ON CYCLIC GROUP ACTIONS OF EVEN ORDER ON THE THREE DIMENSIONAL TORUS

M.A. Natsheh

In this paper, we prove that if h is a generator of a $Z_{2 n}$ action on $S^{1} \times S^{1} \times S^{1}$, and Fix $\left(h^{n}\right)$ consists of two disjoint tori, one torus, four simple closed curves, or two simple closed curves, then h is equivalent to the obvious actions.

0. Introduction

A homeomorphism $h: M \rightarrow M$ of a space M onto itself is called a periodic map on M with period n if $h^{n}=$ identity and $h^{i} \neq$ identity for $1 \leqslant i<n$. A periodic map h on M is weakly equivalent to a periodic map h^{\prime} on M^{\prime} if there exists a homeomorphism $t: M \rightarrow M^{\prime}$ such that $t^{-1} h t=\left(h^{\prime}\right)^{i}$ for some $1 \leqslant i<n$. if $i=1$, then h and h^{\prime} are equivalent.

In this paper we consider the classification problem of $Z_{2 n}$ actions on $S^{1} \times S^{1} \times S^{1}$. Let h be a periodic map which generates the $Z_{2 n}$ action. We solve the problem when Fix $\left(h^{n}\right)$, the fixed point set of h^{n}, is a torus, two disjoint tori, four simple closed curves, or two simple closed curves. We investigate the actions when Fix (h^{n}) consists of eight points. We extend the results of Hempel [3] concerning free cyclic actions on $S^{1} \times S^{1} \times S^{1}$, and Showers [7] and Kwun and Tollefson [5] of the involutions of $S^{1} \times S^{1} \times S^{1}$. We obtain the following classification theorems for periodic maps $h: S^{1} \times S^{1} \times S^{1} \rightarrow S^{1} \times S^{1} \times S^{1}$ of period $2 n, n>1$.

Theorem 3. If Fix $\left(h^{n}\right)=T_{1} \cup T_{2}$, the union of two tori, then n is odd and there is a periodic map $g: T \rightarrow T$ of period n such that h is equivalent to h_{1}, where $h_{1}(x, y, z)=(g(x, y), \bar{z})$. For $n=3$, there are two such actions, up to weak equivalence. For each $n \geqslant 5$, there exists a unique action up to weak equivalence.

Theorem 4. If $\operatorname{Fix}\left(h^{n}\right)=T_{1}$, a torus, then n is odd and for each n, h is unique up to weak equivalence.

Theorem 5. If Fix $\left(h^{n}\right)=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$, the disjoint union of four simple closed curves, then (up to weak equivalence) for $n=2$ there are three actions, for

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.
$n=3$ there are three actions, and for $n \geqslant 4$ there is a unique action for every odd n, and there is no action for any even n.

Theorem 6. If Fix $\left(h^{n}\right)=S_{1} \cup S_{2}$, the disjoint union of two simple closed curves, then (up to weak equivalence) for $n=2$ there are three actions, and for $n \geqslant 3$, there is a unique action for every odd n and there is no action for any even n.

Throughout this paper we work in the $P L$ category. We divide the paper into six sections. In Section 1 we list all standard Z_{n} actions on T, and all nonfree involutions on $S^{1} \times S^{1} \times S^{1}$. In Section $2,3,4$ and 5 we prove Theorems $3,4,5$ and 6 respectively. In Section 6 we investigate $Z_{2 n}$ actions on $S^{1} \times S^{1} \times S^{1}$ when $\operatorname{Fix}\left(h^{n}\right)=$ eight points.

Let h be a periodic map of period $n=m l$ on a space M. Then h^{m} has period l. Let $q: M \rightarrow M / h^{m}$ be the orbit map induced by h^{m}. Then there exists a homeomorphism \bar{h} on M / h^{m} of period m, uniquely determined by h such that $\bar{h} q=q h . \bar{h}$ is called the periodic map on M / h^{m} induced by h. Throughout this paper we denote $S^{1} \times S^{1} \times S^{1}$ by T^{3}, the torus $S^{1} \times S^{1}$ by T, the Klein bottle by K and the Mobius band by $M b$. We view S^{1} as the set of complex numbers z with $|z|=1$.
1.

