HYPERGROUP ALGEBRAS AS TOPOLOGICAL ALGEBRAS

S. MAGHSOUDI and J. B. SEOANE-SEPÚLVEDA™

(Received 15 March 2014; accepted 30 April 2014; first published online 13 June 2014)

Abstract

Let K be a locally compact hypergroup endowed with a left Haar measure and let $L^1(K)$ be the usual Lebesgue space of K with respect to the left Haar measure. We investigate some properties of $L^1(K)$ under a locally convex topology β^1 . Among other things, the semireflexivity of $(L^1(K), \beta^1)$ and of sequentially β^1 -continuous functionals is studied. We also show that $(L^1(K), \beta^1)$ with the convolution multiplication is always a complete semitopological algebra, whereas it is a topological algebra if and only if K is compact.

2010 Mathematics subject classification: primary 43A62; secondary 46A70, 43A20, 46H05.

Keywords and phrases: locally compact hypergroup, strict topology, hypergroup algebra, topological algebra.

1. Introduction and preliminaries

Throughout this paper, K will denote a locally compact hypergroup with Jewett's axioms with a fixed left Haar measure m; see [6]. For the sake of completeness and the convenience of the reader, let us recall the definition. A hypergroup K consists of a locally compact Hausdorff space K together with a bilinear, associative, weakly continuous convolution * on the Banach space $M_b(K)$ of all bounded regular complex-valued Borel measures on K with the following properties.

- (1) For all $x, y \in K$, the convolution of the point measures $\varepsilon_x * \varepsilon_y$ is a probability measure with compact support.
- (2) The mapping $K \times K \to C(K)$, $(x, y) \mapsto \text{supp}(\varepsilon_x * \varepsilon_y)$ is continuous with respect to the Michael topology on the space C(K) of all nonvoid compact subsets of K, where this topology is generated by the sets

$$U_{V,W} := \{ L \in C(K) : L \cap V \neq \emptyset, L \subset W \},$$

where V and W are open in K.

(3) There is an identity $e \in K$ with $\varepsilon_x * \varepsilon_e = \varepsilon_e * \varepsilon_x = \varepsilon_x$ for all $x \in K$.

The first author was partially supported by the University of Zanjan, grant 9248. The second author was partially supported by CNPq Grant 401735/2013-3 (PVE – Linha 2).

^{© 2014} Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

(4) There is a continuous involution $x \mapsto \overline{x}$ on K such that $(\varepsilon_x * \varepsilon_y)^- = \varepsilon_{\overline{y}} * \varepsilon_{\overline{x}}$ and $e \in \text{supp}(\varepsilon_x * \varepsilon_y)$ if and only if $x = \overline{y}$ for $x, y \in K$. Here, for $\mu \in M_b(K)$, the measure μ^- is given by $\mu^-(A) = \mu(\overline{A})$ for Borel sets $A \subseteq K$.

A subset A is called symmetric if $A = \overline{A}$. For $A, B \subseteq K$, we define A * B as the set $\cup \{\sup(\varepsilon_x * \varepsilon_y) : x \in A, y \in B\}$. Let us recall [6, Lemma 4.1 B]: for any sets A, B and C, $(A * B) \cap C = \emptyset$ if and only if $B \cap (\overline{A} * C) = \emptyset$. For more details, see also [1] and for other approaches to the notion of hypergroup, see [2, 10]. Locally compact groups and a wide class of locally compact semigroups are elementary examples of hypergroups.

For $p \ge 1$, let $L^p(K) := L^p(K, m)$ be the usual Lebesgue spaces with the norm $\|\cdot\|_p$ as defined in [5]. Recall that the dual of $L^1(K)$ can be identified with $L^\infty(K)$ via the pairing

$$\langle T(f), \varphi \rangle := \int_{K} f(x)\varphi(x) \, dm(x)$$

for all $\varphi \in L^1(K)$ and $f \in L^{\infty}(K)$. We denote by τ_n the topology generated by the norm $\|\cdot\|_1$.

