BULL. AUSTRAL. MATH. SOC. Vol. 37 (1988) [189–196]

ON CYCLIC GROUP ACTIONS OF EVEN ORDER ON THE THREE DIMENSIONAL TORUS

M.A. NATSHEH

In this paper, we prove that if h is a generator of a Z_{2n} action on $S^1 \times S^1 \times S^1$, and $Fix(h^n)$ consists of two disjoint tori, one torus, four simple closed curves, or two simple closed curves, then h is equivalent to the obvious actions.

0. INTRODUCTION

A homeomorphism $h: M \to M$ of a space M onto itself is called a periodic map on M with period n if $h^n =$ identity and $h^i \neq$ identity for $1 \leq i < n$. A periodic map h on M is weakly equivalent to a periodic map h' on M' if there exists a homeomorphism $t: M \to M'$ such that $t^{-1}ht = (h')^i$ for some $1 \leq i < n$. if i = 1, then h and h' are equivalent.

In this paper we consider the classification problem of Z_{2n} actions on $S^1 \times S^1 \times S^1$. Let h be a periodic map which generates the Z_{2n} action. We solve the problem when $Fix(h^n)$, the fixed point set of h^n , is a torus, two disjoint tori, four simple closed curves, or two simple closed curves. We investigate the actions when $Fix(h^n)$ consists of eight points. We extend the results of Hempel [3] concerning free cyclic actions on $S^1 \times S^1 \times S^1$, and Showers [7] and Kwun and Tollefson [5] of the involutions of $S^1 \times S^1 \times S^1$. We obtain the following classification theorems for periodic maps $h: S^1 \times S^1 \times S^1 \to S^1 \times S^1 \times S^1$ of period 2n, n > 1.

THEOREM 3. If $Fix(h^n) = T_1 \cup T_2$, the union of two tori, then n is odd and there is a periodic map $g: T \to T$ of period n such that h is equivalent to h_1 , where $h_1(x, y, z) = (g(x, y), \overline{z})$. For n = 3, there are two such actions, up to weak equivalence. For each $n \ge 5$, there exists a unique action up to weak equivalence.

THEOREM 4. If $Fix(h^n) = T_1$, a torus, then n is odd and for each n, h is unique up to weak equivalence.

THEOREM 5. If $Fix(h^n) = S_1 \cup S_2 \cup S_3 \cup S_4$, the disjoint union of four simple closed curves, then (up to weak equivalence) for n = 2 there are three actions, for

Received 29 April 1987

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

M.A. Natsheh

n = 3 there are three actions, and for $n \ge 4$ there is a unique action for every odd n, and there is no action for any even n.

THEOREM 6. If $Fix(h^n) = S_1 \cup S_2$, the disjoint union of two simple closed curves, then (up to weak equivalence) for n = 2 there are three actions, and for $n \ge 3$, there is a unique action for every odd n and there is no action for any even n.

Throughout this paper we work in the *PL* category. We divide the paper into six sections. In Section 1 we list all standard Z_n actions on T, and all nonfree involutions on $S^1 \times S^1 \times S^1$. In Section 2, 3, 4 and 5 we prove Theorems 3, 4, 5 and 6 respectively. In Section 6 we investigate Z_{2n} actions on $S^1 \times S^1 \times S^1$ when Fix $(h^n) =$ eight points.

Let h be a periodic map of period n = ml on a space M. Then h^m has period l. Let $q: M \to M/h^m$ be the orbit map induced by h^m . Then there exists a homeomorphism \bar{h} on M/h^m of period m, uniquely determined by h such that $\bar{h}q = qh$. \bar{h} is called the periodic map on M/h^m induced by h. Throughout this paper we denote $S^1 \times S^1 \times S^1$ by T^3 , the torus $S^1 \times S^1$ by T, the Klein bottle by K and the Mobius band by Mb. We view S^1 as the set of complex numbers z with |z| = 1.

1.

In this section we give a list of standard cyclic actions on T. We also write a list of standard nonfree actions on T^3 . The proof of Theorem 1 may be found [6] and [9]. The proof of Theorem 2 is in [4] and [7].

THEOREM 1. Let h be a periodic map of period n, acting on T. Then h is weakly equivalent to one of the following maps.