In this section we give a list of standard cyclic actions on T. We also write a list of standard nonfree actions on T^{3}. The proof of Theorem 1 may be found [6] and [9]. The proof of Theorem 2 is in [4] and [7].

Theorem 1. Let h be a periodic map of period n, acting on T. Then h is weakly equivalent to one of the following maps.
I. h preserves orientation.
a) $h(x, y)=(x, \omega y), \quad \omega=e^{2 \pi i / n}$
$\operatorname{Fix}\left(h^{i}\right)=\emptyset \quad 1 \leqslant i<n$
$T / h \approx T$.
b) $\quad h(x, y)=(\hat{y}, x y), \quad n=6$
$\operatorname{Fix}(h)=\{(1,1)\}$
$\operatorname{Fix}_{\text {ix }}\left(h^{2}\right)=\left\{(1,1),(\omega, \omega),\left(\omega^{2}, \omega^{2}\right)\right\}, \quad \omega=e^{2 \pi i / 3}$
$\operatorname{Fix}\left(h^{3}\right)=\{(1,1),(1,-1),(-1,1),(-1,-1)\}$
$T / h \approx S^{2}$.
c) $\quad h(x, y)=(y, \bar{x}), \quad n=4$
$\operatorname{Fix}(h)=\{(1,1),(-1,-1)\}$
$\operatorname{Fix}\left(h^{2}\right)=\{(1,1),(-1,-1),(1,-1),(-1,1)\}$
$T / h \approx S^{2}$.
d) $\quad h(x, y)=(\bar{x} \bar{y}, x), \quad n=3$
$\operatorname{Fix}(h)=\operatorname{Fix}\left(h^{2}\right)=\left\{(1,1),(w, w),\left(w^{2}, w^{2}\right)\right\}, \quad w=e^{2 \pi i / 3}$ $T / h \approx S^{2}$.
e) $\quad h(x, y)=(\bar{x}, \bar{y}), \quad n=2$
$\operatorname{Fix}(h)=\{(1,1),(-1,-1),(1,-1),(-1,1)\}$
$T / h \approx S^{2}$.
II. h reverses orientation, and hence n is even, $n=2 k$,
a) $\quad h(x, y)=(x \omega, \bar{y}), \quad \omega=e^{2 \pi i / n}$
$\operatorname{Fix}\left(h^{i}\right)=\emptyset, \quad 1 \leqslant i<n$
$T / h \approx K$.
b) $\quad h(x, y)=(x \omega, x \bar{y}), \quad w=e^{2 \pi i / k}, \quad k$ even,
$\operatorname{Fix}\left(h^{i}\right)=\emptyset, \quad 1 \leqslant i<n$
$T / h \approx K$.
c) $\quad h(x, y)=(\bar{x}, \omega y), \quad \omega=e^{2 \pi i / k}, \quad k$ odd,
$\operatorname{Fix}\left(h^{i}\right)=\emptyset, \quad 1 \leqslant i<k$
$\operatorname{Fix}\left(h^{k}\right)=S_{1}^{1} \cup S_{2}^{1}$
$T / h \approx S^{1} \times I$.
d) $\quad h(x, y)=(x y \omega, \bar{y}), \quad \omega=e^{2 \pi i / k}, \quad k$ odd,
$\operatorname{Fix}\left(h^{i}\right)=\emptyset, \quad 1 \leqslant i<k$
$F \operatorname{ix}\left(h^{k}\right)=S^{1}$
$T / h \approx M b$.
Theorem 2. The following is a standard list of nonfree involutions on T^{3}.

$$
\begin{array}{ll}
h_{1}(x, y, z)=(x, y, \bar{z}), & F i x\left(h_{1}\right)=T_{1} \cup T_{2}, \\
h_{2}(x, y, z)=(y, x, z), & F i x\left(h_{2}\right)=T, \\
h_{3}(x, y, z)=(\bar{x}, \bar{y}, z), & F i x\left(h_{3}\right)=S_{1}^{1} \cup S_{2}^{1} \cup S_{3}^{1} \cup S_{4}^{1}, \\
h_{4}(x, y, z)=(x y, \bar{y}, \bar{z}), & F i x\left(h_{4}\right)=S_{1}^{1} \cup S_{2}^{1}, \\
h_{5}(x, y, z)=(\bar{x}, \bar{y}, \bar{z}), & F i x\left(h_{5}\right)=\text { eight points. }
\end{array}
$$

