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High Reynolds number flow between
torsionally oscillating disks

K. G. Smith

In this paper the problem solved is that of unsteady flow of a

viscous incompressible fluid between two parallel infinite disks,

which are performing torsional oscillations about a common axis.

The solution is restricted to high Reynolds numbers, and thus

extends an earlier solution by Rosenblat for low Reynolds

numbers.

The solution is obtained by the method of matched asymptotic

expansions. In the main body of the fluid the flow is inviscid,

but may be rotational, and in the boundary layers adjacent to the

disks the non-linear convection terms are small. These two

regions do not overlap, and it is found that in order to match

the solutions a third region is required in which viscous

diffusion is balanced by steady convection. The angular velocity

is found to be non-zero only in the boundary layers adjacent to

the disks.

1. Introduction

The problem considered here is that of incompressible viscous flow

between two parallel infinite plane disks, which perform torsional

oscillations about a common axis. The amplitude of oscillation, e , is

taken to be small, and the two disks oscillate with the same frequency,

co , and amplitude but IT out of phase. An important parameter is the

Reynolds number R = uid2/v , where Id is the distance between disks.

The solution here is restricted to high Reynolds numbers.
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56 K.G. Smith

Rosenblat [/] has attacked this problem by expanding the solution in

powers of £ . He has obtained expressions for the velocities for both

large and small values of Reynolds number. However, as he points out, his

X
work is subject to the limitation ZR2 « 1 , and is strictly speaking,

the limiting solution as zR2 •*• 0 . Here we consider the case of

1
zR2 » 1 , and the solution obtained here is the limiting solution as

ZR -*•<». As the Reynolds number becomes large, the flow near each disk

approaches that of a single disk oscillating in an unbounded fluid. This

problem was solved by Rosenblat [2], and later in an improved manner by

Benney [3]. More recently Riley [4] pointed out an error in Rosenblat's

paper [2], and considered large amplitude torsional oscillations of a

single disk.

In Section 2 the equations are put into non-dimensional form

appropriate to the various regions of the flow. In Sections 3, 4 and 5

the equations are solved in different regions, and the solution is

completed by asymptotic matching procedures in Section 5. In Section 6

possible extensions of the work are briefly considered.

The dependent variables are written as functions of x, t, £ and

1
X = eR2 , and are expanded as asymptotic series in X

00

f(x, *, e, X) -x. I X~n fix, t, e ) ,
n=o

and then f is expanded as a power series in £ . Except in Section 3

only the first term in the asymptotic series is considered. If no further

terms are desired it would be possible to use an asymptotic series in

Ri , namely

However at one stage in the matching procedure (eq. 5-16) a

coefficient X occurs, and if higher order terms are required the

asymptotic series in X is the natural one to use.

It is found that there are three distinct regions of flow, in each of
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Flow between oscillating disks 57

which different physical effects dominate. These regions are

(i) a region occupying the main body of the fluid, denoted by I

in fig. 1;

(ii) boundary layer regions, of thickness O[R ') , adjacent to

the disks, denoted by II in fig. 1:

, I

(iii) an intermediate region, of thickness 0[e R 2) , between

regions I and II , denoted by III in fig. 1.

x = -d x = d

FIGURE I,

The steady axial flow component is shown as f* in fig. 1.
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(a) Region I

In this region the angular velocity is zero, and each term in the

axial momentum equation (unsteady term, convection term, diffusion term)

is zero. Thus in this region the solution behaves like steady convection

in an inviscid fluid.

(b) Region II

In the boundary layers on the disks, the convection terms are small,

and the balance is essentially between the unsteady terms and the

diffusion terms. The small steady axial flow arises from interaction

between periodic terms in the angular velocity (physically, from

centrifugal force effects).

(c) Region I I I

In the intermediate region the angular velocity is again zero. The

dominant part of the axial flow is steady, and there is a balance between

convection and viscous diffusion.