I. h preserves orientation.

a) $h(x,y) = (x, \omega y), \qquad \omega = e^{2\pi i/n}$ $Fix(h^i) = \emptyset \qquad 1 \le i < n$ $T/h \approx T$. b) $h(x,y) = (\bar{y}, xy), \qquad n = 6$ $Fix(h) = \{(1,1)\}$ $Fix(h^2) = \{(1,1), (\omega, \omega), (\omega^2, \omega^2)\}, \qquad \omega = e^{2\pi i/3}$ $Fix(h^3) = \{(1,1), (1,-1), (-1,-1)\}$ $T/h \approx S^2$. c) $h(x,y) = (y,\bar{x}), \qquad n = 4$ $Fix(h) = \{(1,1), (-1,-1)\}$ $Fix(h^2) = \{(1,1), (-1,-1), (1,-1), (-1,1)\}$ $T/h \approx S^2$. d) $h(x,y) = (\bar{x} \bar{y}, x), \qquad n = 3$ $Fix(h) = Fix(h^2) = \{(1,1), (w, w), (w^2, w^2)\}, \qquad w = e^{2\pi i/3}$

 $T/h \approx S^2$.

e) $h(x,y) = (\bar{x},\bar{y}),$ n=2 $Fix(h) = \{(1,1), (-1,-1), (1,-1), (-1,1)\}$ $T/h \approx S^2$.

II. h reverses orientation, and hence n is even, n = 2k,

- a) $h(x,y) = (x\omega, \bar{y}), \quad \omega = e^{2\pi i/n}$ $Fix(h^i) = \emptyset, \qquad 1 \le i < n$ $T/h \approx K$.
- b) $h(x,y) = (x\omega, x\overline{y}), \quad w = e^{2\pi i/k}, \quad k \text{ even},$ $Fix(h^i) = \emptyset, \qquad 1 \leq i < n$ $T/h \approx K$.
- c) $h(x,y) = (\bar{x}, \omega y), \quad \omega = e^{2\pi i/k}, \quad k \text{ odd},$ $Fix(h^i) = \emptyset, \qquad 1 \le i < k$ $Fix(h^k) = S_1^1 \cup S_2^1$ $T/h \approx S^1 \times I$.
- d) $h(x,y) = (xy\omega, \bar{y}), \quad \omega = e^{2\pi i/k}, \quad k \text{ odd},$ $Fix(h^i) = \emptyset, \qquad 1 \le i < k$ $Fix(h^k) = S^1$ $T/h \approx Mb$.

THEOREM 2. The following is a standard list of nonfree involutions on T^3 .

- $h_1(x, y, z) = (x, y, \overline{z}),$ $Fix(h_1) = T_1 \cup T_2$ (1)
- $h_2(x, y, z) = (y, x, z),$ $Fix(h_2) = T,$ (2)
- $h_3(x, y, z) = (\bar{x}, \bar{y}, z),$ $Fix(h_3) = S_1^1 \cup S_2^1 \cup S_3^1 \cup S_4^1,$ (3)

 $Fix(h_4) = S_1^1 \cup S_2^1$, $h_4(x, y, z) = (xy, \bar{y}, \bar{z}),$ (4)

 $h_5(x, y, z) = (\bar{x}, \bar{y}, \bar{z}),$ $Fix(h_5) = eight points.$ (5)

2. PROOF OF THEOREM 3

(2.1) Fix $(h^n) = T_1 \cup T_2$. In fact we may view h^n as given by $h^n(x, y, z) =$ $(x, y, \overline{z}), T_1 = T \times \{1\}, T_2 = T \times \{-1\}, T_1 \cup T_2 \text{ is invariant under } h, T_1 \cup T_2 \text{ separates } T^3$ into two components A and B, each of which is homeomorphic to $T \times I$. Since $T_1 \cup T_2$ is invariant under h, we have h(A) = B or h(A) = A, but $h^n(A) = B$, hence h(A) = Band n is odd. Moreover $h(T_i) = T_i$, i = 1, 2. Let $q: T^3 \to T^3/h^n \approx T \times I$ be the quotient map. h induces $\bar{h}: T^3/h^n \to T^3/h^n$, \bar{h} is a periodic map of period n, which keeps each of the two boundary components invariant, and is orientation preserving. Hence it is equivalent to $h': T \times I \rightarrow T \times I$, h'(x, y, t) = (g(x, y), t), where g is a periodic map on T with period n [5]. Now let $h: T^3 \to T^3$ be given by $h_1(x, y, z) = (q(x, y), \overline{z})$. then $\bar{h}_1: T^3/h_1^n \to T^3/h_1^n$ may be given by $\bar{h}_1(x,y,t) = (g(x,y),\bar{t})$. Hence \bar{h} is

