46A05, 46AI4, 46AI5

BULL. AUSTRAL. MATH. SOC. VOL. 28 (1983), 383-392.

ON TWO NEW CLASSES OF LOCALLY CONVEX SPACES

KAZUAKI KITAHARA

The purpose of this paper is to introduce two new classes of locally convex spaces which contain the classes of semi-Montel and Montel spaces. Further we give some examples and study some properties of these classes. As to permanence properties, these classes have similar properties to semi-Montel and Montel spaces except strict inductive limits and these classes are not always preserved under their completions. We shall call these two classes as β -semi-Montel and β -Montel spaces. A β -semi-Montel space is obtained by replacing the word "bounded" by "strongly bounded" in the definition of a semi-Montel space. If a β -semi-Montel space is infra-barrelled, we call the space β -Montel.

In a locally convex space $E(\tau)$, if each bounded subset is relatively compact, $E(\tau)$ is semi-Montel. If $E(\tau)$ is infra-barrelled and semi-Montel, it is Montel. In this paper we weaken the conditions of being (semi-)Montel and introduce two new classes of locally convex spaces.

One contains the class of all Montel spaces and another contains the class of all semi-Montel spaces. We shall call these two classes $.\beta$ -Montel and β -semi-Montel spaces. Now we explain what we investigate in each section. In Section 1, we give some notations and definitions of

Received 20 July 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 \$A2.00 + 0.00.

Kazuaki Kitahara

 β -(semi-)Montel space. In Section 2 we give some examples of β -(semi-) Montel spaces which are not (semi-)Montel. In Section 3 we consider some properties of β -(semi-)Montel spaces. Finally we investigate the separability of a metrizable β -Montel space in Section 4.

1. Notations and definitions

Mostly we shall use the notations of [3] and [6]. Let $E(\tau)$ be a Hausdorff topological vector space. Throughout this paper we assume that $E(\tau)$ is a locally convex space over the real or complex field K. For the sake of simplicity, it is denoted by lcs $E(\tau)$. E' denotes the topological dual space of $E(\tau)$. The dual of $E(\tau)$ always means the topological dual space. When two vector spaces E and F over K form a dual pair, $\sigma(E, F)$, $\tau(E, F)$, $\beta(E, F)$ and $\beta^*(E, F)$ are the topology of uniform convergence on the set of all finite subsets, all absolutely convex $\sigma(F, E)$ -compact subsets, all $\sigma(F, E)$ -bounded subsets and all $\beta(F, E)$ bounded subsets of F on E respectively. Let $E(\tau)$ be a locally convex space and E' be its dual. $\tau_{c}(E', E)$ means the topology of uniform convergence on the set of all τ -precompact subsets of E on E'. $E(\tau)$ is said to be a countably barrelled space if each $\sigma(E', E)$ -bounded subset of E' which is the countable union of equicontinuous subsets of E' is itself equicontinuous [4]. $E(\tau)$ is said to be a W-space if each $\sigma(E', E)$ -bounded subset of E' is $\beta(E', E)$ -bounded [5]. We say that an lcs $E(\tau)$ possesses a fundamental sequence of bounded subsets if there exists a sequence $B_1 \subset B_2 \subset \ldots \subset B_n \subset \ldots$ of bounded subsets in $E(\tau)$ such that every bounded subset B is contained in some B_{μ} .

DEFINITION. Let $E(\tau)$ be a locally convex space and E' be its dual.

(1) $E(\tau)$ is said to be a β -semi-Montel space if each $\beta(E, E')$ -bounded subset is relatively τ -compact.

(2) $E(\tau)$ is said to be a β -Montel space if it is a β -semi-Montel space and infra-barrelled.

REMARK I. Clearly every Montel space is β -Montel. Every semi-Montel space is β -semi-Montel and every β -Montel space is β -semi-Montel.

PROPOSITION 1. Let $E(\tau)$ be a β -semi-Montel space and E' be its

384

dual. Then the following conditions are equivalent:

- (1) $E(\tau)$ is a semi-Montel space;
- (2) $E(\tau)$ is a W-space;
- (3) $E(\tau)$ is sequentially complete.

