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A Brief Overview of Time Series and Stochastic
Processes

This chapter serves as a brief introduction to time series to readers unfamiliar with this topic.
Knowledgeable readers may want to jump directly to Chapter 2, where the basics of long-
range dependence and self-similarity are introduced. A number of references for the material
of this chapter can be found in Section 1.6, below.

1.1 Stochastic Processes and Time Series

A stochastic processes {X (t)}t∈T is a collection of random variables X (t) on some proba-
bility space (�,F ,P), indexed by the time parameter t ∈ T . In “discrete time,” we typically
choose for T ,

Z = {. . . ,−1, 0, 1, . . .}, Z+ = {0, 1, . . .}, {1, 2, . . . , N }, . . . ,
and denote t by n. In “continuous time,” we will often choose for T ,

R, R+ = [0,∞), [0, N ], . . . .
In some instances in this volume, the parameter space T will be a subset of Rq , q ≥ 1,
and/or X (t) will be a vector with values in Rp, p ≥ 1. But for the sake of simplicity, we
suppose in this chapter that p and q equal 1. We also suppose that X (t) is real-valued.

One way to think of a stochastic process is through its law. The law of a stochastic process
{X (t)}t∈T is characterized by its finite-dimensional distributions (fdd, in short); that is, the
probability distributions

P(X (t1) ≤ x1, . . . , X (tn) ≤ xn), ti ∈ T, xi ∈ R, n ≥ 1,

of the random vectors (
X (t1), . . . , X (tn)

)′
, ti ∈ T, n ≥ 1.

Here, the prime indicates transpose, and all vectors are column vectors throughout. Thus,
the finite-dimensional distributions of a stochastic process fully characterize its law and, in
particular, the dependence structure of the stochastic process. In order to check that two
stochastic processes have the same law, it is therefore sufficient to verify that their finite-
dimensional distributions are identical. Equality and convergence in distribution is denoted

by
d= and

d→ respectively. Thus {X (t)}t∈T
d= {Y (t)}t∈T means

P(X (t1) ≤ x1, . . . , X (tn) ≤ xn) = P(Y (t1) ≤ x1, . . . , Y (tn) ≤ xn), ti ∈ T, xi ∈ R, n ≥ 1.
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2 A Brief Overview of Time Series and Stochastic Processes

A tilde ∼ indicates equality in distribution: for example, we write X ∼ N (μ, σ 2) if X is
Gaussian with mean μ and variance σ 2.

A stochastic process is often called a time series, particularly when it is in discrete time
and the focus is on its mean and covariance functions.

1.1.1 Gaussian Stochastic Processes

A stochastic process {X (t)}t∈T is Gaussian if one of the following equivalent conditions
holds:

(i) The finite-dimensional distributions Z = (X (t1), . . . , X (tn))′ are multivariate Gaussian
N (b, A) with mean b = EZ and covariance matrix A = E(Z − EZ)(Z − EZ)′;

(ii) a1 X (t1)+ · · · + an X (tn) is a Gaussian random variable for any ai ∈ R, ti ∈ T ;
(iii) In the case when EX (t) = 0, for any ai ∈ R, ti ∈ T ,

E exp {i(a1 X (t1)+ · · · + an X (tn))} = exp
{
− 1

2
E(a1 X (t1)+ · · · + an X (tn))

2
}

= exp
{
− 1

2

n∑
i, j=1

ai a j EX (ti )X (t j )
}
. (1.1.1)

The law of a Gaussian stochastic process with zero mean is determined by a covariance
function Cov(X (t), X (s)) = EX (t)X (s), s, t ∈ T . When the mean is not zero, the covari-
ance function is defined as Cov(X (t), X (s)) = E

(
X (t)−EX (t)

)(
X (s)−EX (s)

)
, s, t ∈ T .

Together with the mean function EX (t), t ∈ T , the covariance determines the law of the
Gaussian stochastic process.

