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ABSTRACT

For the Cramer-Lundberg risk model with phase-type claims, it is shown that
the probability of ruin before an independent phase-type time H coincides
with the ruin probability in a certain Markovian fluid model and therefore has
an matrix-exponential form. When H is exponential, this yields in particular
a probabilistic interpretation of a recent result of Avram & Usabel. When H
is Erlang, the matrix algebra takes a simple recursive form, and fixing the
mean of H at T and letting the number of stages go to infinity yields a quick
approximation procedure for the probability of ruin before time T. Numeri-
cal examples are given, including a combination with extrapolation.
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1. INTRODUCTION

Consider the reserve Rt= u - S, at time / of an insurance company where S is
a Levy process of the form

S,= £zk-ct (1)
k = \

Zj, Z2, ... are i.i.d. random variables with common distribution Fconcentrated
on (0, oo) and N is a Poisson processes with arrival rate k (N, ZUZ2, ... are
independent). We will assume w.l.o.g. (by scaling time) that c = 1.

1 Mathematical Statistics, Centre for Mathematical Sciences, Box 118, 221 00 Lund, Sweden, E-mail:
asmus@maths. lth.se.

2 Dept. de Math., Universite de Pau and Dept. of Actuarial Maths. & Statistics, Heriot-Watt Uni-
versity, Edinburgh EH14 4AS U.K., E-mail: Florin.Avram@univ-Pau.fr.

3 Edif. Miguel de Unamuno, Universidad Carlos III, Avda. Universidad Carlos III 22, 28270 Colme-
narejo (Madrid), Spain, E-mail: usabel@emp.uc3m.es.

ASTIN BULLETIN, Vol. 32, No. 2, 2002, pp. 267-281

https://doi.org/10.2143/AST.32.2.1029 Published online by Cambridge University Press

https://doi.org/10.2143/AST.32.2.1029


268 SOREN ASMUSSEN, FLORIN AVRAM AND MIGUEL USABEL

The time of ruin is

T = x{u) = inf {t > 0 : Rt < 0} = inf {t > 0 : S, > u),

the infinite horizon ruin probability is y/(u) = P(T(M) < <*>) and the probability
of ruin before time T is

y/(u, T) = P(T(M) < T)

(the probability and expectation are taken with respect to the process St).
Typically, the study of y/(u, T) is much harder than that of y/(u), and even

y/(u) can only be found explicitly in a few cases, mainly when F is phase-type
(see, e.g., [20], [21], [3], [17] or [7] for background and terminology). With a the
initial row vector and G the phase generator, it then holds that

y/(u) = tieiG+8Bf")ul (2)

where g - -G\ with 1 = (1.. . 1)' and tj = -{Xlc)aG~x. This was first pointed
out by Asmussen & Rolski [10] in the risk theoretic setting, but in fact formula
(2) is identical to the representation of the M/PH/1 waiting time distribution
given in Neuts [20]. In the finite horizon case, the phase-type assumption did
so far not appear to provide any substantial simplication (but see Stanford &
Stroinski [23] for an attempt). However, recently Avram & Usabel [11] found
a formula of similar form as (2) for the probability of ruin before an expo-
nential time Ha independent of the risk process: if H- Ha is exponential with
rate a and

y,a (u) = y,(u, Ha) = P(T(M) < Ha) = E ^a T ( u ) (3)

(where the last equality holds by integration by parts), then

V{u,Ha) = t,ae
(G+^')u\ (4)

where qa - (Xlc) a(sa I- G)"1 and sa is the unique positive root of the Cramer
Lundberg equation (12). Their result dealt more generally also with the deficit
at ruin, which is in fact always automatic for phase type jumps - see Corol-
lary 4. The approach was algebraic, with a key step in the proof being a linear
algebra identity similar to that used in Asmussen & Bladt [8].

In the present paper we generalize the results of [11] to a random horizon H
with a general phase-type distribution, using a different approach proposed in
Asmussen [7]. This approach solves perpetual first time passage problems for
Levy processes with phase-type jumps by embedding them first into an equiv-
alent continuous Markov modulated diffusion with a finite order Markovian
environment (also called fluid model in the absence of a Brownian component).
This has the analytic advantage of replacing the original Markovian integro-
differential generator by a simpler first order ordinary-differential generator for
the fluid model (see [13] and the proof of Theorem 2 below), and reducing
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ultimately (at least for constant premiums) this type of problems to obtaining
the Jordan decomposition of certain matrices. The end result is that formulas
like (2), (4), are available under a wide variety of models, like for example that
of phase-type renewal arrivals [13]. Moreover, as shown below, we may also
incorporate a phase-type horizon H merely by increasing the dimension of the
modulating environment (and of q).