Proof. Clearly every semi-Montel space is sequentially complete. If $E(\tau)$ is sequentially complete, τ -boundedness is identical with $\beta(E, E')$ -boundedness. Hence $E(\tau)$ is a W-space. Finally if $E(\tau)$ is a W-space, it is semi-Montel from the assumption and definition.

2. Examples of β-(semi-)Montel spaces

EXAMPLE 1. Let $E(\tau)$ be an infra-barrelled locally convex space and not barrelled and E' be its dual. Then $E'(\sigma(E', E))$ is β -semi-Montel but not semi-Montel. If B is any $\beta(E', E)$ -bounded subset in $E'(\sigma(E', E))$, it is relatively $\sigma(E', E)$ -compact since it is a τ -equicontinuous subset. If $E'(\sigma(E', E))$ is semi-Montel, $E(\tau)$ is a barrelled space. Therefore $E'(\sigma(E', E))$ is not a semi-Montel space.

EXAMPLE 2. Let T be a completely regular Hausdorff space. $C_{g}(T)$ denotes all continuous real valued functions on T with the topology of simple convergence. Then the dual of $C_{g}(T)$ consists of all bounded Radon measures on T with finite support. We denote this dual by $M_{f}(T)$.

 $C_{g}(T)$ is always infra-barrelled from Corollary 4 of [2]. If T is [0, 1] with the usual topology, $C_{g}([0, 1])$ is not barrelled from Corollary 13 of [2]. Hence in the dual pair $(C_{g}([0, 1]), M_{f}([0, 1]))$, $M_{f}([0, 1])(\sigma(M_{f}([0, 1]), C_{g}([0, 1]))))$ is β -semi-Montel but not semi-Montel.

EXAMPLE 3. We give another example from sequences spaces. From Example F of [7],

$$\begin{split} \psi &= \left\{ x \in K^N : x \text{ has finitely many non-zero coordinates} \right\} , \\ \text{however } K \text{ is a real or complex field. For each element } x \text{ of } \psi \text{ , a} \\ \text{norm is given by } \| \| x \|_{\infty}^{} &= \sup_{i \in N} | x_i^{} | \text{ . } (\psi, \| \|_{\infty}) \text{ is a normed space and not} \end{split}$$

barrelled since $A = \{x : x \in \psi, |x_n| \le 1/n, n = 1, 2, ...\}$ is a barrel in $(\psi, \|\|_{\infty})$ but not a O-neighbourhood in $(\psi, \|\|_{\infty})$. As $(\psi, \|\|_{\infty})$ is a dense subspace of $(c_0, \|\|_{\infty})$, the dual of $(\psi, \|\|_{\infty})$ is l^1 . In the dual pair (ψ, l^1) , we make some remarks about $l^1(\sigma(l^1, \psi))$.

(1) $l^{1}(\sigma(l^{1}, \psi))$ is β -semi-Montel but not semi-Montel.

(2) $l^{1}(\sigma(l^{1}, \psi))$ is metrizable since it has a countable base of O-neighbourhoods.

From (1) and (2), $l^1(\sigma(l^1, \psi))$ is a β -Montel space but not a Montel space.

Next we give a proposition generalizing Example 3. Before this, we use the following notations.

Let X be a set such that $|X| \ge \aleph_0$ and K be a real or complex field. For an arbitrary positive number p with $1 \le p < \infty$, we put

$$\mathcal{L}^{p}(X) = \left\{ \left(Z_{x} \right)_{x \in X} : \left(Z_{x} \right)_{x \in X} \in K^{X}, \left(\sum_{x \in X} |Z_{x}|^{p} \right)^{1/p} < \infty \right\},$$
$$\mathcal{L}^{\infty}(X) = \left\{ \left(Z_{x} \right)_{x \in X} : \left(Z_{x} \right)_{x \in X} \in K^{X}, \sup_{x \in X} |Z_{x}| < \infty \right\}$$

and

$$\psi(x) = \left\{ \left(Z_x \right)_{x \in X} : \left(Z_x \right)_{x \in X} \in K^X, \\ \left(Z_x \right)_{x \in X} \text{ has finitely many non-zero coordinates} \right\}$$

