0 on V1

� 0 on V2

−1 on U2

0 Others.

Set c1 = ∫
V1

f̃ dμη, c2 = − ∫
V2

f̃ dμη. Then, we see that c1 > 0 and c2 > 0. Moreover,
if we define f by

f =
⎧⎨
⎩

c2̃f on V1

c1̃f on V2

0 Others

then we have f ∈ C∞(M). We consider δη = f η. We calculate

〈〈traceηδη〉〉 =
∫

V1

nc2̃f dμη +
∫

V2

nc1̃f dμη = nc2c1 + nc1(−c2) = 0.

In particular, we see that the term 〈〈traceηδη〉〉2 is equal to zero. Moreover, using the
definition of the function f , we have the following.

−pV
n

〈〈(traceηδη)2〉〉 = −pV
n

∫
V1

f 2n2 dμη − pV
n

∫
V2

f 2n2 dμη

� −pV
n

∫
U1

c2
2n2 dμη − pV

n

∫
U2

c2
1n2 dμη

= −npV
{
c2

2Vol(U1) + c2
1Vol(U2)

}
, (5.8)

2pV
n

〈〈δη, δη〉〉 = 2pV
n

{∫
V1

nf 2 dμη +
∫

V2

nf 2 dμη

}

� 2pV
n

{∫
V1

nc2
2 dμη +

∫
V2

nc2
1 dμη

}
= 2pV

{
c2

2Vol(V1) + c2
1Vol(V2)

}
. (5.9)
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It then follows from (5.6)–(5.9) and the assumption n � 3 that

δ2E(η) = 1
Vc+1

[
0 − pV

n
〈〈(traceηδη)2〉〉 + 2pV

n
〈〈δη, δη〉〉

]
� 1

Vc+1

[
− pVn

{
c2

2Vol(U1) + c2
1Vol(U2)

} + 2pV
{
c2

2Vol(V1) + c2
1Vol(V2)

} ]
<

pV
Vc+1

[
c2

2 {2Vol(V1) + n(−Vol(V1) + ε)} + c2
1 {2Vol(V2) + n(−Vol(V2) + ε)}

]
= np

Vc

[
c2

2

{
−n − 2

n
Vol(V1) + ε

}
+ c2

1

{
−n − 2

n
Vol(V2) + ε

}]
< 0

Therefore, the critical point of E(η) is unstable. �
Theorem 5.5, together with Proposition 4.3, yields the following.

THEOREM 5.10. Let (M, g) be a smooth manifold. For E : T0∗
2 −→ R defined in

Section 1, the following four conditions are mutually equivalent.
(1) There exists a critical point η ∈ T0∗

2 such that traceηP = 0.
(2) η is a critical point for any η ∈ T0∗

2 .
(3) η is a stable critical point for any η ∈ T0∗

2 .
(4) P = 0.

Moreover, if dimM � 3 then any of the following conditions (5) and (6) is also
equivalent to any of the conditions (1), (2), (3) and (4)

(5) There exist a critical point η ∈ T∗
2 and a point m ∈ M such that traceηP(m) = 0

or det(Pij)(m) = 0.
(6) There exists a stable critical point η ∈ T0∗

2 .

Proof. It is enough to prove the implication (2) =⇒ (1). Take any η ∈ T0∗
2 . Then, we

have P = traceηP
n η. There are two possibilities : (i) traceηP ≡ 0 and (ii) there is a point

m ∈ M such that traceηP(m) �= 0. Since the case (i) implies the condition (1), we just
consider the case (ii). In this case, there exists a neighbourhood U(m) of m ∈ M such
that traceηP �= 0 on U(m). Choose ξ ∈ T0∗

2 so that η and ξ are linearly independent on
U(m). Set ηε = η + εξ . Choosing ε to be small enough, if necessary, we may assume
that traceηε

P �= 0 on U(m) and ηε ∈ T0∗
2 . We then see that

P = traceηP
n

η = traceηε
P

n
ηε on U(m),

which contradicts the linear independence of η and ξ . �
COROLLARY 5.11. Consider the case where P is the Ricci tensor of an n-dimensional

Riemannian manifold (M, g), n � 3 and δE(g) = 0. Then, g is stable if and only if g is a
Ricci flat metric.

COROLLARY 5.12. Consider the case where P is the Ricci form of a 2m-dimensional
compact almost Kähler manifold (M, gM, JM,�M), m � 2 and δE(�M) = 0. Then, �M

is stable if and only if gM is a Ricci flat metric.

COROLLARY 5.13. Let ϕ : (M, gM, JM,�M) −→ (N, gN, JN,�N) be an isometric
immersion from a 2m-dimensional compact almost Kähler manifold into an almost Kähler
manifold. Consider the case where P = ϕ∗�N, m � 2 and δE(�M) = 0. Then, �M is
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stable if and only if ϕ is a totally real immersion (i.e., ϕ∗�N ≡ 0 [1]), which, in particular,
implies that ϕ is a Lagrangian immersion in case of dimN = 4m.

COROLLARY 5.14. Let f : (M, g) −→ (N, h) be a smooth map from an m-dimensional
semi-Riemannian manifold into an n-dimensional manifold with an arbitrary smooth
(0, 2)-tensor h. Consider the case where P = h(df, df ), m � 3 and δE(g) = 0. If g is
stable or the energy density e(f ) = trgP/2 vanishes at some point, then the energy of f is
zero, that is ∫

M
e(f ) dμg =

∫
M

1
2

m∑
i,j=1

n∑
α,β=1

gijhαβ(f )f α
i f β

j dμg = 0.

In particular, f is a constant map if h is positive or negative definite.
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