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ON THE SET OF PERIODIC SOLUTIONS OF DIFFERENTIAL
EQUATIONS OF RICCATI TYPE

by H. S. HASSAN

(Received 29th November 1983)

1. Introduction

The purpose of this paper is to expand upon the results obtained in [4].
We consider the set H of differential equations

z = z2 + p(t)z + r(t) (zeCteR), (1.1)

where p and r are continuous real-valued functions of period co (co being fixed
throughout). The equation (1.1) is denoted by P or (p,r), and we regard H as the set of
pairs of continuous functions of period co. On H we define a norm:

||P|| = max{|p(t)|, \r(t)\; O^t^co};

then

(H, ||. ||) is a Banach space.

We introduce some notation and recall some of the preparatory results from [2] and
[4]. The solution of (1.1) satisfying z(to) = c is written zP(t;t0,c). The periodic solutions
of (1.1) are determined by the zeros of

The domain of definition of qP is an open set QP <=• C. We also define

The domain of definition of q is an open set Q of H x C; on Q, q is holomorphic in c and
continuous in P. If Pn->P in H, cn^c in C, and q{Pn,cn)=0, then either q(P,c) = 0 or the
solution zP(t;0, c) is not defined for all te[0,co].

The set of zeros of qP is denoted by BP. In [2] and [4] the multiplicity of a periodic
solution cj> of (1.1) is defined as the multiplicity of <£(0) as a zero of qP. Also (1.1) is said
to have a singular periodic solution if there are sequences (PJ and cn) in H and C,
respectively, such that ^(Pn,cn) = 0 but either PB-»P, cn^c and Zp(t;O,c) is not defined
for O^t^a), or Pn->P and cn-*co. The set of PeH with no singular periodic solutions
is denoted by si'. We quote some results from [4].
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196 H. S. HASSAN

Theorem 1.1 If P$s/, then P lias a solution which is unbounded both as t increases
and as t decreases, and is defined for a t-interval of length less than a>.

It was shown in [2] that stf is an open set: by a component of sd we mean a maximal
connected subset of sd'.

Theorem 1.2. / / Pl and P2 are in the same component of si', they have the same
number of periodic solutions.

Remark. In Theorem 1.2 the multiplicity of solutions is taken into account. This we
do throughout the paper.

It is shown in [4] that a member of H either has no periodic solutions, two periodic
solutions or infinitely many. We make the following definition.

Definition 1.3. H1 = {P; P has exactly two periodic solutions, both real},
H2 = {P; P has exactly two periodic solutions neither real},
H3 = {P; every non-real solution is periodic; no real solution is periodic},
#4 = {P; P has no periodic solution}.

The results summarised in the following theorems were also proved in [4].

Theorem 1.4. H is the disjoint union ofHu H2, H3 and f/4.

Theorem 1.5. (1) H1uH2 is a component of si,
(2) HA contains infinitely many components of si.
(3) H3ns/ = 0.

In [2] equation (1.1) was investigated by considering the related linear equation P*:

u-p(t)u + r(t)u = 0. (1.2)

Since we shall also use this technique, we briefly describe the necessary background.
Equation (1.2) is obtained from (1.1) by the transformation z= —jiu"1. Since M = 0 is a

solution of P*, a solution of P* cannot vanish together with its derivative; consequently,
every non-trivial solution of P* yields a solution of P = (p, r). Conversely every solution
of P can be written as — uu~l, where u is a solution of P*. The period solutions of P
can be studied by choosing a suitable base for the solutions of P*.

We take a Floquet base (M1,M2) for P* and use this to examine the periodic solutions
of P. A Floquet base is either of the form

or

where Xl,X2eC and aua2:U\-^C are co-periodic. (For details of the theory leading to
the existence of such basis see Coddington and Levinson [1]).
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PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS 197

We can so choose ut and u2 that either both are real or ut and u2 have independent
real and imaginary parts and ul = u2. The form of the basis depends only on the nature
of the characteristic multipliers. It is always of the first form except when P* has equal
multipliers (necessarily real).

We adopt the convention that

< Im k1} Im X2 ^ n/co.
co

We shall need formulae for p,r in terms of a base (ul,u2) of P*:

uulu2-u2ul

This paper is concerned with the topological properties of Ht (i= 1,2,3,4). It will be
shown that the boundary between Hl and H2 is a manifold and H3cH4\H4.

I wish to express my gratitude to Dr N. G. Lloyd for his valuable guidance and
encouragement during the preparation of this paper.