2. Proof of Theorem 3

(2.1) $\operatorname{Fix}\left(h^{n}\right)=T_{1} \cup T_{2}$. In fact we may view h^{n} as given by $h^{n}(x, y, z)=$ $(x, y, \bar{z}), T_{1}=T \times\{1\}, T_{2}=T \times\{-1\} . T_{1} \cup T_{2}$ is invariant under $h . T_{1} \cup T_{2}$ separates T^{3} into two components A and B, each of which is homeomorphic to $T \times I$. Since $T_{1} \cup T_{2}$ is invariant under h, we have $h(A)=B$ or $h(A)=A$, but $h^{n}(A)=B$, hence $h(A)=B$ and n is odd. Moreover $h\left(T_{i}\right)=T_{i}, i=1,2$. Let $q: T^{3} \rightarrow T^{3} / h^{n} \approx T \times I$ be the quotient map. h induces $\bar{h}: T^{3} / h^{n} \rightarrow T^{3} / h^{n}, \bar{h}$ is a periodic map of period n, which keeps each of the two boundary components invariant, and is orientation preserving. Hence it is equivalent to $h^{\prime}: T \times I \rightarrow T \times I, h^{\prime}(x, y, t)=(g(x, y), t)$, where g is a periodic map on T with period $n[5]$. Now let $h: T^{3} \rightarrow T^{3}$ be given by $h_{1}(x, y, z)=(g(x, y), \bar{z})$, then $\bar{h}_{1}: T^{3} / h_{1}^{n} \rightarrow T^{3} / h_{1}^{n}$ may be given by $\bar{h}_{1}(x, y, t)=(g(x, y), \bar{t})$. Hence \bar{h} is
equivalent to \bar{h}_{1}. Therefore there exists a homeomorphism $t: T^{3} / h_{1}^{n} \rightarrow T^{3} / h^{n}$ such that $\bar{h} t=t \bar{h}_{1}$. Define $\bar{t}: T^{3} \rightarrow T^{3}$ as follows: for each $x_{1} \in A_{1} \subseteq T^{3}$, let $x_{2}=h_{1}^{n}\left(x_{1}\right)$, then $q_{1}\left(x_{1}\right)=q_{1}\left(x_{2}\right)=x \in T^{3} / h_{1}^{n}$. If $t(x)=y \in T^{3} / h^{n}$, then there exists $y_{1} \in A$, $y_{2} \in B$ such that $q\left(y_{1}\right)=q\left(y_{2}\right)=y$. Let $\bar{t}\left(x_{1}\right)=y_{1}$. Similarly define $\bar{t}(x)$ for $x \in B$. It is easy to check that $h \bar{t}=\bar{t} h_{1}$ and h equivalent to h_{1}.
(2.2). For $n=3$ there are two cases - (a) Fix (g) consists of three points, and (b) $\operatorname{Fix}(g)=\emptyset$.

Case (a). h is given by the following formula (see Section 1).

$$
\begin{aligned}
& h(x, y, z)=(\bar{x} \bar{y}, x, \bar{z}) \\
& \operatorname{Fix}(h)=\operatorname{six} \text { points } \\
& \operatorname{Fix}\left(h^{2}\right)=\left\{(1,1),(\omega, \omega),\left(\omega^{2}, \omega^{2}\right)\right\} \times S^{1}, \quad \omega=e^{2 \pi i / 3} \\
& \operatorname{Fix}\left(h^{3}\right)=T_{1} \cup T_{2}
\end{aligned}
$$

h is unique up to weak equivalence.
Case (b). See (2.3).
(2.3) For $n \geqslant 3, n$ odd. From Section 1, h is given by

$$
\begin{aligned}
& h(x, y, z)=(x, \omega y, \bar{z}), \quad \omega=e^{2 \pi i / n} \\
& \operatorname{Fix}\left(h^{i}\right)=\emptyset, \quad 1 \leqslant i<n \\
& \operatorname{Fix}\left(h^{n}\right)=T_{1} \cup T_{2}
\end{aligned}
$$

For each n, h is unique up to weak equivalence.