2. Equations of motion

We denote dimensional quantities by a superscript asterisk. As the

motion is axisymmetric we shall write the equations of motion using

Stokes's stream function V and the angular velocity h* . The disks

being of infinite radius, we may write Y = r*2f* , where r* is the

radial coordinate, and f* and h* will now be functions of the axial

coordinate x* and the time t* only. The axial velocity is 2/* , and

the radial velocity is -v*f* ̂  , the subscript denoting a partial

derivative. The equations of motion may now be written as

(2.D f*x*x*t*

and

(2.2) h*^ x *

where v is the kinematic viscosity.

If the disks l ie in the planes z* = ±d , and are performing

torsional oscillations of equal angular frequency u and amplitude 2e ,
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but IT out of phase, the no slip conditions at the disks may be written

(2.3) /* = f*xli = 0 , h* = ±Ew(eiu*'t+e"iwt't) at x* = ±d .

We have to solve equations (2.1) and (2.2) with boundary conditions

(2.3).

Two dimensionless parameters are involved in this problem, the

amplitude of oscillation e and the Reynolds number of the flow
l

R = ud2/v . We shall restrict ourselves to the case e « 1 , ei?2 » 1 .

Equations (2.1) and (2.2), with boundary conditions (2.3), can be

transformed into dimensionless equations in a number of distinct ways. We

shall, for convenience, collect the various forms of equations here.

The following remarks provide some justification for the

dimensionless transformations used. From (2.3) we see that h* is O(eu)

in at least part of the flow field, and we shall assume that h* is

0(eu) everywhere. The axial velocity /* is induced by centrifugal

forces in the viscous boundary layers adjacent to the disks. These

boundary layers we expect to be of thickness o(i? ') , and hence expect

f* to be o(ei?~2) . Thus we adopt the following dimensionless forms,

(i) Interior region

(2.1»)

( 2 . 1 ) , ( 2 . 2 ) and ( 2 . 3 ) now become

( 2 . 5 )

t*

h*

f*

= uT t ,

= EbiH[x, t)
l

= cR~2udf(x,

= e(voo)^F(x,

»

t) ,

t) .

(Of.) W
v ' t — x ' "x " xx

and

(2.7) F = F- = 0 , H = ±{eit+e~it) at x = ±1
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These boundary conditions are not in fact used, as the solution is matched

to the solution in the intermediate region.

(ii) Boundary layer regions

For simplicity we shall only consider the boundary layer near

x* = -d , as that near x* = d has the same form.

(2.8)

(2.1) and (2.2) now become

(2.9)

x* =

t* = u~ t ,

h* = mh(x, t) ,

f* = e(vu)V(«, t) .

(2.10) ht x x

The boundary condition at X* = -d becomes

(2.11) f = fx = 0 , h = - ( e
1 ^ " 1 at = 0 .

The boundary condition at x* = d is not used as the solution at the

outer edge of the boundary layer (x •*• °°) is matched to the solution in

the intermediate region.

(iii) Intermediate regions

The transformation for the intermediate regions is most simply

written by use of the results for the boundary layer region.

(2.12)

X = ex ,

fix, t) = Fix, t) ,

hix, t) = HiX, t) .

(2.1) and (2.2) [or, alternatively, (2.9) and (2.10)] now become

(2.13)

and

(2.11*)

= -2HBX -

H 2e2HF - 2£2FHV + £
2HYY ."0 JL J£ A. A

There are no boundary conditions used directly for these equations, the
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solution being obtained by matching into the boundary layer solution as

X -*• 0 and into the solution in the interior region as X -*• °° .

Before proceeding with the solution of the equations in the various

regions, we make some remarks which simplify the later work.

In solving the equations for the angular velocity, we find that the

various expansions used give rise to terms which are independent of time.

On physical grounds we can immediately say that such terms must be zero,

as sinusoidal torsional oscillations of the disks cannot give rise to a

steady angular velocity of the fluid. This applies not only to the

particular boundary conditions (2.3) used here, but to other cases where

the amplitudes and frequencies of oscillation of the disks may be

different.