We denote by $L_0^\infty(K)$ the subspace of $L^\infty(K)$ consisting of all functions $f \in L^\infty(K)$ that vanish at infinity; that is, those functions such that, for each $\varepsilon > 0$, there is a compact subset C of K for which $||f\chi_{K\setminus C}||_{\infty} < \varepsilon$, where $\chi_{K\setminus C}$ denotes the characteristic function of $K\setminus C$ on K.

We denote by S the set of increasing sequences of compact subsets of K and by R the set of increasing sequences (a_n) of real numbers in $(0, \infty)$ with $a_n \to \infty$. For any $(C_n) \in S$ and $(a_n) \in R$, set

$$U((C_n), (a_n)) = \{ \varphi \in L^1(K) : ||\varphi \chi_{C_n}||_1 \le a_n, n \in \mathbb{N} \},$$

and note that $U((C_n), (a_n))$ is a convex balanced absorbing set in the space $L^1(K)$. It is easy to see that the family \mathcal{U} of all sets $U((C_n), (a_n))$, for $(C_n) \in \mathcal{S}$ and $(a_n) \in \mathcal{R}$, is a base of neighbourhoods of zero for a locally convex topology on $L^1(K)$. This topology has been introduced and denoted by β^1 in [18] and [3] for locally compact groups and hypergroups, respectively. For a similar recent study in other contexts, see [11–13].

We shall also need the definition of strict topology in the general setting. Let $(V, \|\cdot\|)$ be a Banach left A-module, where A is a Banach algebra with a bounded approximate identity. The strict topology β on V induced by A is defined as the locally convex topology on V generated by the family of seminorms $\mathcal{P}_a(v) = \|a \cdot v\|$ ($a \in A, v \in V$); for more details, see [15]. The strict topology for Banach modules has been studied extensively by Grosser [4]; see also [7–9] and [16, 17].

Recently, it was shown [11] that the β^1 -topology can be viewed as a type of generalised strict topology in the sense of Sentilles and Taylor [15]. To this end, we consider the Banach space $L^1(K)$ as a Banach left $B_0(K)$ -module, where the module action is the natural pointwise product of functions. Here $B_0(K)$ stands for the Banach algebra of all bounded Borel measurable functions on K vanishing at infinity under a pointwise product of functions. Then $L^1(K)$ is an essential $B_0(K)$ -module (see [11] for more details).

Our contribution in this paper is to present some new properties of the topology β^1 for the more general setting of the Lebesgue space on a locally compact hypergroup. In particular, we show that $(L^1(K), \beta^1)$ with the convolution multiplication is always a semitopological algebra, whereas the convolution operator from $(L^1(K), \beta^1) \times (L^1(K), \beta^1)$ into $(L^1(K), \beta^1)$ is hypocontinuous if and only if K is compact. We also show that $(L^1(K), \beta^1)$ is a Mazur space.

2. Main results

Throughout this work, let K denote a locally compact hypergroup with a fixed left Haar measure m. We begin with the following result in which we collect some properties of the topology β^1 that we believe are interesting (for the proofs in a more general setting, we refer the reader to [11]).

Proposition 2.1. Let K be a locally compact hypergroup. Then the following hold.

- (i) The topology β^1 on $L^1(K)$ is the strict topology β induced by $B_0(K)$ on the Banach left $B_0(K)$ -module $L^1(K)$.
- (ii) The dual of $(L^1(K), \beta^1)$ under the strong topology can be identified with the Banach space $L_0^{\infty}(K)$.
- (iii) The space $(L^1(K), \beta^1)$ is metrisable if and only if K is compact.
- (iv) The space $(L^1(K), \beta^1)$ is complete.
- (v) A sequence (φ_n) in $L^1(K)$ is β^1 -convergent to zero if and only if it is τ_n -bounded and $(\int_C \varphi_n dm)$ tends to zero for all compact subsets C.