For an arbitrary positive number p with $1 \le p \le \infty$, we usually give a

For an arbitrary positive number p with $1 \le p < \infty$, we usually give a norm on $l^p(X)$ and $\psi(X)$ such that

$$\begin{split} \| (Z_x)_{x \in X} \|_p &= \left(\sum_{x \in X} |Z_x|^p \right)^{1/p} \quad \text{for} \quad (Z_x)_{x \in X} \in l^p(X) \ , \\ \| (Z_x)_{x \in X} \|_{\infty} &= \sup_{x \in X} |Z_x| \quad \text{for} \quad (Z_x)_{x \in X} \in \psi(X) \ . \end{split}$$

Then $\left(l^p(X), \| \|_p \right)$ is a Banach space with the dual $l^q(X)$, where

1/p + 1/q = 1 (if p = 1, $q = \infty$). Then we have the following.

PROPOSITION 2. Let p be a positive number with $1 \le p \le \infty$. Then $l^{p}(X)(\sigma(l^{p}(X), \psi(X)))$ is a β -Montel space but not a Montel space.

Proof. As any $\beta(\psi(X), l^p(X))$ -bounded subset is finite dimensional, $l^p(X)(\sigma(l^p(X), \psi(X)))$ is infra-barrelled for $1 \le p \le \infty$. Next we shall show that $l^p(X)(\sigma(l^p(X), \psi(X)))$ is β -semi-Montel but not semi-Montel.

For each p with 1 , there is a positive <math>q such that 1/p + 1/q = 1 (if $p = \infty$, q = 1). $(\Psi(X), || ||_q)$ is a dense subspace of $\left[l^q(X), || ||_q\right]$ with the dual $l^p(X)$. In case of p = 1, $(\Psi(X), || ||_{\infty})$ is a normed space with the dual $l^1(X)$. Hence $l^p(X) \{\sigma(l^p(X), \Psi(X))\}$ is β -semi-Montel. On the other hand let Y be a countable subset of X such that $Y = \{x_i : x_i \in X, i \in N\}$ and we consider the sequence $\{Z^n\}$ such that $Z_x^n = i$ for $x = x_i$, i = 1, 2, ..., n and $Z_x^n = 0$ for $x \neq x_i$, i = 1, 2, ..., n for each $n \in N$. Then in $K^X(\sigma(K^X, \Psi(X)))$, $\{Z^n\}$ converges to $Z = (Z_x)_{x \in X}$ where $Z_x = i$ for $x = x_i$, i = 1, 2, ..., n and $Z_x = 0$ otherwise. However Z does not belong to $l^p(X)$ for $1 \le p \le \infty$.

Consequently $l^p(X)\left(\sigma(l^p(X), \psi(X))\right)$ is not semi-Montel. This completes the proof.

3. Some properties of β-(semi-)Montel spaces

First of all we give a few permanence properties of $\beta-(\text{semi}-)\text{Montel}$ spaces.

PROPOSITION 3. The product space $E(\tau) = \prod_{\alpha \in I} E_{\alpha}(\tau_{\alpha})$ of β -(semi-) Montel spaces $E_{\alpha}(\tau_{\alpha})$ ($\alpha \in I$) is β -(semi-)Montel.

Proof. If $E_{\alpha}(\tau_{\alpha})$ ($\alpha \in I$) is infra-barrelled, $\prod_{\alpha \in I} E_{\alpha}(\tau_{\alpha})$ is infra-barrelled. Let E'_{α} ($\alpha \in I$) be the dual of $E_{\alpha}(\tau_{\alpha})$ and