The particular boundary conditions (2.3) being considered here enable

us to further simplify the solution of the equations. From (2.3) we see

that the angular velocity h* may be expected to be an odd function of

x* . If this is assumed, then from (2.2) we see that f* will also be an

odd function of x* . These two results greatly simplify the work in

Section 3.

3. Solution in interior region

We are interested in obtaining the solution of the problem for the

case ei?2 » 1 (strictly speaking, we wish to obtain an asymptotic

solution valid as £i?2 •+ <*>) . Introducing the abbreviation X = zFP ,

we may rewrite (2.5) and (2.6) as

(3.1) F—, = -2XHH- - 2 E 2 X ~ 1 F F + e2X"2F ,
xxt x xxx xxxx

and

\ j. ̂  I n ~~ £. fc. A n r — ~ ^ c. A r n ~ ^ fc- A n ~ ~ »

t X X XX

We assume that F and H can be expanded in a series of inverse

powers of X ,

00

(3.3) F(5, t, E, X) = I \"n¥Jx, t, E) ,
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and

(3.10 H(x, t, e, A) = I \~nH (5, *, E) .

Substituting (3.3) and (3.M into (3-1) and (3-2), and equating powers of

A , we obtain the following results.

(i) Coefficient of A1

(3.5) " o H o = 0 -

Hence H = H (t) . iwever, from Section 2, H is an odd function of

x . Thus we must have H = 0 .

(ii) Coefficient of A0

(3.6) FQ__ = o
xxt

(3-7) Ho = 0 .

(3.7) is automatically satisfied. The general solution of (3-6) is

(3.8) FQ(x, t, e) = FQ0(x, e) + x¥Ql(t, E) + FQ2Ct, E ) ,

where F , F , and F _ are functions to be determined. As F is

an odd function of x , F must be an odd function of x , and

F = 0 . Thus

(3.9) FQ(5, t, e) = F Q O (X, e) + x¥QlLt, e) .

From the boundary conditions F must be a periodic function of t , and

it can be chosen so that

r
'0

f2ir
(3.10) F (*, e)dt = 0 ,

any constant in F being absorbed into F
ol 00
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(iii) Coefficient of A"1

x__ = -2H!H
xxt x

(3.12) H = 0 .
t

From (3.12) Hi = Hj(ic, e) , and hence, from Section 2, M1 = 0 .

Substituting this result and (3.9) into (.3.11) we get

xxt xxx xxx

Integration of (3.13) once with respect to t gives

<3.1*0 F = - 2 e 2 * F oo Foo~- " 2 £ 2 5 F o o ~ - | o
 F ol ( " ) d " + Fio-(*> e ) •

F1 _(x, e) being the unknown function of integration. Now as F has

f*
period 2TT , (3.10) shows that FQ^(u)du is also periodic, with period

' o
2ir . Now F cannot increase indefinitely with t , so that the first

xx

term in (3.1^) must be zero. Hence

(3.15) F F = 0 ,
00 00

xxx

the solution of which, restricting -ourselves to odd functions of x , is

(3.16) Foo = aQ0(e)x ,

where a is some function of E only, which is found during the

matching procedure.

Equation (3-13) now becomes

with solution

(3..17) Fj(x, t, e) = FlQ(i, e) + x F n ( t , e) ,

as we are restricting ourselves to odd functions of x .
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(iv) Coefficients of higher powers of X

From (3.2) we see that taking successive values of n we have

Hn = ° '

and hence H = H (x, e) = 0 from Section 2. Thus in the interior region

(3.18) H = 0 .