We shall need the following lemma for the forthcoming proposition.

Lemma 2.2. Let K be a noncompact locally compact hypergroup. Then there exists a sequence (U_n) of mutually disjoint compact neighbourhoods such that for every compact subset K, $K \cap U_n = \emptyset$ for sufficiently large n.

PROOF. Let V be a compact neighbourhood of the identity element of K. Since K is not compact, we can choose a sequence (x_n) in K such that $x_n * V \cap x_m * V = \emptyset$ for $n \neq m$. Indeed, suppose that x_1, \ldots, x_{n-1} have been chosen as above. Now $\bigcup \{x_k * V * \overline{V} : 1 \leq k \leq n-1\}$ is compact. Hence, there exists x_n with $x_n \notin \bigcup \{x_k * V * \overline{V} : 1 \leq k \leq n-1\}$. It follows from [6, Lemma 4.1 B] that $x_n * V \cap \bigcup_{k=1}^{n-1} x_k * V = \emptyset$.

Now, if there is a compact subset C with $C \cap x_n * V \neq \emptyset$ for all n, another application of [6, Lemma 4.1 B] implies that $\bigcup_{n=1}^{\infty} x_n * V \subseteq \overline{V} * C * V$. This is a contradiction, because $m(\bigcup_{n=1}^{\infty} x_n * V) = \infty$, whereas $\overline{V} * C * V$ is a compact set and $m(\overline{V} * C * V) < \infty$.

Proposition 2.3. Let K be a locally compact hypergroup. Then β^1 -convergence and τ_n -convergence coincide for sequences in $L^1(K)$ if and only if K is compact.

PROOF. Assume that K is not compact and, for $n \ge 1$, let $\varphi_n = \chi_{U_n}$, where (U_n) is the sequence from Lemma 2.2. Then, by Proposition 2.1(v), it is clear that $\varphi_n \to 0$ in

the β^1 -topology, while it does not converge in τ_n . The converse is clear, because if K is compact, then $\beta^1 = \tau_n$.

PROPOSITION 2.4. Let K be a locally compact hypergroup. Then $(L^1(K), \beta^1)$ is a Mazur space; that is, every sequentially β^1 -continuous linear functional on $L^1(K)$ is β^1 -continuous.

PROOF. Let F be a sequentially β^1 -continuous linear functional on $L^1(K)$. Hence, by Proposition 2.1(ii), there is a $g \in (L^1(K), \|\cdot\|_1)^* = L^\infty(K)$ such that $F(\varphi) = \int_K \varphi(x)g(x)\,dm(x)$ for all $\varphi \in L^1(K)$. Therefore, the proof would be complete once we show that $g \in L_0^\infty(K)$. Assume on the contrary that $g \notin L_0^\infty(K)$. Then there would exist a number $\epsilon_0 > 0$ and, by the regularity of m, an increasing sequence (K_n) of relatively compact open subsets of K and a number $\epsilon_0 > 0$ such that $\|g\chi_{K_n}\|_{\infty} > \epsilon_0$ for all n. It follows that there is a sequence (φ_n) in $L^1(K)$ such that, for all n,

$$\|\varphi_n\|_1 \le 1$$
 and $\left| \int_{K_n} \varphi_n(x) g(x) \, dm(x) \right| > \epsilon_0.$ (2.1)

Define $\psi_n(x) = \varphi_n(x)\chi_{K_n}(x)$ for $n \ge 1$ and all $x \in K$. Now, by Proposition 2.1(v), the sequence (ψ_n) converges in the β^1 -topology to zero. But this contradicts (2.1). It follows that $g \in L_0^{\infty}(K)$.

We recall that a locally convex space (E, τ) is called *semireflexive* if $(E, \tau)^{**} = E$. In the next result, we deal with the semireflexivity of $(L^1(K), \beta^1)$.