$$\begin{split} E'_{\alpha} &= \bigoplus_{\alpha \in I} E'_{\alpha} \text{ be the dual of } E(\tau) \text{ . As } E\left(\beta(E, E')\right) = \prod_{\alpha \in I} E_{\alpha}\left(\beta\left(E_{\alpha}, E'_{\alpha}\right)\right) \\ \text{ in the dual pair } \left(\prod_{\alpha \in I} E_{\alpha}, \bigoplus_{\alpha \in I} E'_{\alpha}\right), \text{ for any } \beta(E, E') \text{ -bounded subset } B, \\ \text{ there exists a } B_{\alpha} \quad (\alpha \in I) \text{ which is } \beta\left(E_{\alpha}, E'_{\alpha}\right) \text{ -bounded and } B \text{ is } \\ \text{ contained in } \prod_{\alpha \in I} B_{\alpha} \text{ . As each } B_{\alpha} \text{ is relatively } \tau_{\alpha} \text{ -compact}, \prod_{\alpha \in I} B_{\alpha} \text{ is } \\ \text{ relatively compact in } E(\tau), \text{ so is } B. \end{split}$$

PROPOSITION 4. The locally convex direct sum $E(\tau) = \bigoplus_{\alpha \in I} E_{\alpha}(\tau_{\alpha})$ of β -(semi-)Montel spaces $E_{\alpha}(\tau_{\alpha})$ ($\alpha \in I$) is β -(semi-)Montel.

Proof. Let E'_{α} ($\alpha \in I$) be the dual of $E_{\alpha}(\tau_{\alpha})$ and $E' = \prod_{\alpha \in I} E'_{\alpha}$ be the dual of $E(\tau)$. As $E(\beta(E, E')) = \bigoplus_{\alpha \in I} E_{\alpha}(\beta(E_{\alpha}, E'_{\alpha}))$ in the dual pair $\left(\bigoplus_{\alpha \in I} E_{\alpha}, \prod_{\alpha \in I} E'_{\alpha}\right)$, every $\beta(E, E')$ -bounded subset *B* is contained in $B_{\alpha_{1}} + \cdots + B_{\alpha_{n}}$ (each $B_{\alpha_{i}}$ is $\beta(E_{\alpha_{i}}, E'_{\alpha_{i}})$ -bounded in $E_{\alpha_{i}}(\tau_{\alpha_{i}})$, $i = 1, 2, \ldots, n$). As $B_{\alpha_{1}} + \cdots + B_{\alpha_{n}}$ is relatively compact in $E(\tau)$, so is *B*. Clearly $E(\tau)$ is infra-barrelled if $E_{\alpha}(\tau_{\alpha})$ ($\alpha \in I$) is infra-barrelled.

PROPOSITION 5. A closed subspace $H(\tilde{\tau})$ of a β -semi-Montel space $E(\tau)$ is β -semi-Montel.

Proof. Let H' be the dual of $H(\overline{\tau})$ and E' be the dual of $E(\tau)$.

If B is an arbitrary $\beta(H, H')$ -bounded subset, it is $\beta(E, E')$ bounded in $E(\tau)$ since $\beta(H, H')$ is finer than the topology $\beta(E, E')$ on H.

Hence B is $\overline{\tau}$ -relatively compact.

COROLLARY. A topological projective limit $E(\tau) = \lim_{\tau} A_{\alpha\beta}(E_{\beta}(\tau_{\beta}))$ is β -semi-Montel if $E_{\alpha}(\tau_{\alpha})$ ($\alpha \in I$) is β -semi-Montel.

Next we give the other properties related to β -(semi-)Montel spaces. **PROPOSITION 6.** Let $E(\tau)$ be a countably barrelled, separable and metrizable locally convex space and E' be its dual. If N is a countable dense subset in $E(\tau)$ and F is a subspace of E which is spanned by N, then $E'(\sigma(E', F))$ is a β -Montel space.

Proof. $E'(\sigma(E', F))$ is metrizable since it has a countable base of O-neighbourhoods. $E(\tau)$ is barrelled from the assumption. If B is any $\sigma(E', E)$ -bounded subset, it is relatively $\sigma(E', E)$ -compact. To show $\sigma(E', E) \leq \beta(E', F)$, it suffices to show that for each element x of E, there is a $\sigma(F, E')$ -bounded subset C such that x is an element of τ -closure of C. For an arbitrary element x of E, there is a sequence $\{x_n\}$ such that each x_n is an element of F and $\{x_n\}$ converges to x from its separability and metrizability. If C is the sequence $\{x_n\}$, it is $\sigma(F, E')$ -bounded and x is an element of τ -closure of C. Now if B is an arbitrary $\beta(E', F)$ -bounded subset, it is $\sigma(E', E)$ -bounded.