Example 1.1.1 (Brownian motion) Brownian motion (or Wiener process) is a Gaussian
stochastic process {X (t)}t≥0 with1

EX (t) = 0, EX (t)X (s) = σ 2 min{t, s}, t, s ≥ 0, σ > 0, (1.1.2)

or, equivalently, it is a Gaussian stochastic process with independent increments X (tk) −
X (tk−1), k = 1, . . . , n, with t0 ≤ t1 ≤ · · · ≤ tn such that X (t) − X (s) ∼ σN (0, t − s),
t ≥ s > 0. Brownian motion is often denoted B(t) or W (t). Brownian motion {B(t)}t∈R on
the real line is defined as B(t) = B1(t), t ≥ 0, and B(t) = B2(−t), t < 0, where B1 and B2

are two independent Brownian motions on the half line.

Example 1.1.2 (Ornstein–Uhlenbeck process) The Ornstein–Uhlenbeck (OU) process is a
Gaussian stochastic process {X (t)}t∈R with

EX (t) = 0, EX (t)X (s) = σ 2

2λ
e−λ(t−s), t > s, (1.1.3)

1 One imposes, sometimes, the additional condition that the process has continuous paths; but we consider here
only the finite-dimensional distributions.
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Figure 1.1 If the process has stationary increments, then, in particular, the
increments taken over the bold intervals have the same distributions.

where λ > 0, σ > 0 are two parameters. The OU process is the only Gaussian stationary
Markov process. It satisfies the Langevin stochastic differential equation

d X (t) = −λX (t)dt + σdW (t),

where {W (t)} is a Wiener process. The term −λX (t)dt in the equation above adds a drift
towards the origin.

1.1.2 Stationarity (of Increments)

A stochastic process {X (t)}t∈T is (strictly) stationary if T = R or Z or R+ or Z+, and for
any h ∈ T ,

{X (t)}t∈T
d= {X (t + h)}t∈T . (1.1.4)

A stochastic process {X (t)}t∈T is said to have (strictly) stationary increments if T = R or
Z or R+ or Z+, and for any h ∈ T ,

{X (t + h)− X (h)}t∈T
d= {X (t)− X (0)}t∈T . (1.1.5)

See Figure 1.1.

Example 1.1.3 (The OU process) The OU process in Example 1.1.2 is strictly stationary.
Its finite-dimensional distributions are determined, for t > s, by

EX (t)X (s) = σ 2

2λ
e−λ(t−s) = σ 2

2λ
e−λ((t+h)−(s+h)) = EX (t + h)X (s + h).

Thus, the law of the OU process is the same when shifted by h ∈ R.

An example of a stochastic process with (strictly) stationary increments is Brownian
motion in Example 1.1.1.

There is an obvious connection between stationarity and stationarity of increments. If
T = Z and {Xt }t∈Z has (strictly) stationary increments, then �Xt = Xt − Xt−1, t ∈ Z, is
(strictly) stationary. Indeed, for any h ∈ Z,

{�Xt+h}t∈Z = {Xt+h − Xt+h−1}t∈Z = {Xt+h − Xh − (Xt+h−1 − Xh)}t∈Z

d= {Xt − X0 − (Xt−1 − X0)}t∈Z = {Xt − Xt−1}t∈Z = {�Xt }t∈Z.

Conversely, if {Yt }t∈Z is (strictly) stationary, then Xt = ∑t
k=1 Yk can be seen easily to have

(strictly) stationary increments.
If T = R, then the difference operator � is replaced by the derivative when it exists and

the sum is replaced by an integral.
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4 A Brief Overview of Time Series and Stochastic Processes

1.1.3 Weak or Second-Order Stationarity (of Increments)

The probabilistic properties of (strictly) stationary processes do not change with time. In
some circumstances, such as modeling, this is sometimes too strong a requirement. Instead
of focusing on all probabilistic properties, one often requires instead that only second-
order properties do not change with time. This leads to the following definition of (weak)
stationarity.

A stochastic process {X (t)}t∈T is (weakly or second-order) stationary if T = R or Z and
for any t, s ∈ T ,

EX (t) = EX (0), Cov(X (t), X (s)) = Cov(X (t − s), X (0)). (1.1.6)

The time difference t − s above is called the time lag. Weakly stationary processes are often
called time series. Note that for Gaussian processes, weak stationarity is the same as strong
stationarity. This, however, is not the case in general.