PROPOSITION 2.5. Let K be a locally compact hypergroup. Then $(L^1(K), \beta^1)$ is semireflexive if and only if K is discrete.

PROOF. Suppose that K is discrete. By [6, Theorem 7.1 A], $m(\{x\}) = 1/(\varepsilon_{\overline{x}} * \varepsilon_x)(\{e\})$ for all $x \in K$ and hence $L^1(K)$ can be identified with the space $\ell^1(K)$ of all complex-valued functions on K such that $\sum_{x \in K} |\varphi(x)| < \infty$. In view of Proposition 2.1(ii), the dual of $(\ell^1(K), \beta^1)$ equipped with the strong topology can be identified with the Banach space $\ell_0^\infty(K)$ equipped with the $\|\cdot\|_\infty$ -topology, where $\ell_0^\infty(K)$ denotes the space of all complex-valued functions f on K such that f is bounded and vanishing at infinity. Furthermore, $\ell_0^\infty(K)^*$ can be identified with $\ell^1(K)$. Thus, $(\ell^1(K), \beta^1)^{**} = \ell^1(K)$.

To prove the converse, note that ε_e , the Dirac measure at the identity of K, defines a bounded linear functional on $C_c(K)$, the space of continuous functions with compact support. Choose an extension u of ε_e to an element of $L_0^\infty(K)^*$ by the Hahn–Banach theorem. The assumption together with Proposition 2.1(ii) imply that $u = T^*(\varphi)$ for some $\varphi \in L^1(K)$, where T^* is the adjoint of the natural isometric isomorphism between $(L^1(K), \|\cdot\|_1)^*$ and the Banach space $L^\infty(K)$. In particular, for each $\psi \in C_c(K)$,

$$\langle \varepsilon_e, \psi \rangle = \langle u, \psi \rangle = \langle \varphi, T(\psi) \rangle = \int_K \varphi \psi \, dm.$$

It follows that ε_e is absolutely continuous with respect to m and hence $m(\{e\}) > 0$. By [1, Theorem 1.3.27], we conclude that K is discrete.

Let us recall some needed notation and definitions. For Borel functions φ and ψ , at least one of which is σ -finite, define the convolution $\varphi * \psi$ on K by

$$(\varphi * \psi)(x) = \int_{K} \varphi(y)\psi(\overline{y} * x) \, dm(y),$$

where

$$\varphi(x * y) = \int_K \varphi \, d(\varepsilon_x * \varepsilon_y).$$

Also recall that the Mackey topology $\mu_0 := \mu(L^1(K), L_0^{\infty}(K))$ on $L^1(K)$ is the topology of uniform convergence on absolutely convex weak* compact subsets of $L_0^{\infty}(K)$. We also denote the weak topology $\sigma(L^1(K), L_0^{\infty}(K))$ on $L^1(K)$ by σ_0 .

Lemma 2.6. Let K be a locally compact hypergroup. The following statements hold.

- (i) For any $f \in L_0^{\infty}(K)$ and $\varphi \in L^1(K)$, $f\varphi \in L_0^{\infty}(K)$, where $f\varphi$ is defined on $L^1(K)$ by $\langle f\varphi, \psi \rangle = \langle f, \varphi * \psi \rangle$ $(\psi \in L^1(K))$.
- (ii) The convolution on $L^1(K)$ is separately continuous with respect to the weak topology σ_0 and the Mackey topology μ_0 .