The case of an Erlang H is of particular interest. Such an H with a large
number L of stages provides a very good approximation for its mean since, as
shown by Aldous & Shepp [1], the Erlang distribution is the phase-type dis-
tribution with minimal variance for a given number of phases. Correspond-
ingly, we find in Theorem 6 that if we fix the mean T and let L go to infinity,
the corresponding y/(u, H) converges to y/(u, T) with a rate of convergence which
is optimal. Furthermore, the Erlangian case turns out to be simpler compu-
tationally, since it leads to an explicit recursion for U. We thereby provide a
quick route to approximations of y/ (u, T) (a topic which is in general not easy
at all - see the survey in [7] Ch. IV). We illustrate the approach with a couple
of numerical examples which show that indeed a good fit is obtained with rel-
atively few stages L, and that the efficiency of the numerical scheme is much
improved when combined with extrapolation.

2. THE PROBABILITY OF RUIN AT A PHASE-TYPE TIME

The connection between Levy processes with phase-type jumps (or, more gen-
erally, Markov modulated Levy processes with phase-type jumps) and Markov-
modulated diffusions follows from an observation which seems to have been
first exploited in Asmussen [5] (see also [6], [7]) and Asmussen & Kella [9]). The
general trick is to level out the positive jumps to sample path segments with
slope +1 and the negative jumps to sample path segments with slope -1 and
add an extra phase say £ (or more if necessary), for the "regular time" when
the process drifts. This embeds the process with phase-type jumps St in a con-
tinuous Markov additive process (/, V), where the Markov component Jt (called
environment) is £ at a regular time and gives the current phase of the jump
otherwise.

In this way, one obtains a semi-Markov (or Markov modulated) risk process
of the kind studied in [2], but much simpler, in that there are no jumps, but
only Markov modulated deterministic drifts (or "premiums"). This approach
has technical advantages, like removing certain integrability difficulties arising
due to the jumps (see Asmussen & Kella [9] Theorem 2.1.4); more importantly,
it replaces the original problem involving an integro-differential equation by a
related simpler problem involving a first order differential system for the result-
ing fluid model.

In our case of a phase-type horizon H, we have to keep track also of the
phase of the horizon, and therefore the imbedding of St in a Markovian fluid
{(/„ V,)} is slightly more complicated than the one described before. Assume
that the set of phases for the jump distribution F is EF with pF elements and
that H is phase-type with set of phases EH with pH elements, phase generator H
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and initial vector /?. We denote by h = -771 the rates of absorbtion of the phase
process into its absorption "cemetery" state C (note that 1 and similarly the
identity matrix / and zero vectors/matrices 0 will have a dimension varying on
the context throughout the paper). The background Markov process {J,} has
state space E = Eo u E+ x E_ where E0-{C} is the absorbing state, E_ = EH,
E+ - EH x EF (matrices and vectors are written in block-partitioned form cor-
responding to this ordering, and we write p_ = pH, p+ = pH + pF). The fluid
model {Vt} moves linearly at a rate rt when / , = /; more precisely, it is defined
as follows:

• Jt- C corresponds to the final segment of the risk process after time H and
here rc = 0.

• JteE = EF corresponds to a segment of the risk process S, without jumps,
i.e., downwards motion at the linear rate rt = -1 and the state for {J,} is the
current phase of the phase process for H.

• Jt&E+- EH x EF corresponds to a jump of the risk process. The first com-
ponent of {/,} is fixed at the current phase of the phase process for H
during a segment corresponding to a fixed jump, and the second goes
through the phases of the phase process for the jump. Further, r, = 1 for i
sEHx EF.

It follows that the initial distribution for {/,} is (0 /? 0) and that its transitions
intensity matrix is

0 0 0

h H-Xl XI® a

0 7® j? 7

0 0

h A

0 A+

0

(we used notation like A+ = I <E> g,...\ for Kronecker products <8>, see e.g. Gra-
ham [16]. For example, if H is exponential with rate a, we have

A =

0 0

a -a-X

[0 g

and if H is Erlang(2) with rate a, then

0

A =

0

0
a

0
0

0

-a-X
0

g
0

0

a
-a-X

0
g

0

Xa
0

G
0

0

0
Xa

0
G
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Figure 1

Fig. 1 illustrates the connection between St (upper part) and (/„ Vt) (lower part).
The following result follows immediately by a sample path comparison.