1.2 Time Domain Perspective

Consider a (weakly) stationary time series X = {Xn}n∈Z. In the time domain, one focuses
on the functions

γX (h) = Cov(Xh, X0) = Cov(Xn+h, Xn), ρX (h) = γX (h)

γX (0)
, h, n ∈ Z, (1.2.1)

called the autocovariance function (ACVF, in short) and autocorrelation function (ACF, in
short) of the series X , respectively. ACVF and ACF are measures of dependence in time
series. Sample counterparts of ACVF and ACF are the functions

γ̂X (h) = 1

N

N−|h|∑
n=1

(Xn+|h| − X)(Xn − X), ρ̂X (h) = γ̂X (h)

γ̂X (0)
, |h| ≤ N − 1,

where X = 1
N

∑N
n=1 Xn is the sample mean. The following are basic properties of the

ACF:

● Symmetry: ρX (h) = ρX (−h), h ∈ Z.
● Range: |ρX (h)| ≤ 1, h ∈ Z.
● Interpretation: ρX (h) close to −1, 0 and 1 correspond to strong negative, weak and strong

positive correlations, respectively, of the time series X at lag h.

Statistical properties of the sample AVCF and ACF are delicate, for example, ρ̂(h) and
ρ̂(h − 1) have a nontrivial (asymptotic) dependence structure.

1.2.1 Representations in the Time Domain

“Representing” a stochastic process is expressing it in terms of simpler processes. The
following examples involve representations in the time domain.

Example 1.2.1 (White Noise) A time series Xn = Zn , n ∈ Z, is called a White Noise,
denoted {Zn} ∼ WN(0, σ 2

Z ), if EZn = 0 and
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1.2 Time Domain Perspective 5

γZ (h) =
{
σ 2

Z , h = 0,
0, h �= 0,

ρZ (h) =
{

1, h = 0,
0, h �= 0.

Example 1.2.2 (MA(1) series) A time series {Xn}n∈Z is called a Moving Average of order
one (MA(1) for short) if it is given by

Xn = Zn + θ Zn−1, n ∈ Z,

where {Zn} ∼ WN(0, σ 2
Z ). Observe that

γX (h) = EXh X0 = E
(
Zh + θ Zh−1

)(
Z0 + θ Z−1

) =
⎧⎨⎩
σ 2

Z (1 + θ2), h = 0,
σ 2

Zθ, h = 1,
0, h ≥ 2,

and hence

ρX (h) =
⎧⎨⎩

1, h = 0,
θ

1+θ2 , h = 1,
0, h ≥ 2.

Example 1.2.3 (AR(1) series) A (weakly) stationary time series {Xn}n∈Z is called
Autoregressive of order one (AR(1) for short) if it satisfies the AR(1) equation

Xn = ϕXn−1 + Zn, n ∈ Z,

where {Zn} ∼ WN(0, σ 2
Z ). To see that AR(1) time series exists at least for some values of

ϕ, suppose that |ϕ| < 1. Then, we expect that

Xn = ϕ2 Xn−2 + ϕZn−1 + Zn

= ϕm Xn−m + ϕm−1 Zn−(m−1) + · · · + Zn =
∞∑

m=0

ϕm Zn−m .

The time series {Xn}n∈Z above is well-defined in the L2(�)–sense2 because

E

( n2∑
m=n1

ϕm Zn−m

)2 =
n2∑

m=n1

ϕ2mσ 2
Z → 0, as n1, n2 → ∞,

for |ϕ| < 1. One can easily see that it satisfies the AR(1) equation and is (weakly) stationary.
Hence, the time series {Xn}n∈Z is AR(1).

When |ϕ| > 1, AR(1) time series is obtained by reversing the AR(1) equation as

Xn = ϕ−1 Xn+1 − ϕ−1 Zn+1, n ∈ Z,

and performing similar substitutions as above to obtain

2 A random variable is well-defined in the L2(�)–sense if E|X |2 <∞. A series
∑∞

n=1 Xn is well-defined in the

L2(�)–sense if
∑N

n=1 Xn converges in L2(�)–sense as N → ∞, that is, E|∑N2
n=N1

Xn |2 → 0 as
N1, N2 → ∞.
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6 A Brief Overview of Time Series and Stochastic Processes

Xn = ϕ−1 Xn+1 − ϕ−1 Zn+1

= ϕ−2 Xn+2 − ϕ−2 Zn+2 − ϕ−1 Zn+1 = −
∞∑

m=0

ϕ−(m+1)Zn+m+1.