PROOF. (i) Let $\varphi \in L^1(K)$ and $f \in L_0^\infty(K)$. First, note that $f\varphi \in (L^1(K), \|\cdot\|_1)^*$ and thus $f\varphi \in L^\infty(K)$. Also,

$$f\varphi(x) = \int_{K} f(y * x)\varphi(y) \, dm(y)$$

for almost all $x \in K$; indeed, since

$$\int_{K} (f\varphi)(x)\psi(x) \, dm(x) = \langle f\varphi, \psi \rangle = \langle f, \varphi * \psi \rangle$$

$$= \int_{K} \int_{K} \varphi(y) f(x) \psi(\overline{y} * x) \, dm(x) \, dm(y)$$

$$= \int_{K} \int_{K} \varphi(y) f(y * x) \psi(x) \, dm(y) \, dm(x).$$

Now, for a given $\varepsilon > 0$, let D be a compact subset of K with $\int_{K \setminus D} |\varphi(x)| \, dm(x) < \varepsilon$ and also let C be a compact subset of K with $|f(t)| < \varepsilon$ for almost all $t \in K \setminus C$. Then, for each $x \in K \setminus \overline{D} * C$, we get $D * x \subseteq K \setminus C$. Observing that $\sup(\varepsilon_x * \varepsilon_y) \subseteq K \setminus C$ for $x \in K \setminus \overline{D} * C$ and $y \in D$, we therefore have

$$\left| \int_{K} f(y * x) \varphi(y) \, dm(y) \right| \leq \int_{K \setminus D} |f(y * x)| |\varphi(y)| \, dm(y) + \int_{D} |f(y * x)| |\varphi(y)| \, dm(y)$$
$$\leq \varepsilon \left(||f||_{\infty} + ||\varphi||_{1} \right).$$

That is, $|(f\varphi)(x)| < \varepsilon (||f||_{\infty} + ||\varphi||_{1})$ for almost all $x \in K \setminus \overline{D} * C$. Since $\overline{D} * C$ is compact, this means that $f\varphi$ vanishes at infinity and so $f\varphi \in L_{0}^{\infty}(K)$.

(ii) The σ_0 -separate continuity of the convolution follows from (i). The μ_0 -separate continuity of the convolution is an easy consequence of the σ_0 -separate continuity; see for example [19, Corollary 26.15].

In the next result, we prove that the convolution is also separately β^1 -continuous. This generalises [12, Theorem 4.1] and gives for it a proof with a corrected base.

THEOREM 2.7. Let K be a locally compact hypergroup. Then $(L^1(K), \beta^1)$ with the convolution product is a semitopological algebra.

PROOF. Let us recall [14, Corollary 2.5] that a linear map from $(L^1(K), \beta^1)$ into a locally convex space is continuous if and only if its restriction to τ_n -bounded sets is continuous for β^1 . So, we only need to show that the convolution on $L^1(K)$ is β^1 -separately continuous on τ_n -bounded sets. It is well known that the Banach algebra $L^1(K)$ can be embedded isometrically isomorphically in $M_b(K)$ by means of the map $\varphi \mapsto \varphi m$, $\varphi \in L^1(K)$; see for example [6]. So, let (μ_α) be a norm-bounded net in $L^1(K) \subset M_b(K)$ convergent to zero in the β^1 -topology. Let $v \in L^1(K) \subset M_b(K)$ with $||v|| \neq 0$ and let $U((C_n), (a_n))$ be an arbitrary β^1 -neighbourhood of zero.

Choose a compact set $C \subseteq K$ such that

$$|\nu|(K\setminus C)<\frac{a_1}{2M},$$

where M > 0 is such that $||\mu_{\alpha}|| \le M$ for all α . Now, if we put

$$F_n := C_n * \overline{C}$$
 and $b_n := \frac{a_n}{2||\nu||}$,

then $((F_n), (b_n)) \in S \times R$ and so there is an α_0 such that $\mu_\alpha \in U((F_n), (b_n))$ for all $\alpha \geq \alpha_0$.