M.A. Natsheh

equivalent to \bar{h}_1 . Therefore there exists a homeomorphism $t: T^3/h_1^n \to T^3/h^n$ such that $\bar{h}t = t\bar{h}_1$. Define $\bar{t}: T^3 \to T^3$ as follows: for each $x_1 \in A_1 \subseteq T^3$, let $x_2 = h_1^n(x_1)$, then $q_1(x_1) = q_1(x_2) = x \in T^3/h_1^n$. If $t(x) = y \in T^3/h^n$, then there exists $y_1 \in A$, $y_2 \in B$ such that $q(y_1) = q(y_2) = y$. Let $\bar{t}(x_1) = y_1$. Similarly define $\bar{t}(x)$ for $x \in B$. It is easy to check that $h\bar{t} = \bar{t}h_1$ and h equivalent to h_1 .

(2.2). For n = 3 there are two cases - (a) Fix(g) consists of three points, and (b) $Fix(g) = \emptyset$.

Case (a). h is given by the following formula (see Section 1).

$$\begin{split} h(x,y,z) &= (\bar{x}\bar{y},x,\bar{z}) \\ \text{Fix}(h) &= \text{six points} \\ \text{Fix}(h^2) &= \{(1,1),(\omega,\omega),(\omega^2,\omega^2)\} \times S^1, \quad \omega = e^{2\pi i/3} \\ \text{Fix}(h^3) &= T_1 \cup T_2. \end{split}$$

h is unique up to weak equivalence.

Case (b). See (2.3).

(2.3) For $n \ge 3$, n odd. From Section 1, h is given by

$$egin{aligned} h(x,y,z) &= (x,\omega y,ar z), \quad \omega &= e^{2\pi i/n} \ \mathrm{Fix}ig(h^i) &= \emptyset, \quad 1 \leqslant i < n \ \mathrm{Fix}ig(h^n) &= T_1 \cup T_2. \end{aligned}$$

For each n, h is unique up to weak equivalence.

3. PROOF OF THEOREM 4

Fix $(h^n) = T_1$, hence $h(T_1) = T_1$ and $h^n(x) = x$ for all $x \in T_1$. h^n interchanges the sides of T_1 , therefore h interchanges the sides of T_1 and n is odd. Cut T^3 along T_1 to get a manifold $M \approx T \times I$ and an induced homeomorphism $\bar{h}: T \times I \to T \times I$ of period 2n, where $\bar{h}(T \times \{0\}) = T \times \{1\}$ and Fix $(\bar{h}) = \emptyset$.

Now \bar{h}^2 is orientation preserving of period n which keeps each of the boundary components invariant. Hence there exists a periodic map $g: T \to T$ of period n, which is orientation preserving such that \bar{h} is equivalent to h' where h'(x,y,t) = (g(x,y),t) [5]. Without loss of generality we may assume $\bar{h}^2(x,y,t) = (g(x,y),t)$ (after parametrising $M \approx T \times I$). Now we have two cases - (a) $\operatorname{Fix}(\bar{h}^2) = \emptyset$, and (b) $\operatorname{Fix}(\bar{h}^2) \neq \emptyset$.