When |ϕ| = 1, there is no (weakly) stationary solution to the AR(1) equation. When
ϕ = 1, the AR(1) equation becomes Xn − Xn−1 = Zn and the non-stationary (in fact,
stationary increment) time series satisfying this equation is called Integrated of order one
(I(1) for short). When Zn are i.i.d., this time series is known as a random walk.

For |ϕ| < 1, for example, observe that for h ≥ 0,

γX (h) = EXh X0 = E
(
Zh + · · · + ϕh Z0 + ϕh+1 Z−1 + · · · )(Z0 + ϕZ−1 + · · · )

= σ 2
Z (ϕ

h + ϕh+2 + ϕh+4 + · · · ) = σ 2
Z
ϕh

1 − ϕ2

and hence, since ρX (−h) = ρX (h), we get for h ∈ Z,

ρX (h) = ϕ|h|.

Example 1.2.4 (ARMA (p,q) series) A (weakly) stationary time series {Xn}n∈Z is called
Autoregressive moving average of orders p and q (ARMA(p, q), for short) if it satisfies the
equation

Xn − ϕ1 Xn−1 − · · · − ϕp Xn−p = Zn + θ1 Zn−1 + · · · + θq Zn−q ,

where {Zn} ∼ WN(0, σ 2
Z ).

ARMA(p, q) time series exists if the so-called characteristic polynomial 1− ϕ1z − · · · −
ϕpz p = 0 does not have root on the unit circle {z : |z| = 1}. This is consistent with the
AR(1) equation discussed above where the root z = 1/ϕ1 of the polynomial 1 − ϕ1z = 0 is
on the unit circle when |ϕ1| = 1.

Example 1.2.5 (Linear time series) A time series is called linear if it can be written as

Xn =
∞∑

k=−∞
ak Zn−k, (1.2.2)

where {Zn} ∼ WN(0, σ 2
Z ) and

∑∞
k=−∞ |ak |2 < ∞. Time series in Examples 1.2.1–1.2.3

are, in fact, linear. Observe that

EXn+h Xn = E

( ∞∑
k=−∞

ak Zn+h−k

)( ∞∑
k=−∞

ak Zn−k

)
= E

( ∞∑
k′=−∞

ak′+h Zn−k′
)( ∞∑

k=−∞
ak Zn−k

)

= σ 2
Z

∞∑
k=−∞

ak+hak = σ 2
Z

∞∑
k=−∞

ah−ka−k = σ 2
Z (a ∗ a∨)h,
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1.3 Spectral Domain Perspective 7

where ∗ stands for the usual convolution, and a∨ denotes the time reversal of a. Since
EXn+h Xh depends only on h and EXn = 0, linear time series are (weakly) stationary. The
variables Zn entering the linear series (1.2.2) are known as innovations, especially when
they are i.i.d.

Remark 1.2.6 Some of the notions above extend to continuous-time stationary processes
{X (t)}t∈R. For example, such process is called linear when it can be represented as

X (t) =
∫

R

a(t − u)Z(du), t ∈ R, (1.2.3)

where Z(du) is a real-valued random measure on R with orthogonal increments and control
measure E(Z(du))2 = du (see Appendix B.1, as well as Section 1.4 below), and a ∈ L2(R)

is a deterministic function.

1.3 Spectral Domain Perspective

We continue considering (weakly) stationary time series X = {Xn}n∈Z. The material of this
section is also related to the Fourier series and transform discussed in Appendix A.1.1.

1.3.1 Spectral Density

In the spectral domain, the focus is on the function

fX (λ) = 1

2π

∞∑
h=−∞

e−ihλγX (h), λ ∈ (−π, π], (1.3.1)

called the spectral density of the time series X . The variable λ is restricted to the domain
(−π, π] since the spectral density fX (λ) is 2π–periodic: that is, fX (λ + 2πk) = fX (λ),
k ∈ Z. Observe also that the spectral density fX is well-defined pointwise when γX ∈ �1(Z).