2. Two periodic solutions

In this section we shall study some of the properties of Hl and H2.
In [2], Lloyd proved the following result which we quote without proof.

Theorem 2.1. Ifr(t)<0for all t, then P has exactly two co-periodic solutions, counting
multiplicity.

Theorem 2.1 was proved by showing that an equation with r < 0 is in the component
of the origin in the set s/ of equations with no singular periodic solution. From this it
follows that (p, r) must have the same number of periodic solutions as the equation
x = x2 which is two.

Theorem 2.1 simply states that, if r(r)<0 for all t, then P e / J j u / / 2 . We shall prove
that if P satisfies the hypothesis of Theorem 2.1, then it does not belong to H2. In order
to prove this result we need to recall that if x(t) is a non-real solution of P, then there
exist differentiable real-valued functions s(i) and <p(t) such that x(t) = s(t) ei4>(t) and
consequently

s(t)=(s2(t) + r(0) cos (l>(t) + s(t)p(t), (2.1)

(s2(£) -r{t)) sin 4>{t) (2.2)

for all t.
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Theorem 2.2 If p and r not both constants and r<Ofor all t, then P = (p,r)eH1.

Proof. Suppose, if possible, that for some £eC, where Im £=/=(), xP(t;0, ̂ ) = s(t) ei<t>(t) is
co-periodic. So that xP(t;0,^), (O^t-^co), forms a closed curve either in the upper half-
plane or in the lower half-plane. Hence there exists t0 e [0, co] such that (f>(t0) = 0.

Since r(t)<0 and sin c£(t) =/= 0, (2.2) gives (f>(i)j=O for all t, which contradicts the
existence of t0.

We see in the next lemma that if x(t) is a real co-periodic solution, then

11*11= SUP Ml

depends only on ||P||.

Lemma 2.3. Suppose that x(t) is a real (o-periodic solution of P. Then

Proof. Suppose, if possible, that x(t) is a real co-periodic solution of P and

for some £0e[0,co]. We have two cases to consider: (i) x(to)>O and (ii) x(to)<0.

Case (i). Suppose that x(£0)>0. Since x(t) is differentiable and periodic, there exists
^€[0,(0] such that x(tl)= max x(t). Hence x(ti) = 0 and moreover

But x(t) is a solution of equation P, so for all t

x(t) = x2(t) + p(t)x(t) + r(t)^x2(t)-\\P\\(x(t) + l). (2.3)

It is easily seen that

hence,
x( t!) > 0, a contradiction.

Case (ii). Suppose that x((0)<0. Consider the transformations t-* — t, x-> —x, then
— x(t) is a periodic solution of

x = x2-p(t)x

Hence we have case (i) and the lemma is proved.
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Theorem 2.4. Hx is a closed subset of H.

Proof. Suppose that (PJ is a convergent sequence in Hl and Pn->P as n-»oo.
Suppose, if possible, that P$H{; that is, BP has no real members. Let Mn = ||Pn||. Since
Pn->P as n->oo, {Mn:neZ+} is bounded. Let M* = supnMn. Choose cneBPn (n=l,2,...).
By Lemma 2.3,

\xPn(t; 0, c)\ <M* + J(M*)2 + 2M*, (Ogtgfl)). (2.4)

Hence we can assume, without loss of generality, that cn^c0 as n->co for some co£lR.
So either q(P,co) = 0 or xP(f,0,co) is not defined in [0,co]. Since, by hypothesis, BP

contains no real member, <j(P,co) = 0 is excluded. Hence there exists T6(0,CO] such that
|xP(t;0,co)|->oo as t]x. But xPJit;0,cn)->xP(t;0,co) as n->oo for all te[0,co). It follows
that (2.4) is satisfied for xP(t;0,c0), a contradiction. Therefore <7(P,co) = 0, hence Pe/ / j
and the theorem is proved.

Corollary 2.5. If p and r are not constant and r(t)^0for O^t^co, then PeHv

Proof. Let Pn = (p,rn) where rn = r-^ (n = l,2,...). Hence, by Theorem 2.2, for all n
PneHl and Pn-»P as n-*co. By Theorem 2.4, PeHv Whence the result is proved.

Corollary 2.6. H2 is open in H.

Proof. We know from [4] that H1vH2 is open in H and we have proved that Hl is
closed in H. Since HlnH2 is empty, H2 is open in H and the corollary is proved.