From (3.1) it is easy to show that for all n we will have

xxt

F = 0 ,
xxx

so that F will take the same form (3.8) as F

If a
0 0 (

£ ) a n d ^ol^*' e^ a r e n o w e x P a n d e d i n powers of e ,

a oo ( £ ) = I aoo«e" '
• n=o

n=o

we see from (3-9) and (3-16) that F may be written

(3-19) Fo(5, t, e) = i I
n=o

4. Solution in boundary layers

We rewrite (2.9), (2.10) and (2.11) as

^•2) ht~hxx= 2 e K f ^ J •

(it.3) / = f = 0 , h = - ( e l t + e " l t ) at x = 0 .

The Reynolds number does not appear in these equations, as they are

essentially those governing the flow due to torsional oscillations of an
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infinite disk in an unbounded fluid. This problem has been attacked by

Rosenblat [2J, Benney [3] and Riley [4], and is rather simpler as (U.l)

may be integrated once with respect to x , and the function of

integration is known to be zero. For this problem of two oscillating

disks the function of integration is not zero, and it is preferable to

deal with (U.I) as it stands.

Although the Reynolds number does not appear in (U.l), (U.2) and

(U.3), we expand f and h in inverse powers of X in order to match

the solution with that in the interior.

(U.U) f = I \~nfn(x, t, e) ,
rc=o

(k.5) h= I X \ 0 t , t, e) .
n=Q

Substitution of (k.k) and (4.5) into (U.I), (U.2) and (U.3), gives, if

only f and h are considered,

0 , o Aoo V o
xxt xxxx ^ x xxx-

< U - T > \ - \ = 2e Vo -^o
t XX *• X X

(U.8) fn
= fn = ° » K = -2cost at x = 0 .u o o

X

The form of these equations, with the non-linear terms multiplied by

the small parameter e , suggests that we expand / and h as a power

series in e , namely

C*-9) fQ(x, t, e) = I e
nfm{x, t) ,

tt=O

00

Ct.lO) ft («, t, e) = I e\ (x, t) .
n=o

Substituting these into (U.6), (U.7) and (U.8), and equating powers of e

we obtain the following sets of equations.
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(i) Coefficients of e°

f - f = 0 ,
00 00
xxt xxxx
h - h _ = 0 ,oo, oo

t XX
f = f = 0 , h = -2cost at
oo oo oo

x

The solution of these equations is

oo ~ oo2x

where «002 » . a 0 0 3 a n d ^ i a r e functions of e to te determined. In

Section 5 i t is found that the functions F and H , into which f
o o J 0

and h are matched, are finite. Thus / and h , which form the

dominant parts of f and h as e •* 0 , should be finite as x •+ M .
Hence a^~ = a: _ = b . = 0 . Thusoo2 oo3 ool

(U.ll) /Q 0 = 0 ,.

(U.12) hQQ = -2e~
x//Z cos(t-«//2) .

(ii) Coefficient of e1

4l " hi = "̂ oô oo '
a;xt xxxx x

= 2/2 e'^-sinU-tf/^cosCi-rc/Za) + cos2(*-x//2)} ,

by using (it.12). Thus

"^ 2{-sin(2t-a;/2) + cos(2t-a;/2)
l o l

xcct xxxx
(k.lk) h -hQl - 0 .

t xa;

(U.15) /o l =/ o l = hQl = 0 at a = 0 .
a;

The solution of (t*.ll») which satisfies O.15) is
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and from Section 2 we must have b .. = 0 . Thus
oil

(U.16) h o l = 0 .

From (1+.13) it is evident that / . will be composed of two parts,

one independent of time and one periodic with twice the angular frequency

of oscillation of the disks. We write f . = f . + / n , subscripts s
OX OX© OXW

and u denoting steady and unsteady parts, respectively, and consider

these separately, as it is clear that they must each satisfy boundary

conditions (U.15).