Case (a). Fix $(\bar{h}^2) = \emptyset$, hence Fix $(g) = \emptyset$ and g is weakly equivalent to $g(x, y) = (x, uy), u = e^{2\pi i/n}$. $\bar{h}^2: T \times I \to T \times I$ induces an involution $h': T \times I/\bar{h}^2 \to T \times I/\bar{h}^2 \to T \times I/\bar{h}^2 \to T \times I$, where h' interchanges the two sides of $T \times I$ and Fix $(h') = \emptyset$. Hence

Cyclic group actions

h'(x,y,t) = (x, -y, 1-t) (after parametrising $T \times I/\bar{h}^2 \approx T \times I$). From this it is easy to show that $\bar{h}(x,y,z) = (x, \omega y, 1-t)$, $\omega = e^{\pi i/n}$. Identifying (x,y,0) with (x, -y, 1) in $T \times I$ we get $h: T^3 \to T^3$ with $\operatorname{Fix}(h^i) = \emptyset$, $1 \leq i < n$, $\operatorname{Fix}(h^n) = T_1$. h is unique up to weak equivalence.

Case (b). Fix $(\bar{h}^2) \neq \emptyset$. Hence Fix $(g) \neq \emptyset$ and from Section 1, n = 3 and $\bar{h}^2(x,y) = (\bar{x}\bar{y},x)$, up to weak equivalence. \bar{h} induces an involution $h'': T \times I/\bar{h}^2 \to T \times I/\bar{h}^2 \approx S^2 \times I$, such that Fix $(h'') \subseteq I_1 \cup I_2 \cup I_3$ the union of three simple arcs, and $h''(I_1 \cup I_2 \cup I_3) = I_1 \cup I_2 \cup I_3$. But there is no such involution on $S^2 \times I$ with these properties. Indeed there is no involution on S^2 with an invariant three point set and fix point set consisting of two points or empty.

4. PROOF OF THEOREM 5

(4.1). Fix $(h^n) = S_1 \cup S_2 \cup S_3 \cup S_4$, the union of four simple closed curves. Without loss of generality we may view h^n as given by $h^n(x, y, z) = (\bar{x}, \bar{y}, z)$. Let $q: T^3 \to T^3/h^n$ be the quotient map. Now $T^3/h^n \approx S^2 \times S^1$ and h induces a periodic map $\bar{h}: \left(S^2 \times S^1, \bigcup_1^4 q(S_i)\right) \to \left(S^2 \times S^1, \bigcup_1^4 q(S_i)\right)$ of period n.

LEMMA 4.2. *h* is equivalent to a periodic homeomorphism h_1 given by $h_1(x, y, z) = (g(x, y), \beta(z))$, where $g^n(x, y) = (\bar{x}, \bar{y})$ and $\beta^n(z) = z$.

PROOF: Let $q_1: T^3 \to T^3/h_1^n \approx S^2 \times S^1$. h_1 induces $\bar{h}_1: T^3/h_1^n \to T^3/h_1^n$ of period n, where $\bar{h}_1([x,y],z) = (\bar{g}([x,y]),\beta(z))$, where $\bar{g}: T/g^n \to T/g^n \approx S^2$ is the induced map by g, and [x,y] is the image under the quotient map $q_2: T \to T/g^n$. Now \bar{h} and \bar{h}_1 are equivalent [1]. Hence we can define a homeomorphism $t: T^3 \to T^3$ such that $th_1 = ht$ in exactly the same way as we did in Theorem 3. From this it follows that h is equivalent to h_1 .

(4.3). For n = 2, then by Section 1, $g(x, y) = (y, \bar{x})$ and $\beta(z)$ equals (a) \bar{z} , (b) z, (c) -z. In each case h is unique up to weak equivalence and is given by:

- (a) $h(x, y, z) = (y, \bar{x}, \bar{z})$ Fix(h) = {(1,1,1), (1,1,-1), (-1,-1,1), (-1,-1,-1)} Fix(h²) = {(1,1), (1,-1), (-1,1), (-1,-1)} × S¹.
- (b) $h(x, y, z) = (y, \bar{x}, z)$ Fix $(h) = \{(1, 1), (-1, -1)\} \times S^1$ Fix $(h^2) = \{(1, 1), (-1, -1), (1, -1), (-1, 1)\} \times S^1$.
- (c) $h(x, y, z) = (y, \bar{x}, -z)$ $Fix(h) = \emptyset$ $Fix(h^2) = \{(1, 1), (-1, -1), (1, -1), (-1, 1)\} \times S^1.$

(4.4) For n = 3, by Section 1, g is given by $g(x, y) = (\bar{y}, xy)$ or $g(x, y) = (\bar{x}, \bar{y})$.