Theorem 1. y/(u, H) coincides with the infinite horizon ruin probability for {Vt}
(i.e. with the probability that {V,} will ever exceed level u).

We state now a general result concerning the upcrossing probabilities of fluid
models due to [14] and [18] and generalized by [4] to the case of Markov-mod-
ulated diffusions, following Theorem 3.2 of [4]. Here, the special structure of
the matrices A~~ etc plays no role; we will see however in the next section that
if H is Erlang, then a considerably simpler recursive scheme is available.

Theorem 2. Let t\ denote the p_ x p+ matrix of "upcrossing phase probabilities"
at the completion of a downwards excursion for a fluid model {Vt}, conditioned
on starting in a decreasing state ieE , let y/(u) = (y/^u), i= 1,,,,p_) denote the
infinite horizon phase-distribution at u (starting at 0), conditioned on starting in
a decreasing state, and let <f>(u) = (y/t(u), i = l,,,,p+) denote the infinite horizon
phase-distribution at u, conditioned on starting in an increasing state. Then,

a) i\ satisfies the Riccati equation:

and

y/{u) = tt(j>(u) = t/eUul

(5)

(6)
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where U is the p+ x p+ matrix

U=A++ + A+~ t, (7)

b) Let now S> 0 be a "convergence improving parameter", satisfying d > -ha + X
for all i e EH. Then, the solution t\ of the Riccati equation (5) can be computed
by the iteration scheme t\ - lim^^^ if1^ where tf^ = 0,

c) Alternatively, let K[s] be the matrix of dimension p_ + p+ given by

(H-U-sI
{

and assume that the equation K[s] = 0 has p+ distinct generalized eigenvalues sh

..., sp+ with 0l(Si) < 0 and let kt = (k*f)kj+)), i = 1, ..., p+ be right (generalized)
eigenvectors of K[st] corresponding to the eigenvalue sh Then q is the solution of
the linear equations

and further

U=(sk(+) s k(+)) = (k(+) k(+))~l

Proof a,b) This is a reformulation of Theorem 3.2 of Asmussen [4], with the
following small amendments. First, it is assumed there that Eo = 0, but the
separate treatment in [4] of the case Eo * 0 is not needed here because Eo is
absorbing. Second, [4] gives

r\ = {{51 + A~)tt + A"+) (SI- (A++ + A+-J/)-1

from which (5) is obtained by multiplying by 51 - U to the right and eliminat-
ing 5.

c) The proof is an immediate application of Section 5 of [4]. Note that the
fact that (8) satisfies the Riccati equation for any choice of eigenvectors kh
i = 1, ..., p+ is easily checked, but the fact that we need the negative real part
eigenvalues requires some probabilistic argument - see also [9] for an optimal
stopping approach. QED

Notes: 1) Here is a brief outline of some of the ideas behind the proof of
Theorem 2: Fixing the barrier at 0 and letting the starting point u vary, we find
that y/{u), <t>{u) satisfy the Feynman-Kac equation:
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or
A + 0(w) V(°°)

 = 0

Substituting now the (probabilistically obvious) first equality in (6) y/(u) = ti<p(u)
transforms the second equation to the homogeneous form:

where U - A+++ A+~ j / , and thus y/{u) = ^ " 1 .
Also, this substitution transforms the first equation (after factoring <j>(u))

into the algebraic Riccati equation (5).
2) It is interesting to investigate, in the spirit of [8], whether this result holds

also under the less restrictive assumption of jumps with a rational Laplace
transform.

Finally, using the fact that in our case the horizon phases start with prob-
abilities P, we get:

Corollary 3. One has y/(u,H) - fii\eVu\ where tj is a iL x E+ matrix and U a
E+ x E+ matrix such that

(9)
0 =qU+Htl-Xti + XI®a. (10)

The deficit at the time of ruin Y= Sr has also been studied by many authors,
see e.g. [15]. An important advantage of phase-type modeling is that it renders
the distribution of the deficit at ruin automatically. Indeed, it is easy to see
from the probabilistic interpretation of Theorem 2 that this deficit is phase-
type on E+ with initial vector flqeUu and phase generator / ® G, which yields
the corollary:

Corollary 4. Let

V{u,H,Y) = Yu{x<H;Y>y} (11)

denote the "finite time bivariate probability of ruin" with time span H and sever-
ity of ruin bigger than y. Then,

y{u,H,Y) =

3. THE ERLANG CASE

We first verify that Theorem 2 gives the result of [11] for the exponential case.
Here E_ consists of a single point so that i\ is a E+ = EF row vector and U a EF

x £> matrix, and (9), (10) take the form U=G + gti,

0 = tiU- {a + X)ti + Xa = tiG+qgt/ -{a + X)i\ + Xa.
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Defining s = a + X - t\g, this means 0 = tjG- stj + Xa so that i\ = Xa (si- G)"1. It
only remains to compute s but multiplying by g to the right and appealing to
the standard formula for the m.g.f. f*(s) of a phase -type distribution F, we get

-a + s-A + Af*(s) = ic(s)-a = O (12)

where K(S) = logEe^*'~") = s + X(f*(s) - 1) denotes the Levy exponent of the
process Rt. We note now, as in [11], that since the Laplace transform of the ruin
function must be well defined over the positive numbers, s must be the unique
positive root of this equation4.

Next consider the Erlang(2) case. The probabilistic interpretation of i\ given
in [4] is that rjy is the probability that when Jo = i E E_, then the first upcrossing
of level 0 of the fluid model will occur at a time t with J, =jeE+. Taking into
account the specific structure of the Erlang case, it follows that we can write

where tjx coincides with the q = Xa{sl-G)"x just computed for the exponential
case. By (9), (10)

-X-a a \ lt]x t}2\ IXa 0

0 -X-a)\0 ill) \ 0 Xa

Entry by entry (in lexicographical order) this means

0 = ti{G + ti]gtix - (X + a)tix + Xa

0 = t]2G + tjigtt2 + ti2gt]x -(X + a)ti2

0 = 0

0 = tixG + r/igtj! -(X + a)tii + Xa

It is seen that only the second equation contains information on J/2, and recall-
ing that j/jg = X + a - s, it yields

- G - gtii)1 (13)

4 To see that for a > 0 the equation K(6) - a = 0 has always exactly one positive solution, note that since
the Levy exponent K is convex over R+, the equation may have at most 2 nonegative solutions. Fur-
themore, when a - 0, 6 = 0 is always a solution; let 00 denote the largest solution in this case. Note
that 9Q > 0 if and only if K'(0) = E(Rt) < 0. Also, K(6) < 0 for 8 e [0, 00] while K is increasing over the
interval [80, °°); therefore, K{6) has a unique continuous inverse y(a) > 9Q which is defined for a > 0;
therefore, ic(9)-a = 0 has always a unique positive solution.
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In the general case:

Theorem 5. Assume that H is Erlang with L stages. Then rj is an upper triangu-
lar block Toeplitz matrix, with entries tjh i/2, •••, t/L given by the recursion

(14)

and i\x = ka(sl- Gyl. In particular, if2 is given by (13) and

1z = (atlz + Vigil) (sI-G-giii)-1,
J/4 = (<H/3 + J73#72 + tl2gtl2) (sI-G-gl/i)-1.

Proof. The form of ij is seen exactly as when L - 2. Considering the upper right
block, (9), (10) yield

0 =
7=1

and from this (14) follows.

Theorem 6. Let T>0 be a fixed time and let HL denote the Erlang distribution
with L stages and mean T (i.e., a - LIT). Then y/(u, HL) —> y/(u, T) as L—> °°.
More precisely, for some constant D

(15)

Proof. Let 0 < e < T. Then it is immediately checked that for all k, [ £ ;
IHL - T\ ] > e is of order say O{e€"L) (with eK > 0) as L —> °°. Since it is readily
checked that the A:th derivative y/^(u, t) of y/(u, t) w.r.t. t exists and is contin-
uous, in particular bounded on [T-e, T+ e], it follows (using E ( / / £ - 7)4 =
3/L2 + 6/L3) that

k\

k=\

L~T)k +O(3/L2

O(L~2)
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4. NUMERICAL EXAMPLES

We implement now the Erlang method in practical calculations of ruin prob-
abilities using the phase-type formula y/(u, H) - (j/b i\2,..., tjL)eUul and the
simple recursive algorithm presented in the former section. The density of the
claim sizes is/(x) = aeGxg and the relative security loading considered in the
illustrations below is 6 - 0.1. In order to compare the Erlang approximations
with the exact values (L = °o) of the ruin probabilities, the Gaver-Stehfest method
of inverting the Laplace transform was used, see, for instance, Usabel [24].