(a) Steady part

This is obtained by solving

xxxx

f , = f , = 0 at x = 0
4Ol8 J OlS

The solution is

At this stage the necessity for introducing the intermediate region,

to be considered in Section 5, appears. Comparing C^-ll) and (A-17) with

(U.9), we see that the series in (U.9) will only converge if tx is

bounded, and thus the straightforward approach of matching this solution

with that in the interior region (Section 3), by letting x •*• °° , is not

valid. Thus an additional region is required, which we shall call the

intermediate region, in which the dimensionless space variable is

X = £x . This region is considered in Section 5.

Section 5 shows that if the boundary layer solution is to be matched

into the solution in the intermediate region, then the terms of the

expansions (U.9) and (U.10) must be such that / = o[xn) and

h = o(x ) as x -*• » . Hence, if we anticipate these results,
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aol2s = aol3s = ° ' a n d

(b) Unsteady part

This is obtained by solving

= /2 e~x/2 (cos(2t-x/2) - sin(2t-a:/2)}
XXt XXXX

{k'20) folu = folu = ° at x = 0 •
X

The solution is obtained by writing

the terms / o l w o (t) and «/olMl(*) , where / O 1 M O and fQlul are

arbitrary functions of time, being solutions of the homogeneous equation.

Substituting (1+.21) into (k.19), equating coefficients of cos2t and

sin2t and solving we obtain

f = -r^- e 2 [cos(x/2) + sin(x/2)] + e~x[Acosx + Ssinr] ,

f = j^fe e~x [- cos(x/2) + sin(ar/2)] + e~X[-Bcosx + /Isinx] ,

where terms increasing exponentially with x have been excluded, and A

and B are arbitrary constants. Substitution of these into (It.21) gives

folu = ]^2
 e " X / 2 [cos(x/2-2t) + sin(a;/2-2t)

(U.22)

••) + * / o l M l ( * ) •

Applying boundary conditions (U.20) to (it. 22) we obtain

(it.23) jj^- (cos2t - sin2t) + 4cos2t - Bsin2t + / (t) = 0

and

- jHcos2* - sin2t) + ̂ -(sin2t + cos2t) - 4cos2t

+ Bsin2t + i4sin2t + Bcos2t + f , . (t) = 0 ,
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as equations determining / . and / l y l . The solution is still

incomplete at this stage as A and B are still unknown. They are found

during the process of matching into the solution in the intermediate

region.

( i i i ) Coefficient of e2

From the foregoing it appears that the higher order terms in the

expansions for / and h become complicated and unwieldy. We content

ourselves with quoting the asymptotic form of / „ and h 2 for large

(a) As Riley [4] has pointed out the correct form for f is

(U.25) fQ2 = ao22*2 + « o 2 3 *
3 ,

where «o2p
 an(i a

021
 a r e f o u n d during the matching procedure.

(b) Rosenblat [2] has given the expression for h , using slightly

different non-dimensional variables. Using the variables introduced in

Section 2 we have

(U.26) = 0 p e " x / / 2 cosCt-a;//2)"] .

(U.25) and (it.26) provide further evidence for the existence of the

intermediate region in which the appropriate length variable is X = EX .

It is easy to see from (k.j), (U.12), (U.l6) and (it.26) that all

terms in the expansion (it.10) for h will tend to zero exponentially at

the outer edge of the boundary layer region. We shall see in the next

section that in the intermediate region the angular velocity is

identically zero, and thus the angular velocity is matched automatically.

5. Solution in the intermediate region, and matching between regions

The equations governing the flow in the intermediate region are

(2-13) Fxxt = " 2HHx - 2E2FFXXX + e

(2.lit) H = 2e2HF - 2£2FHY + £
2HYY .

t A A AA
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Expanding F and H in inverse powers of X ,

CO

F(X, t , e , X) = I X~nF(X, t, e) ,
rc=o

CO

MX, t, e , X) = I X~nH (X, t, e) ,
n=o

and considering only the dominant terms we obtain

(5.1) FQ = - 2HH * A-2F F +F ) ,
XXt X l XXX XXXX'