3. Proof of Theorem 4

Fix $\left(h^{n}\right)=T_{1}$, hence $h\left(T_{1}\right)=T_{1}$ and $h^{n}(x)=x$ for all $x \in T_{1} . h^{n}$ interchanges the sides of T_{1}, therefore h interchanges the sides of T_{1} and n is odd. Cut T^{3} along T_{1} to get a manifold $M \approx T \times I$ and an induced homeomorphism $\bar{h}: T \times I \rightarrow T \times I$ of period $2 n$, where $\bar{h}(T \times\{0\})=T \times\{1\}$ and $\operatorname{Fix}(\bar{h})=\emptyset$.

Now \bar{h}^{2} is orientation preserving of period n which keeps each of the boundary components invariant. Hence there exists a periodic map $g: T \rightarrow T$ of period n, which is orientation preserving such that \bar{h} is equivalent to h^{\prime} where $h^{\prime}(x, y, t)=$ $(g(x, y), t)$ [5]. Without loss of generality we may assume $\bar{h}^{2}(x, y, t)=(g(x, y), t)$ (after parametrising $M \approx T \times I$). Now we have two cases - (a) $\operatorname{Fix}\left(\bar{h}^{2}\right)=\emptyset$, and (b) $\operatorname{Fix}\left(\bar{h}^{2}\right) \neq 0$.

Case (a). $\operatorname{Fix}\left(\bar{h}^{2}\right)=\emptyset$, hence $\operatorname{Fix}(g)=\emptyset$ and g is weakly equivalent to $g(x, y)=$ $(x, u y), u=e^{2 \pi i / n} . \bar{h}^{2}: T \times I \rightarrow T \times I$ induces an involution $h^{\prime}: T \times I / \bar{h}^{2} \rightarrow T \times$ $I / \bar{h}^{2} \approx T \times I$, where h^{\prime} interchanges the two sides of $T \times I$ and Fix $\left(h^{\prime}\right)=\emptyset$. Hence
$h^{\prime}(x, y, t)=(x,-y, 1-t)$ (after parametrising $\left.T \times I / \bar{h}^{2} \approx T \times I\right)$. From this it is easy to show that $\bar{h}(x, y, z)=(x, \omega y, 1-t), \omega=e^{\pi i / n}$. Identifying $(x, y, 0)$ with $(x,-y, 1)$ in $T \times I$ we get $h: T^{3} \rightarrow T^{3}$ with $\operatorname{Fix}\left(h^{i}\right)=\emptyset, 1 \leqslant i<n, \operatorname{Fix}\left(h^{n}\right)=T_{1} . h$ is unique up to weak equivalence.

Case (b). Fix $\left(\bar{h}^{2}\right) \neq \emptyset$. Hence $\operatorname{Fix}(g) \neq \emptyset$ and from Section $1, n=3$ and $\bar{h}^{2}(x, y)=(\bar{x} \bar{y}, x)$, up to weak equivalence. \bar{h} induces an involution $h^{\prime \prime}: T \times I / \bar{h}^{2} \rightarrow$ $T \times I / \bar{h}^{2} \approx S^{2} \times I$, such that $\operatorname{Fix}\left(h^{\prime \prime}\right) \subseteq I_{1} \cup I_{2} \cup I_{3}$ the union of three simple arcs, and $h^{\prime \prime}\left(I_{1} \cup I_{2} \cup I_{3}\right)=I_{1} \cup I_{2} \cup I_{3}$. But there is no such involution on $S^{2} \times I$ with these properties. Indeed there is no involution on S^{2} with an invariant three point set and fix point set consisting of two points or empty.

4. Proof of Theorem 5

(4.1). Fix $\left(h^{n}\right)=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$, the union of four simple closed curves. Without loss of generality we may view h^{n} as given by $h^{n}(x, y, z)=(\bar{x}, \bar{y}, z)$. Let $q: T^{3} \rightarrow$ T^{3} / h^{n} be the quotient map. Now $T^{3} / h^{n} \approx S^{2} \times S^{1}$ and h induces a periodic map $\bar{h}:\left(S^{2} \times S^{1}, \bigcup_{1}^{4} q\left(S_{i}\right)\right) \rightarrow\left(S^{2} \times S^{1}, \bigcup_{1}^{4} q\left(S_{i}\right)\right)$ of period n.