Thus B is relatively $\sigma(E', F)$ -compact. So $E'(\sigma(E', F))$ is β -Montel.

Let $E(\tau)$ be a Montel space and E' be its dual. Then the strong dual $E'(\beta(E', E))$ is also a Montel space. In case of a β -Montel space, a similar proposition holds.

PROPOSITION 7. Let $E(\tau)$ be a β -Montel space and E' be its dual. Then $E'(\beta^*(E', E))$ is β -Montel.

Proof. If B is any absolutely convex and $\beta(E, E')$ -bounded subset, it is relatively $\sigma(E, E')$ -compact from the assumption. Then $E'(\tau(E', E))$ is infra-barrelled since $\beta^*(E', E) = \tau(E', E)$. Next we show that any $\beta(E', E)$ -bounded subset in $E'(\tau(E', E))$ is relatively $\tau(E', E)$ -compact.

If B is any $\beta(E, E')$ -bounded subset in $E(\tau)$, it is τ -precompact. From this $\tau(E', E) = \beta^*(E', E) \leq \tau_c(E', E)$. If C is an arbitrary $\beta(E', E)$ -bounded subset in $E'(\tau(E', E))$, it is a τ -equicontinuous subset.

Consequently *C* is relatively $\sigma(E', E)$ -compact and relatively $\tau_{c}(E', E)$ -compact from the property of the topology $\tau_{c}(E', E)$. Hence it is relatively $\tau(E', E)$ -compact. Thus $E'(\beta^{*}(E', E))$ is β -Montel.

Using Proposition 7, we can give a β -Montel space whose completion is not β -semi-Montel.

EXAMPLE 4. From Example 3, $l^{1}(\sigma(l^{1}, \psi))$ is β -Montel. $\psi(\beta^{*}(\psi, l^{1}))$ is β -Montel from Proposition 7. On the other hand, $(\psi, || ||_{\infty})$ is a normed space with the dual l^{1} . Thus $(\psi, || ||_{\infty})$ is β -Montel and the completion of $(\psi, || ||_{\infty})$ is $(c_{0}, || ||_{\infty})$. As $(c_{0}, || ||_{\infty})$ is an infinite dimensional Banach space, it is not β -semi-Montel.

From Example 4 we obtain the following.

THEOREM 1. Under the conditions of Proposition 6, the subspace $F(\bar{\tau})$ of $E(\tau)$ is a β -Montel space.

Proof. From Proposition 6, $E'(\sigma(E', F))$ is a β -Montel space and $F(\beta^*(F, E'))$ is a β -Montel space from Proposition 7. $F(\overline{\tau})$ is a dense subspace of $E(\tau)$, so the dual of $F(\overline{\tau})$ is E'.

As $F(\bar{\tau})$ is metrizable, $F(\bar{\tau}) = F(\beta^*(F, E'))$.

REMARK 2. Let $E(\tau)$ be the strict inductive limit of β -semi-Montel spaces $E_n(\tau_n)$, n = 1, 2, ..., and E' be the dual of $E(\tau)$ and B be an arbitrary $\beta(E, E')$ -bounded subset in $E(\tau)$. Then it is not known whether we can find a space $E_n(\tau_n)$ where B is $\beta(E_n, E'_n)$ -bounded. $(E'_n$ is the dual of $E_n(\tau_n)$.) About the other construction appeared in [7], as in the case of a (semi-)Montel space, a β -(semi-)Montel space is not always preserved under them.

4. Separability of a metrizable β -Montel space

In general, every Fréchet Montel space is separable. In this section we consider whether every metrizable β -Montel space is separable. In fact the space is not always separable. Here we give an example of the above fact.