(5.2) S = £

and ^Q are now expanded as power series in e ,

(5.3) F = [ E ? (JT, t) ,
n=o
CO

(5.it) H = I e"a (J, t) .
n=o

We now prove, by induction, that H = 0 . Substitution of (5.M
on

into (5.2), and extraction of the coefficient of e° gives H = 0 .
t

Hence HQ0 = HQ0(X, e) = 0 , from Section 2. If we now assume that

H = 0 for r = 0, 1, ..., n-1 , we get from (5.2), ff = 0 . Hence

H = H (X, e) = 0 , from Section 2. Thus we have H= 0 , and (5.1)

reduces to

(5.5) FQ = £

We now substitute (5.3) into (5-5), and equate coefficients of

various powers of e .

(i) Coefficient of e°

Fn „ = 0 .
00 XXt
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The solution of this equation is

It is convenient at this stage to carry out part of the matching

procedure. From the non-dimensional forms (2.It), (2.8) and (2.12) used,

continuity of the axial velocity implies

(5-7) lim [fAx, t, e)] = lim [F(X, t, E ) ] ,

x-**> X-Ki

and

(5 .8) l i m [FAX, t, e ) ] = l i m [ F A x , t, z ) ] .
X * ° x + l

If we consider now only the dominant terms in £ , the right hand

side of (5-7) is finite, so that lim f must "be finite, as mentioned in

Section 4. This implies that / = 0 , which in turn implies that

lim FQ0(X, t) = 0 . Hence
X-*C

(5-9) FoOQ(0) = 0 ,

(5-10) FQo2(t) = 0 .

Now from (3-19) the right hand side of (5-8) is finite, which, from

(5.6), implies that

(5-1X) ^ f o o o U ) = - aooo '

(5.12) FQol(t) = 0 .

(5-12) now implies, from (5-8) and (3.19)

(5.13) FolQ(t) = 0 .

We now have

( i i) Coefficient of E1
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the solution of which is

At this stage we need to use the full matching procedure. The

non-dimensional form of the axial coordinate used implies that near

x - -1 we have

(5.16)

x = -1 + R 2x ,

= -1 + R'^e^X ,

= -1 +

Throughout this work we have considered only the first term in

expansions in inverse powers of \ , so that C5-16) gives, in the overlap

between the interior region and the intermediate region, x = -1 . Thus

(5.8) becomes, after use of (5-3) and (3.19),

(5-17) lim
M=0

We now match powers of e in (5-17) • The coefficient of £ gives

(5.11), (5.12) and (5.13). The coefficient of e1 gives

ool

Hence

(5

(5

(5

.18)

.19)

.20)

lim

Foll(t) = 0 ,

Coefficients of higher powers of e are matched similarly.

We now match the solution to that in the boundary layer region,

obtained in Section 4. The matching procedure (.5-7) may be written

Here e occurs implicitly on the right hand side, and this dependence

must be made explicit before powers of e are matched. If derivatives of
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F with respect to X are denoted by primes, (5.21) may be written

(5.22)
0(e3)

We now equate coefficients of the various powers of e .

(a) e . This has been done, and gives (5-9) and (5.10;.

(b) e1 . Substitution of (U.17), (1».22), (5-6) and (5-15) into

(5.22), and use of (5.12) gives, when exponentially small terms on the

left hand side are ignored,

* * *(*6oiL n
+f

^ J A —U ^

f*oio]
j A—0

Powers of x must match asymptotically, so that we have

(5.23) a o l 3 s = 0 ,

(5.2*0 a o l 2 g = 0 ,

(5-26) -i- + f

Equations (5.23) and (5.2U) have been used earlier to obtain (U.18). The

steady and the time dependent parts of (5.25) may be separated to give

(5.28) /o l M l(t) = 0 .

Substituting (5.28) into (J+.2U) gives

(|+B+4)sin2t + (B-yl)cos2t = 0 ,

and hence A = B = -T- . (U.23) now gives
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(5-29)

Separating the steady and the time dependent parts of (5-26) gives

Comparing (5.31) with (5.29) and (5.20) we see that the dominant

part of the fluctuating flow is now known everywhere.