Lemma 4.2. h is equivalent to a periodic homeomorphism h_{1} given by $h_{1}(x, y, z)=(g(x, y), \beta(z))$, where $g^{n}(x, y)=(\bar{x}, \bar{y})$ and $\beta^{n}(z)=z$.

Proof: Let $q_{1}: T^{3} \rightarrow T^{3} / h_{1}^{n} \approx S^{2} \times S^{1}$. h_{1} induces $\bar{h}_{1}: T^{3} / h_{1}^{n} \rightarrow T^{3} / h_{1}^{n}$ of period n, where $\bar{h}_{1}([x, y], z)=(\bar{g}([x, y]), \beta(z))$, where $\bar{g}: T / g^{n} \rightarrow T / g^{n} \approx S^{2}$ is the induced map by g, and $[x, y]$ is the image under the quotient map $q_{2}: T \rightarrow T / g^{n}$. Now \bar{h} and \bar{h}_{1} are equivalent [1]. Hence we can define a homeomorphism $t: T^{3} \rightarrow T^{3}$ such that $t h_{1}=h t$ in exactly the same way as we did in Theorem 3. From this it follows that h is equivalent to h_{1}.
(4.3). For $n=2$, then by Section $1, g(x, y)=(y, \bar{x})$ and $\beta(z)$ equals (a) \bar{z}, (b) z, (c) $-z$. In each case h is unique up to weak equivalence and is given by:
(a) $h(x, y, z)=(y, \bar{x}, \bar{z})$
$\operatorname{Fix}(h)=\{(1,1,1),(1,1,-1),(-1,-1,1),(-1,-1,-1)\}$
$\operatorname{Fix}\left(h^{2}\right)=\{(1,1),(1,-1),(-1,1),(-1,-1)\} \times S^{1}$.
(b) $h(x, y, z)=(y, \bar{x}, z)$
$\operatorname{Fix}(h)=\{(1,1),(-1,-1)\} \times S^{1}$
$\operatorname{Fix}\left(h^{2}\right)=\{(1,1),(-1,-1),(1,-1),(-1,1)\} \times S^{1}$.
(c) $h(x, y, z)=(y, \bar{x},-z)$

Fix $(h)=\emptyset$
$\operatorname{Fix}\left(h^{2}\right)=\{(1,1),(-1,-1),(1,-1),(-1,1)\} \times S^{1}$.
(4.4) For $n=3$, by Section $1, g$ is given by $g(x, y)=(\bar{y}, x y)$ or $g(x, y)=(\bar{x}, \bar{y})$.
$\beta(x)=\omega x, \omega=e^{2 \pi i / 3}$. Hence we get the following cases. In each case h is unique up to weak equivalence.
(a) $h(x, y, z)=(\bar{y}, x y, z)$

$$
\operatorname{Fix}(h)=\{(1,1)\} \times S^{1}
$$

$$
\operatorname{Fix}\left(h^{2}\right)=\left\{(1,1),(\omega, \omega),\left(\omega^{2}, \omega^{2}\right)\right\} \times S^{1}, \quad \omega=e^{2 \pi i / 3}
$$

$$
\operatorname{Fix}\left(h^{3}\right)=\{(1,1),(-1,-1),(1,-1),(-1,1)\} \times S^{1}
$$

(b) $h(x, y, z)=(\bar{y}, x y, \omega z), \quad \omega=e^{2 \pi i / 3}$

$$
\operatorname{Fix}(h)=\operatorname{Fix}\left(h^{2}\right)=\emptyset
$$

$$
\operatorname{Fix}\left(h^{3}\right)=\{(1,1),(-1,-1),(1,-1),(-1,1)\} \times S^{1}
$$

(c) $h(x, y, z)=(\bar{z}, \bar{y}, \omega z), \quad \omega=e^{2 \pi i / 3}$

$$
\begin{aligned}
& \operatorname{Fix}(h)=\operatorname{Fix}\left(h^{2}\right)=\emptyset \\
& \operatorname{Fix}\left(h^{3}\right)=\{(1,1),(-1,-1),(1,-1),(-1,1)\} \times S^{1}
\end{aligned}
$$

