A GENERALIZATION OF AN INVERSION FORMULA
FOR THE GAUSS TRANSFORMATION

P. G. Rooney
{received June 20, 1962)
1. Introduction. In an earlier paper [3] we considered

an inversion formula for the Gauss transformation G defined
by

-1/2 foo e‘(x'Y)Z/‘]:

-00

(1.1) (Go)(x) = (4m) ply)dy .

We noted there that formally G is inverted by

2

-D d
(1.2) e where D = — ,
dx

2
-D )
and we showed that if e is interpreted via the power series
for the exponential function, that is if

2 0 n
(1.3) e? fx) = = (—‘;1,)— £22) )

n=0
then under certain conditions on ¢ ,

DZ
(1.4) e f(x) = o{x) , where f=Gg .

Now from [1; 10.13(19)],
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n
- 2
~(tz+t0) © (-1) H (z/2)
(1.5) e = = " t ,
n!
n=0
so that formally
2 o (-1)"H_(z/2)
e-D flx) = Z 2 DneZDf(x),

1
n!
n=0

D
and thus using the usual rule that ez f(x) = f{(x+z) we obtain
formally

DZ 0
(1.6) e f(x) = =

n=0

n
(0%, =12

: (x+2z) .
n!

We shall show in section two that with this new interpretation

2
-D
of e , then under certain conditions on ¢ , (1.4) holds.

2

-D
The interpretation of e given by (1. 6) reduces to that of
(1.3) when z =0 since

n 1
H, ,(0) =0 and H, (0) = (-1)'(2n)!/n! .

Another special case of (1. 6), namely z =-x is worthy of note,
since then the coefficients of the Hermite polynomials become
independent of x.

In [3] we also considered the Abel summability of (1. 3).

This is equivalent to considering

lim e 2 f(x),
t - 1-

where e-tD f(x) is defined through the power series for the
exponential function. Using (1.5) as previously we would have
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, 2 w0 (-1)"H (2/2)
(1.7) e-tD f(x)= = -————E—'-——— f(n)(x+’c1/2z)tn/2 s
n=0 )

and we shall study, in section three, the behaviour of series
(1.7) as t > 1- . In section four we give some applications of

(1.6).

2. Convergence theory. In theorem one we show that the
series (1.5) is equiconvergent with a well known integral and in
theorem two we speci'alize the results of theorem one to obtain
convergence results.

THEOREM 1. Let ¢ be integrable over every finite
interval, and suppose that

{] plxtz+2v) |+ ]| p(xtz-2v) |} dv= o(n—1)

o 2 )
(2.1) [TV 2 8I3

n

as n—>oo .

Then (Geg)(u) exists for all real u, andif f=Gg¢ and s (x,z)
n

th
denotes the n  partial sum of the series (1. 6) then for any
5§>0

x+6 . 1/2
lim (s (x,2)- 7 - f sin(n/2)  (xt)) yay =0 .
n->o o x-06 x-t

2 2
Proof. Clearly lx+z-y15/3e-(u—y),, [4+ (xt2-y) /8

is a bounded function of y. Let k be its maximum. Then

) (a )2/4 x+z-2 xtz+2 00
[ Blomay = [+ f +f
~00 -00 xtz-2 = xtz+2
xtz-2 -5

e-(x+z-y)2/8

3
<k/f | x+z-y| / loly)|dy
- 00
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xtzt2

00
+ lo(y) |dy + k[
xtz-2 x+z+2

5

5 -
e-(x+z-Y) /8 | xtz-y] /3 le(y) [ dy

00 2
=k f e-v /2 v¢5/3 {[go(x+z+2v)| + |<p(x+z—2v)]} dv
1

xt+z+2

+ [ |o(y) |dy <o .
xtz-2

Hence (Gg)(u) exists for all u . Further from
[2; chap. VIII, §2.2]f=G¢ has derivatives of all orders which
can be obtained by differentiating under the integral sign.
Since from [1; 10.13(7)],

2
at -x /4
— e

dxn

2
- (-1)nz’nr+rn(x/2)e'X /4

it follows that

et f°° e-(X'Y)ZHH ((x-y)/2) g(y)dy
21’1(4‘“_)'1/2 -00 ;

(n)

(2.2) £ (x) =

00 2
- f(n)(x-l—z) =———1——i72 f e-(x—l—z—y) /4Hn((x+z-y)/2)<p(y)dy

2™n! (47) S0

" o 2
-v
= 172 f e Hn(v) o(xtz-2v)dv .
2 ntmw -0
Comparing this last expression with [4; 9.1. 3], we see that the
coefficient of Hn(z/Z) in (1. 6) is equal to the nth Hermite

coefficient of ¢(x+z-2v) . Hence (1.6) is the Hermite expansion,
evaluated at z/2 , of ¢(xtz-2v) . But by [4, Theorem 9.1. 6],
since (2.1) is satisfied the Hermite expansion of ¢@(x+z-2v) ,
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evaluated at z/2, is equiconvergent with

2 1/2
1 f(z+6)/ olxtz-2v) S2(20) / (e/2)-v))g,
T {2-6)/2 (z/2) - v
x+8 : 1/2
i} 11 olt) sin ((n/2) (x-t)) at
ﬂx-é x -t
that is
xt+ 8 . 1/2
Lim  (s_(x,2) -%f olt) sm((n/:‘i - (x=t) 44 0.
n-—> o x-8

. Using Theorem 1 we can derive many sets of conditions
that the series (1. 6) converge to ¢(x). We state some of these

as our next theorem.