We will first consider the hyperexponential distribution used by Wikstad [25]
as an example of a highly skewed distribution; in matrix notation

al = (0.0039793 0.1078392 0.8881815)

- 0 .014631
0
0

0
-0.190206

0 - 5

0
0

.514588

7 = 1

L

7 = 1 0

L

7=100

L

1
3
5
7
OO

1
3
5
7
OO

1
3
5
7
OO

Erlang Approximations

Claim Size/(x) = c

0

1.98610-'
2.19010-'

2.22810-1

2.24310"'

2.27710"1

0

4.406 10-'
4.874 10-1

4.980 10>

5.027 10-1
5.148 10-1

0

6.786 10>

7.218 10-1

7.286 10-1
7.313 10-'

7.375 10-'

y/(u,HL) to finite

heG'xgi (Wikstad

1

7.58710"2

8.07510-2

8.18610-2

8.23510"2

8.36210-2

1

3.129 10-1
3.587 10-1

3.697 10-1
3.747 10-1

3.874 10-'

1

5.901 1 0 '

6.409 10-'
6.494 10"'

6.527 10-'

6.605 10-'

time ruin probabilities

[25]) 0 = 0.1

10

1.82710-2

1.86910-2

1.87710-2

1.88110-2

1.89110-2

10

1.195 10"'
1.324 10-'

1.355 10"'
1.370 1 0 '

1.408 10-'

10

3.684 1 0 '

4.143 10~'
4.240 10-'

4.282 10-'
4.384 10"'

100

9.26010"4

9.24910^*
9.24610"4

9.24510"4

9.24210^

100

9.315 lO-3

9.344 lO-3

9.348 lO-3

9.349 lO-3

9.351 lO-3

100

7.713 lO-2

8.284 lO-2

8.417 lO-2

8.476 10-2

8.632 lO-2
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r=iooo

L

1
3
5
7
OO

0

8.290
8.569
8.613
8.631
8.672

10-1

10-'
io-i
io-i
io-i

1

7.792
8.146
8.203
8.226
8.278

io-i
io-i
io-i
io-i
io-i

u

10

6.339
6.860
6.953
6.990
7.077

io-i
io-'
io-i
io-i
io-i

100

2.922 10-1
3.357 10-1
3.459 10-1
3.504 10-1
3.618 10-'

Next we consider a more regular claim size distribution, an Erlang(3) with
mean 1, in matrix notation

a = ( 1 0 0)

- 3 3 0
0 - 3 3
0 0 - 3

Eriang Approximations if/(u,H,) to finite time ruin probabilities

Claim Size/(*) = aae
G^xg1 (Erlang(3)) 0 = 0.1

T= 1

L

r-io

L

r=ioo

L

1
3
5
7
OO

1
3
5
7
OO

1
3
5
7
OO

0

4.169 10 '
4.853 10-'
5.029 10"'
5.109 10-'
5.323 10"'

0

7.350 1 0 '
7.949 10-1
8.037 10-1
8.071 10-1
8.148 10-1

0

8.687 10-'
8.915 10-1

8.941 10 '
8.951 10"'
8.973 10"'

u

1

2.081 10"'
2.339 10-'
2.403 10"1

2.432 10"'
2.508 10-1

u

1

5.206 10-'
5.837 10"1

5.963 10"1

6.016 10-'
6.142 1 0 '

u

1

7.289 10-1
7.675 10-1
7.728 10"'
7.748 10"'
7.793 10-'

10

5.159 10"5

1.324 10"5

8.348 10-6

6.594 10-6

3.146 10-6

10

1.355 10"2

1.112 102

1.033 102

9.943 103

8.797 10-3

10

1.203 10"'
1.439 10"'
1.502 10"'
1.532 10 '
1.608 10-'
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L

1
3
5
7
oo

0

9.034
9.086
9.089
9.089
9.091

io-i
io-i
io-1

io-i
io-i

1

7.934
8.033
8.039
8.041
8.043

io-i
io-i
io-i
io-'
io-'

u

10

2.110
2.279
2.296
2.302
2.310

io-1

io-i
io-i
io-i
io-i

100

3.721 10"7

4.510 10-7

4.813 10-7
4.989 10-7
5.737 10-7

The reader can see at a glance how quickly the approximations yield at least one
or two significant digits even for very small values of the ruin probabilities.
Furthermore, motivated by the linear rate of convergence (15), we implemented
next the Richardson extrapolation (see e.g. [22]), leading to the improved estimate

y/x{u,T) = (L+ \)yf(u,HL + 1) - Ly{u,HL) (16)

with error going to 0 at rate l/L2.