 $\beta(x) = \omega x$, $\omega = e^{2\pi i/3}$. Hence we get the following cases. In each case h is unique up to weak equivalence.

(a) $h(x, y, z) = (\bar{y}, xy, z)$ Fix(h) = {(1,1)} × S¹ Fix(h²) = {(1,1), (ω, ω), (ω^2, ω^2)} × S¹, $\omega = e^{2\pi i/3}$ Fix(h³) = {(1,1), (-1,-1), (1,-1), (-1,1)} × S¹. (b) $h(x, y, z) = (\bar{y}, xy, \omega z), \quad \omega = e^{2\pi i/3}$ Fix(h) = Fix(h²) = Ø Fix(h³) = {(1,1), (-1,-1), (1,-1), (-1,1)} × S¹. (c) $h(x, y, z) = (\bar{z}, \bar{y}, \omega z), \quad \omega = e^{2\pi i/3}$ Fix(h) = Fix(h²) = Ø Fix(h³) = {(1,1), (-1,-1), (1,-1), (-1,1)} × S¹.

(4.5). For n > 3 by Section 1, $g(x, y) = (\bar{x}, \bar{y})$ and n has to be odd. Hence for every odd n > 3 there is a unique action up to weak equivalence, and there is no action for any even n > 3. h is given by the following standard formula

$$\begin{split} h(x, y, z) &= (\bar{x}, \bar{y}, \omega z), \quad \omega = e^{2\pi i/n} \\ \operatorname{Fix}(h^{i}) &= \emptyset, \quad 1 \leq i < n \\ \operatorname{Fix}(h^{n}) &= \{(1, 1), (-1, -1), (1, -1), (-1, 1)\} \times S^{1}. \\ &5. \text{ PROOF OF THEOREM 6} \end{split}$$

(5.1). Fix $(h^n) = S_1 \cup S_2$, the union of two simple closed curves. Without loss of generality we may take $T^3 = T \times I/ \sim (x, y, 0) \sim (A(x, y), 1) = (-x, -y, 1)$ and $h^n(x, y, t) = (\bar{x}, \bar{y}, t)$. Let $q: T^3 \to T^3/h^n \approx S^2 \times S^1$ be the quotient map. h induces a period n homeomorphism $\bar{h}: (T^3/h^n, q(S_1, \cup S_2)) \to (T^3/h^n, q(S_1 \cup S_2))$. In the same way in the proof of Lemma (4.2), h is equivalent to h_1 , where $h_1(x, y, t) = (g(x, y), \beta(t))$, where $g^n(x, y) = (\bar{x}, \bar{y})$ and $\beta^n(t) = t$.

(5.2). For n = 2, $g(x, y) = (y, \bar{x})$ and β has three different forms. Hence we have three different cases. In each case h is unique up to weak equivalence. A standard h is given by

$$\begin{array}{ll} \text{(a)} & h([x,y,t]) = [y,\bar{x},1-t] \\ & \text{Fix}(h) = \{[1,1,\frac{1}{2}],[-1,-1,\frac{1}{2}],[1,-1,0],[-1,1,0]\} \\ & \text{Fix}(h^2) = \{(1,1),(1,-1),(-1,1),(-1,-1)\} \times I / \sim \approx S_1 \cup S_2 , \\ \text{(b)} & h([x,y,t]) = [y,\bar{x},t] \\ & \text{Fix}(h) = \{(1,1),(-1,-1)\} \times I \sim \approx S_1 \\ & \text{Fix}(h^2) = S_1 \cup S_2 , \\ \text{(c)} & h([x,y,t]) = \begin{cases} [y,\bar{x},t+\frac{1}{2}], & 0 \leq t \leq \frac{1}{2} \\ [y,\bar{x},t-\frac{1}{2}], & \frac{1}{2} \leq t \leq 1 \end{cases} \end{array}$$

$$Fix(h) = \emptyset$$

Fix(h²) = S₁ \cup S₂

(5.3). For n = 3, then $g(x, y) = (\bar{y}, xy)$ or $g(x, y) = (\bar{x}, \bar{y})$, and $\beta(t)$ has two forms. Also we need gA = Ag hence $g(x, y) = (\bar{x}, \bar{y})$ and there is a unique action up to weak equivalence which may be given by:

$$h([x,y,t]) = \begin{cases} [\bar{x},\bar{y},t+\frac{1}{3}], & 0 \leqslant t \leqslant \frac{2}{3} \\ [-\bar{x},-\bar{y},t-\frac{2}{3}], & \frac{2}{3} \leqslant t \leqslant 1 \end{cases}$$

Fix(h) = Fix(h²) = Ø
Fix(h³) = S₁ ∪ S₂.