(c) E2. Substitution of (It.25), (5.6) and (5-15) into (5-22), and

use of (5.19) gives

When powers of x are matched, we obtain

(5.32) %23 = 0 ,

(5-33) a022 =

<5-35)

(iii) Coefficient of z2

F°2xxt = ~ 2F°°Fooxxx + F°°xxxx

In view of (5.6), (5.10) and (5.12) this may be written

F°2xxt = ~ 2 f ' o o o F o o o m + F°ooxxxx '

and integration of this once with respect to t gives
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F ''(X) being the function of integration. Now F cannot increase
020 o^xx

indefinitely with t , so that we must have

F°ooxxxx " 2 f o o o f ° o c W = ° '

as the equation determining ^ o 0 0 • This equation can be integrated once

with respect to X to give

where y is some constant. The boundary conditions on FQ0O
 a r e gi-ven

by (5-9), (5.11) and (5-27), i.e.

(5.33)
^000 = ° ' fooo 1

Fooo = - aooo a s X

Rasmussen [5] has examined solutions of (5.32), and shown that

boundary conditions of the type (5-33) can only be applied if p = 0 . In

this case (5-32), with boundary conditions (5-33), is, apart from changes

in scale, the same as an equation obtained by Benney (equation 3-35 in

[3]). He gave a numerical solution according to which

FooO'(
0> = 0 ^ 1 5 • fooo(oo) = - °-530 >

so that

(5.310 aooQ = 0.530 ,

(5.35) aQ22 = 0.208 .

(iv) Coefficient of e3

In order to complete the solution to 0(e2) we need an equation for

F , which is obtained by considering the coefficient of e3 ,

(5 •*(.) p = _ P F F - 2F F + F
03xxt 00 olxxx olooxxx olxxxx

Substituting (5-6) and (5-15) into (5-36), using (^.10), (5-12), (5-19),

(5-31), and integrating once with respect to t we get
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As argued earlier the coefficient of t must be zero, so that the

equation to be satisfied by F is

with boundary conditions (5.18), (5-30) and (5.3*0.

It is worth while gathering together the expressions for the axial

and angular velocities in the various regions. They are:

(a) Boundary layer region

f0 - *{-*= ~ ¥ - ̂ p
(5-38)

2/2
— e~x cos [x-2t^n] + i(v^-l)cos (2t+rtr) 1 + 0(e2)

(5.39) hQ = - 2e~^/va cos(t - x//2) + 0(e<

(b) Intermediate region

(5.41) HQ = 0 .

f and f are solutions of equations (5.32) and (5.37)

respectively, with appropriate boundary conditions.

(c) Interior region

(5.42) Fo

(5-43) HQ E 0 .

6. Possible extensions of the work herein

Extensions of this work in two directions would be interesting.
1

These are ( i ) solution of the problem for Ei?̂  = 0( l ) , to cover the

region between the re su l t s of Rosenblat [7] and those of the present work,
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and (ii) extension of the solution herein to flow between torsionally

oscillating disks whose amplitudes and frequencies are different. Some

thoughts on these extensions are presented here.

l
(i) Solution for sR? = 0(1)

In this case the thicknesses of the two intermediate regions would be

such that they would overlap, and there would be no distinct interior

region. In addition the expansion of the solution in inverse powers of

X = cR2 may not be valid. Provided the solution was restricted to

/?2 » 1 , the boundary layer regions considered in Section 4 would still

exist, but the whole region between them would be governed by the

equations of Section 5. The basic steady flow in this region would be

governed by the equation

as in Section 5, but the boundary conditions on this equation would be

Fooo = ° ' fooo = - I at x = ° '

Fooo = ° ' Fooo = - \ a t * = 2eff* ,

and a separate numerical solution of the equation would be needed for each
l

value of ei?2 .