EXAMPLE 5. Let X be a set such that $|X| > \aleph_0$. From Proposition 2, $l^1(X) \left(\sigma \left(l^1(X), \psi(X) \right) \right)$ is β -Montel; and from Proposition 7, $\psi(X) \left(\beta^* \left(\psi(X), l^1(X) \right) \right)$ is also β -Montel. However $\left(\psi(X), \| \|_{\infty} \right)$ is a normed space whose dual is $l^1(X)$. Hence $\left(\psi(X), \| \|_{\infty} \right)$ is a metrizable β -Montel space and clearly not separable.

However we obtain a theorem that a metrizable β -Montel space is separable under the following condition.

THEOREM 2. Let $E(\tau)$ be a metrizable β -Montel space and E' be its dual. If $E'(\sigma(E', E))$ has a fundamental sequence of bounded subsets, $E(\tau)$ is separable.

Proof. $E(\beta(E, E'))$ is metrizable from the assumption. Let $\| \|_{\tau}$ and $\| \|_{\beta}$ be the *F*-norms on $E(\tau)$ and $E(\beta(E, E'))$. Then if $E(\tau)$ is not separable, there exist a positive number δ and an uncountable subset *A* of *E* such that $\| z - z' \|_{\tau} > \delta$, for $z, z' \in A$, $z \neq z'$.

For $n \in \mathbb{N}$ we put $K_n = \{x : \|x\|_\beta < 1/n, x \in E\}$ and for an arbitrary $x \in E$, we denote $\inf\{t : t > 0, x/t \in K_n\}$ by $[x]_n$. Then there is a positive number M_1 such that $A_1 = A \cap \{x : [x]_1 < M_1, x \in E\}$ is an uncountable set.

Similarly for each $n \in \mathbb{N}$, $n \ge 2$, there is a positive number M_n such that $A_n = A_{n-1} \cap \{x : [x]_n < M_n, x \in E\}$ is an uncountable set. We obtain a sequence of uncountable subsets of E. For each A_j we take an element $z_j \in A_j$. $\{z_j\}$ is $\beta(E, E')$ -bounded since for each K_n , $\{z_j\} \subset \max\{m_1, m_2, \ldots, m_{n-1}, M_n\} \cdot K_n$ $\{z_i \in m_i \cdot K_n, i = 1, 2, \ldots, n-1\}$. Hence $\{z_j\}$ is relatively τ -compact. On the other hand, $\|z_i - z_j\|_{\tau} > \delta$ for $i \neq j$. This leads to a contradiction.

REMARK 3. As an example of Theorem 2, $l^p(\sigma(l^p, \psi))$ $(1 \le p \le \infty)$ is given. Conversely let $E(\tau)$ be a separable, metrizable and β -Montel space and E' be its dual. Then $E'(\sigma(E', E))$ does not always have a fundamental sequence of bounded subsets. For example, we put $E(\tau) = (\psi, \| \|_{\infty})$ then the weak dual $l^1(\sigma(l^1, \psi))$ does not have a fundamental sequence of bounded subsets.

Kazuaki Kitahara

References

- [1] N. Adasch, B. Ernst and D. Keim, *Topological vector spaces* (Springer-Verlag, Berlin, Heidelberg, New York, 1978).
- [2] D. Gulick, "Duality theory for the topology of simple convergence", J. Math. Pures Appl. 52 (1973), 453-472.
- [3] J. Horvath, Topological vector spaces and distributions, Vol. 1 (Addison-Wesley, Reading, Massachusetts, 1966).
- [4] T. Husain, "Two new classes of locally convex spaces", Math. Ann. 166 (1966), 289-299.
- [5] P.K. Kamthan and M. Gupta, Sequences spaces and series (Lecture Notes 65. Marcel Dekker, New York, 1981).
- [6] G. Köthe, Topological vector spaces 1 (translated by D.J. Garling. Die Grundlehren der mathematischen Wissenschaften, 159. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- [7] K. McKennon and J.M. Robertson, Locally convex spaces (Marcel Dekker, New York and Basel, 1976).

Department of Mathematics, Kobe University, Nada-ku, Kobe 657, Japan.