MONOCHROMATIC SOLUTIONS TO EQUATIONS WITH UNIT FRACTIONS

TOM C. BROWN AND VOIJTECH RÖDL

Our main result is that if $G(x_1, \dots, x_n) = 0$ is a system of homogeneous equations such that for every partition of the positive integers into finitely many classes there are distinct y_1, \dots, y_n in one class such that $G(y_1, \dots, y_n) = 0$, then, for every partition of the positive integers into finitely many classes there are distinct z_1, \dots, z_n in one class such that

$$G\left(\frac{1}{z_1}, \cdots, \frac{1}{z_n}\right) = 0.$$

In particular, we show that if the positive integers are split into r classes, then for every $n \ge 2$ there are distinct positive integers x_1, x_1, \dots, x_n in one class such that

$$\frac{1}{x_0}=\frac{1}{x_1}+\cdots+\frac{1}{x_n}.$$

We also show that if $[1, n^6 - (n^2 - n)^2]$ is partitioned into two classes, then some class contains x_0, x_1, \ldots, x_n such that

$$\frac{1}{x_0}=\frac{1}{x_1}+\ldots+\frac{1}{x_n}.$$

(Here, x_0, x_2, \ldots, x_n are not necessarily distinct.)

1. INTRODUCTION

In their monograph [1], Erdös and Graham list a large number of questions concerned with equations with unit fractions. In fact, a whole chapter is devoted to this topic. One of their questions, still open, is the following.

In the positive integers, let

$$H_m = \left\{ \{x_1, \cdots, x_m\} : \sum_{k=1}^m 1/x_k = 1, 0 < x_1 < \cdots < x_m \right\},\$$

Received 29 May 1990 The first author was partially supported by NSERC.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

and let H denote the union of all the H_m , $m \ge 1$. Now arbitrarily split the positive integers into r classes. It is true that some element of H is contained entirely in one class?

In this note we show (Corollary 2.4 below) that if one does not require all the x_k 's to be distinct, but only many of the x_k 's to be distinct, then the answer to the corresponding question is yes. More precisely, we show that if the positive integers are split into r classes, then for every n there exist $m \ge n$ and x_1, \dots, x_m (not necessarily distinct) in one class such that $|\{x_1, \dots, x_m\}| \ge n$ and $\sum_{k=1}^m 1/x_k = 1$.

We actually show (Corollary 2.3 below) something stronger, namely that if the positive integers are split into r classes, then for every $n \ge 2$ there are *distinct* positive integers x_0, x_1, \ldots, x_n in one class such that

$$\frac{1}{x_0}=\frac{1}{x_1}+\cdots\frac{1}{x_n}.$$

(The preceding result then follows by taking x_0 copies of each of x_1, \dots, x_n .)

Our main result (Theorem 2.1) is that if $G(x_1, \dots, x_n) = 0$ is a system of homogeneous equations such that for every partition of the positive integers into finitely many classes there are distinct y_1, \dots, y_n in one class such that $G(y_1, \dots, y_n) = 0$, then, for every partition of the positive integers into finitely many classes there are distinct z_1, \dots, z_n in one class such that

$$G\left(\frac{1}{z_1},\cdots,\frac{1}{z_n}\right)=0.$$

We also prove (Theorem 2.5) the following quantitative result. Let f(n) be the smallest N such that if [1, N] is partitioned into *two* classes, then some class contains x_0, x_1, \ldots, x_n such that $1/x_0 = 1/x_1 + \cdots + 1/x_n$. (Here, x_0, x_1, \ldots, x_n are not necessarily distinct.) Then

$$f(n)\leqslant n^6-\left(n^2-n
ight)^2.$$

2. Results

From now on we shall use the terminology of colourings rather than partitions. That is, instead of "partition into r classes" we say "r-colouring," and instead of "there are distinct y_1, \dots, y_n in one class such that $G(y_1, \dots, y_n) = 0$ " we say "there is a monochromatic solution of $G(y_1, \dots, y_n) = 0$ in distinct y_1, \dots, y_n ".