THEOREM 2. Suppose ¢ is integrable over every finite

interval, and that

® P2 -2/3
f V2 {lo(xtz+2v)| + |p(xtz-2v) |} dv < o .

1

Then (Gg)(u) exists for all real u, andif f=Gep

S e 0T ) |
(i) T ———— £ (xtz) = {o(x+) + o(x-)}/2
n=0 )
if ¢ is of bounded variation in a neighbourhood of x, and
© (-0°H (2/2)
(ii) = " 77 (xtz) = o(x)
n.
n=0 .
A dt
if for some A >0, [ |p(xtt) + p(x-t) - 2¢(x)]| T <.
0
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Proof. Clearly

00 2
f oV /2 v-5/3

n

{|o(xtz+2v)| + |p(xtz-2v)[} dv

© 2
< ot f oV /2 V‘2/3 {]p(xtz+2v)| + | p(xtz-2v) |} dv = 0(n-1)-
n

Hence by Theorem 1, (Gg)(u) exists and (1.6) is equiconvergent
with

1 fx”s oo bt/ et

x -t

dt .

x-6

But from [5; v.II, chap. XVI, 1.3], [5; v.I, chap. II, 6.1], and
[5; v.I, chap. II, 8.1]

x+6 ) 1/2
[ el sin((n/2) ~ (x-t)) 4,

x -t

|

lim
n - 0o x-0

= (p(xt) + o(x-))/2 or ¢(x)
under precisely the conditions described in (i) and (ii).

_in2
3. Theorem 3 deals with e tD . It should be noticed

that z can depend on t.

THEOREM 3. Suppose ¢ is integrable over every finite
interval, that

) (x+t1/2 )2/8
f e zy le(y)|dy < ® for t0<t<1,

- 00

and that

y
f [e(v) - o(x)]dv = o(y-x) as y > x.
x
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Then
2
-t
lim e D f(x) = @(x)

t—1-

Proof. The existence of (Gg)(u) follows as in Theorem 1.
Suppose t,<t<1. Then from (2.2), and using [1; 10.13(22)]

2 © (-1)"H (2/2)
e-tD flx) = = 1'l'n f(n)(x+t1/2z)tn/2
n=0 )

0 a2 P _(X+t1/zz \ /4 H (z/Z)H ((x+t1/zz-y)/2) n/2
=z (4m) 7 [ e Y - t “oly)dy

n=0 - 00 2 n!

1/2
) i o H (z/2)H ((x+tt ' z-y)/2)
- (4m) 1/2 f (x+t z-y) /4 5 _B nn tn/ch(y)dy
-00 n=0 2 n!

00 2
- (an(1-tn 12 J o~ (xy) /4(1-1) ely)dy ,

-00

providing we justify the interchange of summation and integration.
For this it suffices to show that

u(x, t)

t/2_ |H (z/2) ”H (x+t1/2z-y)/2)|

- 00

- |o(y)|dy <o

n=0 2 n!

But from [1; 10.18(19)] ,

2 © [ 1/2 2
a(x, 1)< Koe® (8 z P2 S E I ) ey

n=0 - 00

2 z /8 o0 1/2 2
k - - 8

= _—eT/'z— T =B ) ay < 0
(1-t ) -0
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and the interchange is justified.

But from [2; chap. VIII, Theorem 7. 2]

0 2
lim (41r(1-t))-1/2 f e Y /4(1-t)¢(y)dv=¢(x)

t—>1- -0
provided

y
J lelv) - e(x)]dv = o(y-x)
x
4. Applications. Various expansions can be deduced from
Theorem 2. For example, it follows from [1; 10.13(30)] that if

o(x) = Hn(ax),~1/2< a<1/2 , then

/2H 2.1/2

(Go)x) = (1-42%)™ % B (ax/(1-42%)11 %) .

Then, since from [1; 10.13(14)],

r (@) nt H___(bx)/(n-7)! , T<n,

d
H (bx) =
r n

dx
0 , r>n,

it follows from Theorem 2 that

H (ax)
n

2(n-x)/2 2.1/2

n
- = (2](—1)r(2a)r(1-4a H (2/2)H__ (a(x+2)/(1-42°) ' %),

r=0

or setting a =(cos ¢)/2, O< o< mw, @p# 7/2,
x =2(s+t tan ¢), z=- 2s

n
n r n-r
i = I ( i t
Hn(s cos ¢ + t sin ¢) Z rJcos @ sin cpHr(S) Hn—r()

52

https://doi.org/10.4153/CMB-1963-007-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1963-007-8

which is a special case of [1; 10. 13(40)], clearly valid now for
0<p< m.

2
Also, from [2; chap. VIII, §2.6] if ¢(x) = e

2
a>-1/4, then (Glp))(x) = (1+4a)”/2e72% /(1142)

Hence, since if b> 0

T 2 2 1/2
o - (_nr br/Z e-bx Hr(b x) ,

theorem two yields, if a> 0,

2

-ax
© 1/2
H (z/2)H ((x+z)(a/(1+4a)) " ) ,
n n n/2

2 00
-1/Ze-a(x+z) /(1+4a) =

= (1+4a) (a/(1+4a))

n!

n=0

a result equivalent to [1; 10.13(22)] .
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