The variable λ enters fX (λ) through e−ihλ, or sines and cosines. When λ is close to 0, we
will talk about low frequencies (long waves), and when λ is close to π , we will have high
frequencies (short waves) in mind. Graphically, the association is illustrated in Figure 1.2.

Example 1.3.1 (Spectral density of white noise) If {Zn} ∼ WN(0, σ 2
Z ), then

fZ (λ) = σ 2
Z

2π
,

that is, the spectral density fZ (λ), λ ∈ (−π, π], is constant.

Figure 1.2 Low (left) and high (right) frequencies.
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8 A Brief Overview of Time Series and Stochastic Processes

Example 1.3.2 (Spectral density of AR(1) series) If {Xn}n∈Z is AR(1) time series with
|ϕ| < 1 and γX (h) = σ 2

Zϕ
|h|/(1 − ϕ2), then

fX (λ) = σ 2
Z

2π(1 − ϕ2)

(
1 +

∞∑
h=1

(e−ihλ + eihλ)ϕh
)

= σ 2
Z

2π(1 − ϕ2)

(
1 + ϕe−iλ

1 − ϕe−iλ
+ ϕeiλ

1 − ϕeiλ

)
= σ 2

Z

2π

1

|1 − ϕe−iλ|2 .

The spectral density has the following properties:

● Symmetry: fX (λ) = fX (−λ). This follows from γX (h) = γX (−h). In particular, we can
focus only on λ ∈ [0, π].

● Nonnegativeness: fX (λ) ≥ 0. For γX ∈ �1(Z), this follows from

0 ≤ 1

N
E

∣∣∣ N∑
r=1

Xr e−irλ
∣∣∣2 = 1

N
E

( N∑
r,s=1

Xr Xse−i(r−s)λ
)

= 1

N

∑
|h|<N

(N − |h|)γX (h)e
−ihλ →

∞∑
h=−∞

γX (h)e
−ihλ = 2π fX (λ),

as N → ∞, by using dominated convergence.
● Inverse relation:

γX (h) =
∫ π

−π
eihλ fX (λ)dλ, h ∈ Z. (1.3.2)

1.3.2 Linear Filtering

The following is a useful result. If

Yn =
∞∑

k=−∞
ak Xn−k (1.3.3)

with a (weakly) stationary time series {Xn}n∈Z and a = {ak}k∈Z ∈ �1(Z), then

fY (λ) = |̂a(λ)|2 fX (λ), (1.3.4)

where â(λ) = ∑∞
j=−∞ a j e−i jλ is the Fourier transform of a (see Appendix A.1.1). This

follows from observing that

γY (h) = EYhY0 =
∞∑

j,k=−∞
a j akγX (h + k − j)

=
∑
j,k

a j ak

∫ π

−π
ei(h+k− j)λ fX (λ)dλ =

∫ π

−π
eihλ

∣∣∣ ∞∑
j=−∞

a j e
−i jλ

∣∣∣2 fX (λ)dλ.

Relation (1.3.3) transforms the series {Xn} into the series {Yn} by means of a linear filter.
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1.3 Spectral Domain Perspective 9

Example 1.3.3 (Spectral density of AR(1) series, cont’d) Applying (1.3.3)–(1.3.4) to the
AR(1) equation Xn − ϕXn−1 = Zn with {Zn} ∼ WN(0, 1) yields

|1 − ϕe−iλ|2 fX (λ) = fZ (λ) = σ 2
Z

2π
or

fX (λ) = σ 2
Z

2π

1

|1 − ϕe−iλ|2 ,

the result obtained directly in Example 1.3.2.

1.3.3 Periodogram

A sample counterpart to the spectral density is defined by

1

2π

∑
|h|<N

γ̂X (h)e
−ihλ = 1

2πN

∣∣∣ N∑
n=1

Xne−inλ
∣∣∣2 =: IX (λ)

2π
, (1.3.5)

with the first relation holding only at the so-called Fourier frequencies

λ = λk = 2πk

N
with k = −

[N − 1

2

]
, . . . ,

[N

2

]
. (1.3.6)

IX (λ) is known as the periodogram, and has the following properties:

● Computational speed: IX (λk) can be computed efficiently by Fast Fourier Transform
(FFT) in O(N log N ) steps, supposing N can be factored out in many factors.