r = i

L

r=io

L

T- 100

L

Improved Erlang Approximations i//t(u,H,)

1

3

5

7
OO

1
3
5
7
OO

1

3

5

7
OO

Claim Size/(x) = i

0

2.291 10-'
2.287 10-1
2.282 10-'
2.280 10-'
2.277 10-'

0

5.090 10-'
5.137 10-'
5.144 10-'
5.146 10-'
5.148 10-'

0

7.456 10-1
7.392 10-1
7.381 10-i
7.378 10-1
7.375 10-1

to finite time

a,eG<xgi (Wikstad(1971))

1

8.300 10"2

8.350 IO-2

8.357 10"2

8.359 IO-2

8.362 10-2

1

3.786 10-1
3.860 10-'
3.869 10~l
3.872 10-1
3.874 10-'

1

6.684 10-1

6.624 10-1

6.613 10-1
6.609 101

6.605 10-1

10

1.888
1.890
1.890
1.891
1.891

10

1.379
1.402
1.406
1.407
1.408

10

4.360
4.387
4.386
4.386
4.384

ruin

0 =

io-2

io-2

io-2

I O 2

I O 2

io-i
io-i
io-i
io-i
io-i

io-i
io-i
io-i
io-i
io-'

probabilities

= 0.1

100

9.243 10^
9.242 10^*
9.242 10^
9.242 10^*
9.242 10^*

100

9.362 10-3
9.353 10-3
9.352 10-3
9.351 10-3
9.351 10 3

100

8.542 10-2

8.612 IO-2

8.623 IO-2

8.628 IO-2

8.632 IO-2
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L

1
3
5
7
OO

0

8.728
8.681
8.676
8.674
8.672

10 '
10-'
io-i
io-i
io-i

1

8.345
8.290
8.283
8.281
8.278

io-i
io-i
io-i
io-i
io-

u

10

7.136 101

7.094 10-1
7.085 10-1
7.081 10-1
7.077 10-1

100

3.551 10-1
3.610 10-1
3.616 10-1
3.617 10-1
3.618 10"1

As expected, the extrapolation clearly improves the convergence, yielding at
least three relative significant digits in most cases. Of course, for practical pur-
poses, most often even just one or two significant digits will suffice.

The same conclusions are apparent from the extrapolated approximations for
the Erlang(3) claim sizes:

Improved Erlang Approximations i//i(u,HL) to finite time ruin probabilities

Claim Size/(x) = a2e
G2*£2 (Erlang(3)) 0 = 0.1

r = i

L

r-io

L

r=ioo

L

1
3
5
7
oo

1
3
5
7
OO

1
3
5
7
OO

0

5.139 10-'
5.285 10-'
5.308 10-'
5.315 10"'
5.323 10-1

0

8.289 10-'
8.176 10-'
8.158 10-'
8.153 10-'
8.148 10-'

0

9.064 10 '
8.983 10-'
8.976 10 '
8.975 10-'
8.973 10-'

u

1

2.451 10-'
2.496 10-'
2.503 10-1
2.505 10-1
2.508 10-1

u

1

6.145 10-1
6.155 10-1
6.148 10-1

6.145 10-1
6.142 10"1

u

1

7.904 10-1
7.811 10-'
7.800 10-'
7.797 10"'
7.793 10-1

10

-9.963 106

5.008 10"7

2.057 10"6

2.557 10-6

3.146 10-6

10

1.029 10~2

9.224 103

8.999 103

8.914 10-3

8.797 10"3

10

1.533 10-1
1.595 10-1
1.604 10-1
1.606 10"1

1.608 10"1
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T=1000

L

1
3
5
7
oo

0

9.125
9.093
9.092
9.091
9.091

101

IO-1

IO-1

io-1

io-1

1

8.107
8.050
8.045
8.044
8.043

10-1

io-1

IO"1

io-1

io-1

u

10

2.383
2.326
2.316
2.313
2.310

io-1

io-1

io-1

io-1

io-1

100

4.759 10"7

5.214 IO-7

5.400 IO-7

5.501 IO-7

5.737 10"7
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