Directly from Corollary 2.5, we have if P!=(p,0), then P1eH1. We shall use this
result to show that under certain conditions PeH1 (P = (p,r)) if \r\ is small enough,
irrespective of the size of P.

The following lemma can be deduced from Proposition 3.1 of Lloyd [2].

Lemma 2.7. / / $ p(t)dtj=O, then x = 0 is an co-periodic solution of P = (p,0) with
multiplicity 1.

Theorem 2.8. If\%p{t)dt±0, and \r\ is small enough, then PeHv

Proof. Let Pl=(p,0). By Corollary 2.5, PleHl. By Lemma 2.7 the zero solution is a
periodic solution of Pj of multiplicity 1; there is therefore another periodic solution
xP(t;0, c), say, with c real and non-zero. We know that HtuH2 is open. Suppose then, if
possible, that there exists a sequence (Pn) in H2 convergent to Px. Let c\,c\ be the two
starting points of the two co-periodic solutions of Pn. Then, c^->0 and c\-^c as n-»oo.
But d[,cn

2 are complex conjugates; it follows that c = 0, a contradiction. Therefore,
P, e'mtHl and the theorem is proved.

3. The boundary between H, and H2

In this section we study the characteristics of the boundary between H^ and H2 and
show that it is a manifold.
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Definition. Let / / n = {P;BP contains exactly one point}.

Remark. It is clear that

So HllcHl and if xeBP (P6W U ) , then i(g(P,.),x,0) = 2, (where i{q{P,.),x,O) is the index
of q(P,.) at the 0-point x, for more details set. [5]).

We prove that H11 is the boundary between Ht and H2.

Theorem 3.1. H1 is a perfect subset of H.

Proof. Let P = (p,r)eHl. Suppose that <f> is one of the co-periodic solutions of P. It
can be checked that c/>n = c/> + l/n ( n e Z + ) is a real co-periodic solution of

--,r-P- + -ri n n2

and Pn->P as n-»oo. Since BP contains at least one real element, namely c/>n(0), Pn(
Hence P is an accumulation point of Hl. Since Ht is closed, Ht is perfect and the result
is proved.

Recall that P* was the related linear equation (1.2).

Lemma 3.2. / / PeHlu then the Floquet base of P* is of form

Proof. Suppose that (eA"a1(t),e
/l2'a2(£)) is a base of P*. Hence if

u(t) = c, ei l fa,(t) + c2 e
x»<x2(t) (cu c2 e C),

then

is a solution of P, where /?, =oc, +Xicci (i= 1,2).

Hence c/> is co-periodic if and only if

c1c2(/IO'-e'l2O)) = 0 (3.2)

and cl eXl'al(t) + c2e''2'ot.2(t) does not vanish.
We have one of the following two cases:

(ii) A1 =A2.
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PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS 201

Case (('). By (3.2) <f> is co-periodic if and only if c x =0 or c2=0. So, by (3.1), P has
only two co-periodic solutions, namely

provided that a^t), a2(t)=/=0. Since ux =eA"a1(t) and u2=eX2'tx2(t) are linearly
independent, (j>ijz<f>2- If both ux and u2 are real, then their zeros, according to the
Sturm separation theorem, interlace; both c/»x and c/>2 are then defined for all t or neither
is. Hence if P has a real co-periodic solution, then it has two distinct such solutions; so

Case (ii). By (3.2) every solution of P is either co-periodic or is defined for a time less
than co. Hence if P has an co-periodic solution, then it has infinitely many. Hence

We conclude that the base of P* is of the form

Remark. We note that k^—k^lnnijco for all n e Z + , (because |lmk^Kn/co and
|lm k2\ =

 n/co)-

Theorem 3.3. HncdH2.

Proof. Suppose that P = (p,r)eHll. Then by Lemma 3.2 P* has a base u1=ex'al(t),
u2 = ex'(tctl(t) + oc2(t)). Since u1,u2 are independent solutions of P*, computing the
Wronskian gives

for all t.
Substituting ul and u2 in (1.3) and (1.4) gives us

a^az -a1oi 2 -2a1a2= 2A+— : —

a1a2—a1a2 —af

We construct a sequence Pn in H2 converging to P.

For / ieZ+ let

V = /<*.+- N '" '
" ' n - I - I n

https://doi.org/10.1017/S001309150002229X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002229X


202 H. S. HASSAN

and

W = V
"n rn-

Substituting Vn and Wn in (1.3) and (1.4) gives us

<x1a2-a1a2 + 2a1a1pn=2A-\ : : =
a a a a + a

and

where £ = (a2 + aj + Aa2)(at + 2a2 + 2Aa2) —

- a2(a2 + 2a i + 2A(a1 + a2) + A2a2).