● Statistical properties: IX (λ) is not a consistent estimator for 2π fX (λ), but is asymptoti-
cally unbiased. The periodogram needs to be smoothed to become consistent.

Warning: Two definitions of the periodogram IX are commonly found in the literature.
One definition appears in (1.3.5). The other popular definition is to set the whole left-hand
side of (1.3.5) for the periodogram; that is, to incorporate the denominator 2π into the peri-
odogram. Since the two definitions are different, it is important to check which convention
is used in a given source. With the definition (1.3.5), we follow the convention used in
Brockwell and Davis [186].

1.3.4 Spectral Representation

A (weakly) stationary, zero mean time series X = {Xn}n∈Z with a spectral density fX can
be represented as

Xn =
∫ π

−π
einλZ X (dλ), (1.3.7)

where Z X (dλ) is a complex-valued random measure such that Z X (−dλ) = Z X (dλ); that
is, Z X is Hermitian. Moreover,

EZ X (dλ)Z X (dλ′) = 0 (1.3.8)
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10 A Brief Overview of Time Series and Stochastic Processes

when dλ �= dλ′ (i.e., having orthogonal increments), and

E|Z X (dλ)|2 = fX (λ)dλ. (1.3.9)

As with most integrals, this is interpreted through discrete sums as

Xn ≈
∑

k

einλk Z X (dλk),

where Z X (dλk) are uncorrelated with variances fX (λk)dλk . See Appendix B.1 for a more
rigorous treatment. Thus, at frequency λ with larger value of fX (λ), the variance of the
random coefficient at einλ is larger. These terms dominate in the representation.

Remark 1.3.4 In writing the spectral representation (1.3.7) we assumed implicitly that
the series X has a spectral density. Spectral representations, however, exist for all (weakly)
stationary time series. They are written more generally as

Xn =
∫
(−π,π]

einλZ X (dλ),

where Z X (dλ) is a complex-valued random measure as above with the only difference that
the property (1.3.9) is replaced by

E|Z X (dλ)|2 = FX (dλ)

for the so-called spectral measure FX on (−π, π]. When the spectral measure FX has a
density fX (with respect to the Lebesgue measure), fX is the spectral density of the series
X and the relation (1.3.9) holds.

Example 1.3.5 (Spectral density of AR(1) series, cont’d) The spectral density of AR(1)
series was derived in Examples 1.3.2 and 1.3.3. Typical plots of AR(1) time series and their

0 1 2 3
0

0.5

1

1.5

2

0 1 2 3

f(λ )f(λ )

0

0.5

1

1.5

2
ϕ =–0.7

ϕ =–0.7ϕ =0.7

ϕ =0.7

0 50 100 150 200

0

5

nn
0 50 100 150 200

XnXn

–5–5

0

5

λ λ

Figure 1.3 Typical plots of AR(1) spectral densities and of their sample paths in
the cases ϕ > 0 and ϕ < 0.
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1.4 Integral Representations Heuristics 11

spectral densities in the cases ϕ > 0 and ϕ < 0 are given in Figure 1.3. These plots are
consistent with the idea behind spectral representation described above.

Remark 1.3.6 If {Xn}n∈Z is given by its spectral representation, then by using (1.3.8) and
(1.3.9),

γX (h) = EXh X0 = E

∫ π

−π
eihλZ X (dλ)

∫ π

−π
ei0λ′ Z X (dλ′) =

∫ π

−π
eihλ fX (λ)dλ,

which is the relation (1.3.2) connecting the spectral density to the ACVF.

Remark 1.3.7 Suppose that fX (λ) = |gX (λ)|2 with gX (λ) = gX (−λ), which happens in
many examples. Then,

Xn =
∫ π

−π
einλZ X (dλ) =

∫ π

−π
einλgX (λ)Z̃(dλ),

where the random measure Z̃(dλ) satisfies

EZ̃(dλ)Z̃(dλ′) =
{

dλ, dλ = dλ′,
0, otherwise.