THEOREM 2.1. Let $G(x_1, \dots, x_n) = 0$ be a system of homogeneous equations such that for every finite colouring of the positive integers there is a monochromatic solution of $G(y_1, \dots, y_n) = 0$ in distinct y_1, \dots, y_n . Then, for every finite colouring of the positive integers there is a monochromatic solution of $G(1/z_1, \dots, 1/z_n) = 0$ in distinct z_1, \dots, z_n

PROOF: Let r be given, and consider a system $G(x_1, \dots, x_n) = 0$ of homogeneous equations such that for every r-colouring of the positive integers there is a monochromatic solution of $G(y_1, \dots, y_n) = 0$ in distinct y_1, \dots, y_n . By a standard compactness argument, there exists a positive integer T such that if [1, T] is r-roloured, there is a monochromatic solution to $G(y_1, \dots, y_n) = 0$ in distinct y_1, \dots, y_n .

Let S denote the least common multiple of $1, 2, \dots, T$. We show that for every r-colouring of [1, S] there is a monochromatic solution of $G(1/z_1, \dots, 1/z_n) = 0$ in distinct z_1, \dots, z_n .

To do this, let

[3]

$$c\colon [1,S] \to [1,r]$$

be an arbitrary r-colouring of [1, S].

Define an r-colouring \overline{c} of [1, T] by setting

$$\overline{c}(x) = c(S/x), 1 \leq x \leq T.$$

By the definition of T, there is a solution of $G(y_1, \dots, y_n) = 0$ in distinct y_1, \dots, y_n such that

$$\overline{c}(y_1) = \overline{c}(y_2) = \cdots = \overline{c}(y_n)$$

By the definition of \overline{c} , this means that

$$c(S/y_1) = c(S/y_2) = \cdots = c(S/y_n).$$

Setting $z_i = S/y_i$, $1 \le i \le n$, we have that z_1, \dots, z_n are distinct, are monochromatic relative to the colouring c of [1, S], and that

$$G\left(\frac{1}{z_1},\cdots,\frac{1}{z_n}\right)=0.$$

Omitting all references to distinctness, one gets the following.

THEOREM 2.1A. Let $G(x_1, \dots, x_n) = 0$ be a system of homogeneous equations such that for every finite colouring of the positive integers there is a monochromatic solution of $G(x_1, \dots, x_n) = 0$. Then, for every finite colouring of the positive integers there is a monochromatic solution of $G(1/z_1, \dots, 1/z_n) = 0$.

COROLLARY 2.2. Let $a_1, \dots, a_m, b_1, \dots, b_n$ be positive integers such that

- (1) some non-empty subset of the a_i 's has the same sum as some non-empty subset of the b_j 's and
- (2) there exist distinct integers $u_1, \dots, u_m, v_1, \dots, v_n$ such that $a_1u_1 + \dots + a_mu_m = b_1v_1 + \dots + b_nv_n$.

Then, given any r-colouring of the positive integers, there is a monochromatic solution of

$$\frac{a_1}{x_1}+\cdots+\frac{a_m}{x_m}=\frac{b_1}{y_1}+\cdots+\frac{b_n}{y_n}$$

in distinct $x_1, \cdots, x_m, y_1, \cdots, y_n$.

PROOF: Let $a_1, \dots, a_m, b_1, \dots, b_n$ satisfy conditions (1) and (2). According to Rado's theorem [3] (also see [2, p.59]), the equation

$$a_1x_1+\cdots+a_mx_m=b_1y_1+\cdots+b_ny_n$$

will always have a monochromatic solution $x_1, \dots, x_m, y_1, \dots, y_n$, for every *r*-colouring of the positive integers, because of condition (1). The additional condition (2) is enough (see [2, p.62 Corollary $8\frac{1}{2}$]) to ensure that the equation

$$a_1x_1+\cdots+a_mx_m=b_1y_1+\cdots+b_ny_n$$

will always have a monochromatic solution $x_1, \dots, x_m, y_1, \dots, y_n$, in distinct $x_1, \dots, x_m, y_1, \dots, y_n$. Theorem 2.1 now applies.

COROLLARY 2.3. Let an arbitrary r-colouring of the positive integers be given. Let n, a be positive integers, with $n \ge 2$ and $1 \le a \le n$. Then the equation

$$\frac{a}{x_0}=\frac{1}{x_1}+\cdots+\frac{1}{x_n}$$

has a monochromatic solution in distinct x_0, x_1, \dots, x_n .

PROOF: This follows immediately from Corollary 2.2.