Now, using [1, Lemmas 1.2.21 and 1.2.14], we can write (for all $\alpha \ge \alpha_0$)

$$\begin{split} |\mu_{\alpha} * \nu|(C_n) &\leq \int_K |(\mu_{\alpha} * \varepsilon_t)(C_n)| \, d|\nu|(t) \\ &\leq \int_K |\mu_{\alpha}|(C_n * \bar{t}) \, d|\nu|(t) \\ &= \int_C |\mu_{\alpha}|(C_n * \bar{t}) \, d|\nu|(t) + \int_{K \setminus C} |\mu_{\alpha}|(C_n * \bar{t}) \, d|\nu|(t) \\ &\leq |\mu_{\alpha}|(F_n) \int_C d|\nu|(t) + M \int_{K \setminus C} d|\nu|(t) \\ &\leq b_n ||\nu|| + M \bigg(\frac{a_1}{2M}\bigg) \\ &\leq \frac{a_n}{2} + \frac{a_n}{2} = a_n. \end{split}$$

Hence, $\mu_{\alpha} * \nu \longrightarrow 0$ in the β^1 -topology.

Recall from [6] that the modular function Δ is defined on K by the identity

$$m * \varepsilon_{\overline{x}} = \Delta(x)m$$
.

It is known that Δ is a continuous homomorphism from K into the multiplicative group of positive real numbers.

For the next result, we need a slightly stronger version of [18, Remark 1(iv)].

LEMMA 2.8. Let K be a noncompact locally compact hypergroup, V a compact neighbourhood of the identity element and (C_n) an increasing sequence of compact subsets in K. Then there are a sequence (x_n) in K and an increasing sequence (K_n) of compact subsets such that $V * \overline{x_n} \subseteq K_n \setminus K_{n-1}$ and $C_n \subseteq K_n$, where $K_0 = \emptyset$. Moreover, if K is not unimodular, we can assume that $\Delta(x_n) > 1$ for all $n \ge 1$.

PROOF. Let $K_0 = \emptyset$ and $K_1 = C_1 \cup V * \overline{x_1}$, where $x_1 \in K$ is arbitrary and, if K is nonunimodular, we choose x_1 with $\Delta(x_1) > 1$. Since K is not compact, by [6, Lemma 4.1 B], we can choose x_2 such that $V * \overline{x_2} \cap K_1 = \emptyset$ and, if K is nonunimodular, we choose x_2 with $\Delta(x_2) > 1$. Then let $K_2 = C_2 \cup V * \overline{x_1} \cup V * \overline{x_2}$. Proceeding by induction, when x_1, \ldots, x_{n-1} and K_0, \ldots, K_{n-1} have been defined, let x_n be any element such that $V * \overline{x_n} \cap K_{n-1} = \emptyset$ and, if K is nonunimodular, we can choose x_n with $\Delta(x_n) > 1$. Now put $K_n = C_n \cup V * \overline{x_1} \cdots \cup V * \overline{x_n}$; then clearly (x_n) and (K_n) have the desired properties.

We conclude this paper with the following result.

THEOREM 2.9. Let K be a locally compact hypergroup. Then the convolution operator from $(L^1(K), \beta^1) \times (L^1(K), \beta^1)$ into $(L^1(K), \sigma_0)$ is hypocontinuous if and only if K is compact. In particular, $(L^1(K), \beta^1)$ with the convolution product is a topological algebra if and only if K is compact.

PROOF. The 'if' part is clear. For the converse, assume that K is not compact and consider any β^1 -neighbourhood $U((C_n), (a_n))$ and a compact symmetric neighbourhood V of the identity element in K with $m(V) \le 1$. For any $i \in \mathbb{N}$, we put $\varphi_i = a_i \Delta(x_i) \chi_{V * \overline{x_i}}$ and $\psi_i = \chi_{\overline{x_i} * V}$, where (x_i) is as in Lemma 2.8. Then each φ_i is in $U((K_n), (a_n)) \subset U((C_n), (a_n))$ and each ψ_i belongs to B, the closed unit ball of $L^1(K)$. But it is readily seen that $\|(\varphi_i * \psi_i) \chi_{V * V}\|_1 \ge a_i \Delta(x_i) m(V)^2$, so

$$U((C_n),(a_n))*B \nsubseteq \Big\{\phi \in L^1(K): \left| \int_K \phi(x)\chi_{V*V}(x) \, dm(x) \right| < 1 \Big\}.$$

This completes the proof.