(ii) Torsional oscillations of disks with different amplitudes and
frequencies

The work presented here has been simplified by the particular

boundary conditions used, which imply that /* and h* are odd functions

of x* . Closer examination of the work of Sections 3, 4 and 5 shows that

the solution can be readily extended to allow for an arbitrary phase

difference between the disks, the only difference in the solution being

in the time dependent part of F . However if the amplitudes and/or

frequencies of oscillation of the disks are different /* and h* will

not be odd functions of x* , and the solution becomes much more

complicated.

In the interior region (Section 3) the equation governing the basic
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steady flow is (3.15), whose solution in this case is

(6.1) F Q O = A + Bx + Cx2 .

If the amplitudes and frequencies of oscillation of the disks are the

same then F is an odd function of x , so that A = C = 0 , and the

remaining constant B is determined by matching the axial velocity with

that in the intermediate region. For the general case, however, we obtain

two conditions by matching the axial velocity with the two intermediate

regions at x = ±1 , and there is still a degree of indeterminacy. This

indeterminacy cannot be overcome by matching the radial velocity at

x = ±1 , as the radial velocity in the intermediate regions is determined

by the second order term in the expansions in inverse powers of A , and

in any case this would give two extra conditions, so that F would be

overdetermined.

The following physical argument is put forward as a possible way out

of this impasse. Consider the disk at x = -1 to be oscillating with

angular frequency w and amplitude 2e , and the disk at x = 1 to be

stationary. Then the solutions in the boundary layer and intermediate

region near x = -1 would be as given in Sections 4 and 5, with the

dominant solution in the interior given by (6.1). Matching the axial

velocity at x = -1 would give one condition on A, B and C . As the

disk at x = 1 is stationary, there would, to first order, be no boundary

layer there, and the no slip boundary conditions should be applied to

(6.1). This would give

giving two extra conditions so that A, B and C would be determinate.

If (6.1) is now examined, it is found that ^OQ^~^
 i s t h e s a m e a s

that obtained in Section 5. In physical terms we may say that the radial

velocity at the outer edge of the intermediate region is the same in the

two cases. If we make the physical assumption that the radial velocity at

the outer edge of the intermediate region near one disk is independent of

the amplitude of oscillation of the other disk, we could now obtain the

solution for arbitrary amplitudes of oscillation of the disks. A weaker

assumption, which would lead to the same result, would be that the above
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radial velocity is a monotonic function of the amplitude of oscillation of

the second disk. An argument in favour of this assumption is its

symmetric nature, as it is easily shown from (6.1) that if this assumption

is true at one disk, it automatically holds for the second disk. Granted

the truth of this assumption, the work here can readily be extended to

cover different frequencies of oscillation, as well as different

amplitudes.

The above argument is mainly physical, and mathematical justification

for it should be sought.

Note added on 31 October, 1969. A recent paper by A.F. Jones and

S. Rosenblat, "The flow induced by torsional oscillations of infinite

planes", J. Fluid Meah. 37 (1969), 337-3^7> treats the same problem, with

the same conclusions. They also consider the case ei?2 = 0(l) , for

R » 1 .

References

[I] S. Rosenblat, "Flow between torsionally oscillating disks", J. Fluid

Meah. 8 (i960), 388-399-

[2] S. Rosenblat, "Torsional oscillations of a plane in a viscous fluid",

J. Fluid Mech. 6 (1959), 206-220.

[3] D.J. Benney, "The flow induced by a disk oscillating in its own

plane", J. Fluid Meah. 18 (196k), 385-391.

[4] N. Riley, "Oscillating viscous flows", Mathematiha 12 (1965),

161-175.

[5] H. Rasmussen, "Steady viscous axisymmetric flows associated with,

rotating disks", Ph.D. Thesis, Univ. of Queensland, 1968.

University of Queensland,

St Lucia, Queensland.

https://doi.org/10.1017/S0004972700041605 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041605