Remark 1.3.8 Many notions above extend to continuous-time stationary processes
{X (t)}t∈R. The spectral density of such a process is defined as

fX (λ) = 1

2π

∫
R

e−iλhγX (h)dh, λ ∈ R,

with the difference from (1.3.1) that it is a function for λ ∈ R, and the sum is replaced by an
integral. The inverse relation is

γX (h) =
∫

R

eihλ fX (λ)dλ, h ∈ R,

(cf. (1.3.2)). The spectral representation reads

X (t) =
∫

R

eitλZ X (dλ), t ∈ R,

where Z X (dλ) is a complex-valued random measure on R with orthogonal increments and
control measure E|Z X (dλ)|2 = fX (λ)dλ.

1.4 Integral Representations Heuristics

The spectral representation (1.3.7) has components which are summarized through the
first two columns of Table 1.1; that is, the dependence structure of Xn is transferred
into the deterministic functions einλ. But one can also think of more general (integral)
representations

X (t) =
∫

E
ht (u)M(du), (1.4.1)

where the components appearing in the last column of Table 1.1 are interpreted similarly.
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Table 1.1 Components in representations of time series and stochastic processes.

Components in representation Time series Stochastic process

Dependent time series (process) Xn X (t)
Underlying space (−π, π] E
Deterministic functions einλ ht (u)
Uncorrelated (or independent) random measure Z X (dλ) M(du)

Example 1.4.1 (Linear time series) The linear time series in (1.2.2) is in fact defined
through an integral representation since

Xn =
∞∑

k=−∞
an−k Zk =

∫
Z

hn(k)M(dk) =
∫

Z

h(n − k)M(dk),

where hn(k) = an−k , h(k) = ak and M({k}) = Zk are uncorrelated.

Various random measures and integral representations are defined and discussed in
Appendix B.2. The following example provides a heuristic explanation of Gaussian random
measures and their integrals.

Example 1.4.2 (Gaussian random measure) Suppose E = R and set M(du) = B(du),
viewing B(du) as the increment on an infinitesimal interval du of a standard Brownian
motion {B(u)}u∈R. Since Brownian motion has stationary and independent increments, and
EB2(u) = |u|, one can think of the random measure B(du) as satisfying

EB(du1)B(du2) =
{

0, if du1 �= du2,

du, if du1 = du2 = du.

Thus, B(du) ∼ N (0, du). The nonrandom measure m(du) = EB2(du) is called the con-
trol measure. Here m is the Lebesgue control measure since m(du) = du. In the integral,∫

R
h(u)B(du), each B(du) is weighted by the nonrandom factor h(u), and since the B(du)s

are independent on disjoint intervals, one expects that∫
R

h(u)B(du) ∼ N
(

0,
∫

R

h2(u)du
)
.

Formally, the integral I (h) = ∫
E h(u)M(du) is defined first for simple functions h and then,

by approximation, for all functions satisfying
∫

E h2(u)du <∞.

1.4.1 Representations of a Gaussian Continuous-Time Process

Let h ∈ L2(R, du); that is,
∫

R
h2(u)du < ∞. The Fourier transform of h is ĥ(x) =∫

R
eiux h(x)du with the inverse formula h(u) = 1

2π

∫
R

e−iux ĥ(x)dx (see Appendix A.1.2).

It is complex-valued and Hermitian; that is, ĥ(dx) = ĥ(−dx). Introduce a similar trans-

formation on B(du), namely, let B̂(dx) = B̂(−dx) be complex-valued, with B̂(dx) =
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B1(dx) + i B2(dx), where B1(dx) and B2(dx) are real-valued, independent N (0, dx/2),

and require B̂ to be Hermitian; that is, B̂(dx) = B̂(−dx). Then, E|B̂(dx)|2 = dx and

I (h) :=
∫

R

h(u)B(du)
d= 1√

2π

∫
R

ĥ(x)B̂(dx) =: Î (̂h).

See Appendix B.1 for more details.

Example 1.4.3 (The OU process) Consider a stochastic process

X (t) = σ
∫ t

−∞
e−(t−u)λB(du), t ∈ R,

where σ > 0, λ > 0 are parameters, and B(du) is a Gaussian random measure on R with the
Lebesgue control measure du. The process X (t) is Gaussian with zero mean and covariance
function (for t > s > 0)

EX (t)X (s) = σ 2
∫ s

−∞
e−(t−u)λe−(s−u)λdu

= σ 2e−(t+s)λ
∫ s

−∞
e2uλdu = σ 2

2λ
e−(t−s)λ.