It can be checked that Pn = (pn,rn)eH and (^, Ŵ ) is a base of P*. Since for large n,
— i/n) then PneHluH2. It can be checked that

/n2

is an co-periodic solution of Pn. Therefore for large n, PneH2. Since Pn->-P as n->oo,
P e dH2 and the theorem is proved.

Theorem 3.4 H u is the boundary "between" H1 and H2; that is, Hll=HlnH2-

Proof. Suppose that P6f l ,nH 2 . Since Ht is a closed subset of H, Pefl, . Suppose
that P ^ f l n ; then BP contains exactly two real elements, x1;x2 say. Since PedH2 there
exists a sequence (PJ in H2 convergent to P. If c,6BPi, then cne5Pn. Hence we can
assume without loss of generality that cn-^x1 and cn->x2 as n->oo. But x1^x2 are real,
a contradiction. Therefore PeHlt.

Conversely, if PeHlu then by Theorem 3.3 PeH2 and Theorem 3.1 P e ^ and the
theorem is proved.

Lloyd in [2] proved the following result which we quote without proof.
(Recall that an oj-periodic solution (j) is simple if it has multiplicity 1).

Lemma 3.5. Let P = (p,r)eH1 and suppose that <j> is (o-periodic solution of P. Then
PeH11 if and only if

Let H1 = P1 x P1, where P1 is the set of all differentiable functions in P, and P is the
set of all functions P:R->R continuous and co-periodic, H1 is a subspace of H. On Hl
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PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS 203

define the norm

11(^)1^= max (|r1(t)|,|r2(t)|,|r2(t)|).
0 S S

Note that this norm is not the norm induced by the norm on H.
Let

Lemma 3.6. H11 is a hyper plane in H1.

Proof. Let 3~: H1 -> U be defined by

It is clear that ST is a non-zero linear functional and

Hence H11 is a hyperplane.

Theorem 3.7. H n is a manifold (modelled on a Banach space).

Proof. Let L-.H^^H11 be defined by

where $ is the unique co-periodic solution of (p, r). It is clear that L is bijective, for if
(p,(j))eHli, let r = 4> — (j>2—p4>- Then by Lemma 3.5 (p,r)eHll and L{p,r)=(p,<f>), and if
L(p, r) = L(p', r') = (r, 4>), then p' = p and r = <f) — 4>2-p4) = r'.

We shall prove that L is continuous. If e > 0 is given, then there exists (51>0 with
0<5l<e. such that if

(p,r) , (p ' , r ' )e / / u and \\{p-p',r-r)\\<5,

then

implies

max

max |<^2(t)+p(O0(r) + KO-</>?(O-p'W</'i(O-'-'W|^£ (3.3)
0<.t<co

(<p,4>i are the unique periodic solutions of (p,r), [p',r') respectively).
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By Theorem 2 in [3] there exists <52 with O<<52<<51 such that if (p, r), (p',r')6Hu and
\\(p-p',r-r')\\<52, then

max \<Kt)-<l>i(t)\<&i. (3.4)

Hence by (3.3) and (3.4),

max |(£(r)-<p"i(t)|<e (3.5)
OSlSco

for all (p,r), (p ' ,r ' )eHn for which ||(p-p',r-r')l|<<52. Therefore by (3.5) and (3.4),

= max (\p{t)-P'(t)\,\<t>(t)-<t>i(t)\,
O g g

<£,

for all (p,r), (p',r')eHlu for which

Next we show that L"1 is also continuous. For if e>0 is given, then there exists <5 such
that 0<(5<£ and if (p,0), ( p ' . ^ e f l 1 1 and \\(p — p', <p-<j>!% <5, then

max \r(t)-r'(t)\S max

Therefore,

^ max

for all {p,4>\ (p'^JeH11 for which

Hence L is a homeomorphism and is bijective. Since H11 is a hyperplane, H t l is a
manifold and the theorem is proved.
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4. H3 u / / 4 as a subset of H

In this section we study some of the properties of H3uH4. Recall that P* denotes the
equation

it— pu + ru = 0,

where P = (p, r).

Lemma 4.1. If(al{t)eXl', <x2(t)e
X2t) is a base of P* and X^X2, then P$H3.