(5.4). For n > 3, $g(x, y) = (\bar{x}, \bar{y})$ and n is odd. Hence there is a unique action for every odd n > 3, up to weak equivalence and there is no action for any even n > 3. A standard h may be given by:

$$h([x, y, t]) = \begin{cases} [\bar{x}, \bar{y}, t + \frac{1}{n}], & 0 \leq t \leq \frac{n-1}{n} \\ [-\bar{x}, -\bar{y}, t - \frac{n-1}{n}, & \frac{n-1}{n} \leq t \leq 1 \end{cases}$$

Fix $(h^i) = \emptyset$, $1 \leq i < n$
Fix $(h^n) = S_1 \cup S_2$.

6.
$$FIX(h^n) = EIGHT POINTS$$

(6.1). Without loss of generality h^n may be given by

$$h^n(x,y,z) = (\bar{x},\bar{y},\bar{z}).$$

Hence h is orientation reversing and n is odd. If there exists an invariant torus T, then h may be viewed as a product $h(x, y, z) = (g(x, y), \overline{z}), g^n(x, y) = (\overline{x}, \overline{y}).$

(6.2). For n = 3, $g(x, y) = (\bar{y}, xy)$ and h is unique up to weak equivalence. h may be given by

$$\begin{aligned} h(x,y,z) &= (\bar{y},xy,\bar{z}) \\ \text{Fix}(h) &= \{(1,1,1),(1,1,-1)\} \\ \text{Fix}(h^2) &= \{(1,1),(\omega,\omega),(\omega^2,\omega^2)\} \times S^1 \\ \text{Fix}(h^3) &= \text{ eight points }. \end{aligned}$$

(6.3). For n > 3, the only action g on T such that $g^n(x,y) = (\bar{x},\bar{y})$ is $g(x,y) = (\bar{x},\bar{y})$, but then the period of h would be 2. Hence there is no such action.

(6.4). There is a nonstandard action h which may be given by

$$\begin{split} h(x, y, z) &= (\bar{y}, \bar{z}, \bar{x}) \\ \text{Fix}(h) &= \{(1, 1, 1), (-1, -1, -1)\} \\ \text{Fix}(h^2) &= S_1 \\ \text{Fix}(h^3) &= \text{ eight points }. \end{split}$$

Hence the proof of the case $Fix(h^n) = eight points is not complete.$

References

- [1] M.J. Dunwoody, 'An equivariant sphere theorem', Bull. London Math. Soc. 17 (1985), 437-448.
- J. Hempel, 3-manifolds (Ann. of Math. Studies, no. 86, Princeton University Press, Princeton, N.J., 1976).
- [3] J. Hempel, 'Free cyclic actions on $S^1 \times S^1 \times S^1$ ', Proc. Amer. Math. Soc. 48 (1975), 221-227.
- [4] K.W. Kwun and J.L. Tollefson, 'PL involutions of $S^1 \times S^1 \times S^1$ ', Amer. Math. Soc. 203 (1975), 97-106.
- [5] W. Meeks and P. Scott, 'Finite group actions on 3-manifolds', (Preprint).
- [6] J.H. Przytycki, 'Action of Z_n on some surface-bundles over S^1 ', Colloq. Math. 47 (1982), 221-239.
- [7] D.K. Showers, Thesis, (Michigan State University, 1973).
- [8] J.L. Tollefson, 'Involutions on $S^1 \times S^2$ and other 3-manifolds', Trans. Amer. Math. Soc. 183 (1973), 139-152.
- [9] K. Yokoyama, 'Classification of periodic maps on compact surfaces I', Tokyo J. Math. 6 (1983), 75-94.

Department of Mathematics University of Jordan Amman, Jordan Department of Mathematics Michigan State University E. Lansing, MI 48824 United States of America