The process X (t) is thus the OU process (see Example 1.1.2).
The integral representation above is in the time domain; that is, I (h) = ∫

R
ht (u)B(du)

with ht (u) = σe−(t−u)λ1{u<t}. Observe that

ĥt (x) =
∫

R

eixuht (u)du = σ
∫ t

−∞
eixue−(t−u)λdu

= σe−tλ
∫ t

−∞
e(i x+λ)udu = σe−tλe(i x+λ)u

i x + λ
∣∣∣t
u=−∞ = eixtσ

i x + λ.

Hence, by switching to the spectral domain, the OU process can be represented as

X (t) = 1√
2π

∫
R

eixt σ

i x + λ B̂(dx).

Example 1.4.4 (Brownian motion) Brownian motion can be represented as

B(t) =
∫

R

1[0,t)(u)B(du) =
∫

R

(
1(0,∞)(t − u)− 1(0,∞)(−u)

)
B(du),

where B(du) is a Gaussian random measure with the control measure du. With ht (u) =
1[0,t)(u),

ĥt (x) =
∫

R

eixuht (u)du =
∫ t

0
eixudu = eixt − 1

i x
.

Then, switching to the spectral domain, Brownian motion can also be represented as

B(t) = 1√
2π

∫
R

eixt − 1

i x
B̂(dx).
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A reader wishing to learn more about time series analysis and stochastic processes
could consult the references given in Section 1.6 below. These references are helpful in
understanding better the material presented in subsequent chapters.

1.5 A Heuristic Overview of the Next Chapter

In the next chapter, we introduce basic concepts and results involving long-range depen-
dence and self-similarity. Because the precise definitions can be rather technical, we provide
here a brief and heuristic overview.

There are several definitions of long-range dependence which are, in general, not equiv-
alent. Basically, a stationary series {Xn}n∈Z is long-range dependent if its autocovariance
function γX (k) = EXk X0 − EXkEX0 behaves like k2d−1 as k → ∞, where 0 < d < 1/2.
This range of d ensures that

∑∞
k=−∞ γX (k) = ∞. From a spectral domain perspective, the

spectral density fX (λ) of {Xn}n∈Z behaves as λ−2d as the frequency λ → 0. Since d > 0,
note that the spectral density diverges as λ → 0. A typical example is FARIMA(0, d, 0)
series introduced in Section 2.4.1.

We also define the related notion of self-similarity. A process {Y (t)}t∈R is H–self-similar
if, for any constant c, the finite-dimensional distributions of {Y (ct}t∈R are the same as those
of {cH Y (t)}t∈R, where H is a parameter often related to d. In fact, if the process {Y (t)} has
stationary increments, then Xn = Y (n)− Y (n − 1), n ∈ Z, has long-range dependence with
H = d + 1/2. Conversely, we can obtain Y (t) from Xn by using a limit theorem.

Fractional Brownian motion is a typical example of Y (t). It is Gaussian, H–self-similar,
and has stationary increments. We provide both time-domain and spectral-domain represen-
tations for fractional Brownian motion. We also give additional examples of non-Gaussian
self-similar processes, such as the Rosenblatt process and also processes with infinite vari-
ance defined through their integral representations, for instance, linear fractional stable
motion and the Telecom process.

1.6 Bibliographical Notes

There are a number of excellent textbooks on time series and their analysis. The monograph
by Brockwell and Davis [186] provides a solid theoretical foundation. The classic by Priest-
ley [833] has served generations of scientists interested in the spectral analysis of time series.
For more applied and computational aspects of the time series analysis, see Cryer and Chan
[271], Shumway and Stoffer [909]. Nonlinear time series are treated in Douc, Moulines, and
Stoffer [327].

On the side of stochastic processes, Lindgren [635] provides an up-to-date treatment of
stationary stochastic processes. The basics of Brownian motion and related stochastic cal-
culus are treated in Karatzas and Shreve [549], Mörters and Peres [733]. A number of other
facts used in this monograph are discussed in Appendices B and C.
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