Acknowledgement

The authors express their gratitude to the anonymous referee for a careful reading of the paper and insightful remarks.

References

- [1] W. R. Bloom and H. Heyer, *Harmonic Analysis of Probability Measures on Hypergroups*, De Gruyter Studies in Mathematics, 20 (Walter de Gruyter, Berlin, 1995).
- [2] C. F. Dunkl, 'The measure algebra of a locally compact hypergroup', Trans. Amer. Math. Soc. 179 (1973), 331–348.
- [3] A. Ghaffari, 'Convolution operators on the dual of hypergroup algebras', *Comment. Math. Univ. Carolin.* **44** (2003), 669–679.
- [4] M. Grosser, *Bidualräume und Vervollständigungen von Banachmoduln*, Lecture Notes in Mathematics, 717 (Springer, Berlin, 1979).

- [5] E. Hewitt and K. Stromberg, Real and Abstract Analysis (Springer, New York, 1975).
- [6] R. I. Jewett, 'Spaces with an abstract convolution of measures', Adv. Math. 18 (1975), 1–101.
- [7] L. A. Khan, 'Topological modules of continuous homomorphisms', J. Math. Anal. Appl. 343 (2008), 141–150.
- [8] L. A. Khan, 'The general strict topology on topological modules', in: Function Spaces, Contemporary Mathematics, 435 (American Mathematical Society, Providence, RI, 2007), 253–263
- [9] L. A. Khan, N. Mohammad and A. B. Thaheem, 'The strict topology on topological algebras', *Demonstratio Math.* 38 (2005), 883–894.
- [10] G. L. Litvinov, 'Hypergroups and hypergroup algebras', J. Sov. Math. 38 (1987), 1734–1761.
- [11] S. Maghsoudi, 'The space of vector-valued integrable functions under certain locally convex topologies', Math. Nachr. 286 (2013), 260–271.
- [12] S. Maghsoudi and R. Nasr-Isfahani, 'Strict topology as a mixed topology on Lebesgue spaces', Bull. Aust. Math. Soc. 84 (2011), 504–515.
- [13] S. Maghsoudi, R. Nasr-Isfahani and A. Rejali, 'The dual of semigroup algebras with certain locally convex topologies', Semigroup Forum 73 (2006), 367–376.
- [14] F. D. Sentilles, 'The strict topology on bounded sets', Pacific J. Math. 34 (1970), 529–540.
- [15] F. D. Sentilles and D. Taylor, 'Factorization in Banach algebras and the general strict topology', Trans. Amer. Math. Soc. 142 (1969), 141–152.
- [16] K. V. Shantha, 'The general strict topology in locally convex modules over locally convex algebras II', *Ital. J. Pure Appl. Math.* 17 (2005), 21–32.
- [17] K. V. Shantha, 'The general strict topology in locally convex modules over locally convex algebras I', *Ital. J. Pure Appl. Math.* 16 (2004), 211–226.
- [18] A. I. Singh, 'L₀[∞](G)* as the second dual of the group algebra L¹(G) with a locally convex topology', Michigan Math. J. 46 (1999), 143–150.
- [19] C. Swartz, An Introduction to Functional Analysis, Pure and Applied Mathematics, 157 (Marcel Dekker, New York, 1992).

S. MAGHSOUDI, Department of Mathematics,

University of Zanjan,

Zanjan 45195-313, Iran

e-mail: s_maghsodi@znu.ac.ir

J. B. SEOANE-SEPÚLVEDA, Departamento de Análisis Matemático,

Facultad de Ciencias Matemáticas,

Universidad Complutense de Madrid,

Plaza de Ciencias 3,

Madrid 28040, Spain

e-mail: jseoane@mat.ucm.es