(4.5). For $n>3$ by Section $1, g(x, y)=(\bar{x}, \bar{y})$ and n has to be odd. Hence for every odd $n>3$ there is a unique action up to weak equivalence, and there is no action for any even $n>3$. h is given by the following standard formula

$$
\begin{aligned}
& h(x, y, z)=(\bar{x}, \bar{y}, \omega z), \quad \omega=e^{2 \pi i / n} \\
& \operatorname{Fix}\left(h^{i}\right)=\emptyset, \quad 1 \leqslant i<n \\
& \operatorname{Fix}\left(h^{n}\right)=\{(1,1),(-1,-1),(1,-1),(-1,1)\} \times S^{1}
\end{aligned}
$$

5. Proof of Theorem 6

(5.1). $\operatorname{Fix}\left(h^{n}\right)=S_{1} \cup S_{2}$, the union of two simple closed curves. Without loss of generality we may take $T^{3}=T \times I / \sim(x, y, 0) \sim(A(x, y), 1)=(-x,-y, 1)$ and $h^{n}(x, y, t)=(\bar{x}, \bar{y}, t)$. Let $q: T^{3} \rightarrow T^{3} / h^{n} \approx S^{2} \times S^{1}$ be the quotient map. h induces a period n homeomorphism $\bar{h}:\left(T^{3} / h^{n}, q\left(S_{1}, \cup S_{2}\right)\right) \rightarrow\left(T^{3} / h^{n}, q\left(S_{1} \cup S_{2}\right)\right)$. In the same way in the proof of Lemma (4.2), h is equivalent to h_{1}, where $h_{1}(x, y, t)=$ $(g(x, y), \beta(t))$, where $g^{n}(x, y)=(\bar{x}, \bar{y})$ and $\beta^{n}(t)=t$.
(5.2). For $n=2, g(x, y)=(y, \bar{x})$ and β has three different forms. Hence we have three different cases. In each case h is unique up to weak equivalence. A standard h is given by
(a) $h([x, y, t])=[y, \bar{x}, 1-t]$
$\operatorname{Fix}(h)=\left\{\left[1,1, \frac{1}{2}\right],\left[-1,-1, \frac{1}{2}\right],[1,-1,0],[-1,1,0]\right\}$
$\operatorname{Fix}\left(h^{2}\right)=\{(1,1),(1,-1),(-1,1),(-1,-1)\} \times I / \sim \approx S_{1} \cup S_{2}$,
(b) $h([x, y, t])=[y, \bar{x}, t]$
$\operatorname{Fix}(h)=\{(1,1),(-1,-1)\} \times I \sim \approx S_{1}$
$\operatorname{Fix}\left(h^{2}\right)=S_{1} \cup S_{2}$,
(c) $h([x, y, t])= \begin{cases}{\left[y, \bar{x}, t+\frac{1}{2}\right],} & 0 \leqslant t \leqslant \frac{1}{2} \\ {\left[y, \bar{x}, t-\frac{1}{2}\right],} & \frac{1}{2} \leqslant t \leqslant 1\end{cases}$

$$
\begin{aligned}
& \operatorname{Fix}(h)=\emptyset \\
& \operatorname{Fix}\left(h^{2}\right)=S_{1} \cup S_{2} .
\end{aligned}
$$

(5.3). For $n=3$, then $g(x, y)=(\bar{y}, x y)$ or $g(x, y)=(\bar{x}, \bar{y})$, and $\beta(t)$ has two forms. Also we need $g A=A g$ hence $g(x, y)=(\bar{x}, \bar{y})$ and there is a unique action up to weak equivalence which may be given by:

$$
\begin{aligned}
& h([x, y, t])= \begin{cases}{\left[\bar{x}, \bar{y}, t+\frac{1}{3}\right],} & 0 \leqslant t \leqslant \frac{2}{3} \\
{\left[-\bar{x},-\bar{y}, t-\frac{2}{3}\right],} & \frac{2}{3} \leqslant t \leqslant 1\end{cases} \\
& \operatorname{Fix}(h)=\operatorname{Fix}\left(h^{2}\right)=\emptyset \\
& \operatorname{Fix}\left(h^{3}\right)=S_{1} \cup S_{2} .
\end{aligned}
$$