COROLLARY 2.4. Let an arbitrary *r*-colouring of the positive integers be given. Then for every *n* there exist $m \ge n$ and monochromatic x_1, \dots, x_m (not necessarily distinct) such that $|\{x_1, \dots, x_m\}| \ge n$ and $\sum_{k=1}^m 1/x_k = 1$.

PROOF: Apply Corollary 2.3 (with a = 1) and take x_0 copies of each of x_1, \dots, x_m .

THEOREM 2.5. For each $n \ge 2$, let f(n) be the smallest N such that if [1, N] is partitioned into two classes, then some class contains x_0, x_1, \dots, x_n such that

$$\frac{1}{x_0}=\frac{1}{x_1}+\cdots+\frac{1}{x_n}.$$

(Here, x_0, x_1, \dots, x_n are not necessarily distinct.) Then

$$f(n) \leqslant n^6 - (n^2 - n)^2.$$

Ο

[4]

PROOF: The proof is by contradiction. Fix $n \ge 2$, let $N = n^6 - (n^2 - n)^2$, and suppose throughout the proof that $c: [1, N] \rightarrow \{1, 2\}$ is some fixed 2-colouring of [1, N] for which there does *not* exist any monochromatic solution of

$$\frac{1}{x_0}=\frac{1}{x_1}+\cdots+\frac{1}{x_n}.$$

LEMMA 2.6. (a) If $nx \leq N$ then $c(nx) \neq c(x)$. (b) If $n^2x \leq N$ then $c(n^2x) = c(x)$.

PROOF: Part (a) follows from $1/x = 1/(nx) + \cdots + 1/(nx)$. Part (b) follows from part (a).

LEMMA 2.7. If $n^2(n^2+n-1)x \leq N$, then $c((n^2+n-1)x) \neq c(x)$.

PROOF: This follows from

$$\frac{1}{n^2x} = \frac{1}{(n^2+n-1)x} + (n-1)\frac{1}{n^2(n^2+n-1)x}$$

and Lemma 2.6.

LEMMA 2.8. If $n^2(n^2 - n + 1)x \leq N$, then $c((n^2 - n + 1)x) \neq c(x)$. PROOF: This follows from

$$\frac{1}{(n^2 - n + 1)x} = \frac{1}{n^2 x} + (n - 1)\frac{1}{n^2(n^2 - n + 1)x}$$

and Lemma 2.6.

LEMMA 2.9. If $n^2(n^2 + n - 1)x \leq N$, then c((n + 1)x) = c(x).

PROOF: This follows from

$$\frac{1}{n(n+1)x} = \frac{1}{(n^2+n-1)(n+1)x} + (n-1)\frac{1}{(n^2+n-1)nx},$$

and Lemmas 2.6 and 2.7.

LEMMA 2.10. If
$$n^2(n^2 + n - 1)(n^2 - n + 1)x \le N$$
, then $c(2x) = c(x)$.
PROOF: This follows from

$$\frac{1}{(n^2-n+1)2x} = \frac{1}{(n^2+n-1)2x} + (n-1)\frac{1}{(n^2+n-1)(n^2-n+1)x}$$

and Lemmas 2.7 and 2.8.

Finally, Theorem 2.5 is proved by observing that

$$\frac{1}{2 \cdot 1} = \frac{1}{(n+1) \cdot 1} + (n-1)\frac{1}{2(n+1) \cdot 1}$$

and by Lemmas 2.9 and 2.10, $c(2 \cdot 1) = c((n+1) \cdot 1) = c(2(n+1) \cdot 1) = c(1)$, a contradiction.

Ο

Π

Π

Ο

REMARK. The authors have learned that Hanno Lefmann (Bielefeld) has independently obtained results which include our Theorem 2.1a.

REFERENCES

- [1] P. Erdös and R.L. Graham, Old and new problems and results in combinatorial number theory, L'enseignement mathematique (Universite de Geneve, Geneva, 1980).
- [2] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey theory (John Wiley and Sons, New York, 1980).
- [3] R. Rado, 'Studien zur Kombinatorik', Math. Z. 36 (1933), 424-480.

Department of Mathematics and Statistics Simon Fraser University **Burnaby BC** Canada V5A 1S6

Department of Mathematics and Computer Science **Emory University** Atlanta GA 30322-9998 United States of America

[6]