Proof. It can be checked that the solutions of P are

- c t f o + Alg l) e
Xlt + c2(oc2 + X2a2) ex*

clal eXl' + c2<x2e
Xl'

where cx and c2 are complex constants. Since <xy e
Xlt and a2 e

Xlt are linearly independent,
the solution (4.1) is co-periodic if and only if

clc2(e
Xl<o — eXlo>) = 0. (4.2)

Since Xl^X2 and |lmA,|^7i/co ( i=l ,2) , we see from (4.1) and (4.2) that P has at most
two co-periodic solutions, namely

—̂̂  and l—.

Therefore P$H3 and the lemma is proved.
Now suppose that (a^t)eXl',oc2(t)e

Xl') is a base of P* and Xx±\2. Then by Lemma 4.1
P $ H3. It can be checked that

— A1+Xlal —d.2 + A.2oc2
, and

are co-periodic solutions of P, provided at(t) and a.2{t) do not vanish. Hence we have
proved the following lemma.

Lemma 4.2. Let a;,A,- ( i=l ,2) and P be as in Lemma 4.1. //a1(f)^=0 or <x2(t)j=Q for
all t, then Peff^Hj, otherwise ?eHA.

Remark. By the Sturm separation theorem, a1 )a2 either both have zeroes or both
have none.

Theorem 4.3. / / P e H3, then P* has a base of the form

where AeK and aua2 are real-valued co-periodic functions.
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Proof. If P e H 3 , then a base of P* has one of the following two forms:

(a1(t)e
Xt,a2(t)e

il) (4.3)

^ We*), (4.4)

where X e IR and au <x2 are real-valued cu-periodic functions. It can be checked that if a
base of P* has the form (4.4), then

is a solution of P where c,,c2eC. Hence P has at most one period solution, namely

dl + Xal

provided a^O^O for all t, and the lemma is proved.

Remark. We saw in Lemma 3.5 that if Peffu, then P* has Floquet base of the
form (4.4). If P* has this form of base, either PeHtl or PeH4. We saw that Htl is the
boundary "between" Ht and H2 in the sense that H 1 1 =H 1 nH 2 . We now show that H3

is a part of the boundary of H4.

Theorem 4.4. / / P e H3, then

(i) P is an accumulation point of H3,

(ii) P is an accumulation point of HA.

Proof. Since PeH3, by Theorem 4.3, P* has a base of the form (a^t)^ ' , a2(t) em).
Formulae (1.3) and (1.4) give us

a2(d'1 + 2Mt + A2al) — cci(<x2 + 2te2 + ^V-T)
a2(d1 + Aax) — ai(a2 + Xa2)

and

(oc-t -\-2X6i\ -\- X 0Ci)(oCf-\-Xoi-y) — (ex
r=—

a^dt!-t-AaJ —a!(a2-l-2a2)

where P = (p,r) and a2(t) (a1(t) + Aa1(t)) — a1(£)(d2(t) + ^ 2 ( 0 ) ^ 0 for all t (because at eAl,
a2 eXt are linearly independent).

To prove (i) consider

un=(a1(f)e( ; i+1 /n ) ' ,a2(0e( ; i + 1/'1)'), n e Z + .
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It can be checked that un is a base of Pn=(pn,rn) where

oe2(d1+2(A+l/n)d1
P-= 77

(a2+2(/> + l/rijdi +(X+ l/n)2«1)(a2 + (A+ l/n)a2)-(a2

Also lim,,.,^ Pn = P and PneH3. Hence (i) is proved.

To prove (ii) consider

It can be checked that un is a base of P" = (pn, rn) where

_ g 2 (

a2(d1+(A+l/n)a1)-a1(d2

Now \\mn^x Pn = P. Since PeH3, we know that ax must have a zero, otherwise P has a
real co-periodic solution, namely — dj +Acc1/a1. Hence by Lemma 4.2 PneH4 and the
theorem is proved.

Remark. Theorem 4.4(i) shows that H3 has no isolated member.

Theorem 4.5. H3 = /?4\W4.

Proof. Suppose that Petf3. Then by Theorem 4.4 (ii) Pe/?4\H4. Hence

Now if Pe# 4 \H 4 , then either P e H 1 u H 2 or Pe# 3 . Since HVKJH2 is open, P€//3

and the theorem is proved.

Remark. Suppose that P* has a base of the form (<xle
Xl, (ta1-\-a2)e

kt) and a± has a
zero. Then P e HA. By using the same method used in the proof of Theorem 4.4 we can
show that PeH2. Therefore H3j=dH4.
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