(5.4). For $n>3, g(x, y)=(\bar{x}, \bar{y})$ and n is odd. Hence there is a unique action for every odd $n>3$, up to weak equivalence and there is no action for any even $n>3$. A standard h may be given by:

$$
\begin{aligned}
& h([x, y, t])= \begin{cases}{\left[\bar{x}, \bar{y}, t+\frac{1}{n}\right],} & 0 \leqslant t \leqslant \frac{n-1}{n} \\
{\left[-\bar{x},-\bar{y}, t-\frac{n-1}{n},\right.} & \frac{n-1}{n} \leqslant t \leqslant 1\end{cases} \\
& \operatorname{Fix}\left(h^{i}\right)=\emptyset, \quad 1 \leqslant i<n \\
& \operatorname{Fix}\left(h^{n}\right)=S_{1} \cup S_{2} .
\end{aligned}
$$

6. $\operatorname{Fix}\left(h^{n}\right)=$ EIGHT POINTS

(6.1). Without loss of generality h^{n} may be given by

$$
h^{n}(x, y, z)=(\bar{x}, \bar{y}, \bar{z})
$$

Hence h is orientation reversing and n is odd. If there exists an invariant torus T, then h may be viewed as a product $h(x, y, z)=(g(x, y), \bar{z}), g^{n}(x, y)=(\bar{x}, \bar{y})$.
(6.2). For $n=3, g(x, y)=(\bar{y}, x y)$ and h is unique up to weak equivalence. h may be given by

$$
\begin{aligned}
& h(x, y, z)=(\bar{y}, x y, \bar{z}) \\
& \operatorname{Fix}(h)=\{(1,1,1),(1,1,-1)\} \\
& \operatorname{Fix}\left(h^{2}\right)=\left\{(1,1),(\omega, \omega),\left(\omega^{2}, \omega^{2}\right)\right\} \times S^{1} \\
& \operatorname{Fix}\left(h^{3}\right)=\text { eight points } .
\end{aligned}
$$

(6.3). For $n>3$, the only action g on T such that $g^{n}(x, y)=(\bar{x}, \bar{y})$ is $g(x, y)=$ (\bar{x}, \bar{y}), but then the period of h would be 2 . Hence there is no such action.
(6.4). There is a nonstandard action h which may be given by

$$
\begin{aligned}
& h(x, y, z)=(\bar{y}, \bar{z}, \bar{x}) \\
& \operatorname{Fix}(h)=\{(1,1,1),(-1,-1,-1)\} \\
& \operatorname{Fix}\left(h^{2}\right)=S_{1} \\
& \operatorname{Fix}\left(h^{3}\right)=\text { eight points } .
\end{aligned}
$$

Hence the proof of the case $\operatorname{Fix}\left(h^{n}\right)=$ eight points is not complete.

References

[1] M.J. Dunwoody, 'An equivariant sphere theorem', Bull. London Math. Soc. 17 (1985), 437-448.
[2] J. Hempel, 3-manifolds (Ann. of Math. Studies, no. 86, Princeton University Press, Princeton, N.J., 1976).
[3] J. Hempel, 'Free cyclic actions on $S^{1} \times S^{1} \times S^{1}$ ', Proc. Amer. Math. Soc. 48 (1975), 221-227.
[4] K.W. Kwun and J.L. Tollefson, ' $P L$ involutions of $S^{1} \times S^{1} \times S^{1}$, Amer. Math. Soc. 203 (1975), 97-106.
[5] W. Meeks and P. Scott, 'Finite group actions on 3-manifolds', (Preprint).
[8] J.H. Przytycki, 'Action of Z_{n} on some surface-bundles over S^{1} ', Colloq. Math. 47 (1982), 221-239.
[7] D.K. Showers, Thesis, (Michigan State Univeristy, 1973).
[8] J.L. Tollefson, 'Involutions on $S^{1} \times S^{2}$ and other 3-manifolds', Trans. Amer. Math. Soc. 183 (1973), 139-152.
[日] K. Yokoyama, 'Classification of periodic maps on compact surfaces I', Tokyo J. Math. 6 (1983), 75-94.

Department of Mathematics
University of Jordan
Amman, Jordan

Department of Mathematics
Michigan State University
E. Lansing, MI 48824

United States of America

[^0]: Received 29 April 1987

