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Abstract

Let r be a graph with isomorphic subgraphs G and H, and let 0: G -> H be an isomorphism. If 0 can
be extended to an automorphism of T, we call 6 a partial automorphism of T.

We consider the application of partial automorphisms to the graph reconstruction conjecture, in
particular, to the problem of reconstructing graphs with two vertices of degree k — 1 and the
remaining vertices of degree k.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 60.

1. Introduction

We study the application of partial automorphisms to the reconstruction of
"almost" regular graphs, that is, graphs with n vertices of degree k and two
vertices of degree k — 1, where k > 3, so that the total number of vertices is
n + 2.

1.1 DEFINITION. Let G and H have the same number of vertices. G and H are
reconstructions of each other if there exists a bijection 6: V{G) -* V(H) such that
the vertex-deleted subgraph G — v - H — 0(v), for every v £ V(G).

1.2 DEFINITION. G is reconstructible if G — H whenever G and H are reconstruc-
tions of each other.

We consider only connected graphs, since it is well-known that disconnected
graphs are reconstructible [1].

© 1984 Australian Mathematical Society 0263-6115/84 $A2.00 + 0.00
317

https://doi.org/10.1017/S1446788700022291 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022291


318 W. L. Kocay [2]

It is a simple observation that all A;-regular graphs are reconstructible, and that
if G has only two degrees, we can take these to be k and k — 1; otherwise G is
reconstructible. Again, if G has only one vertex of degree k — 1, then G is
reconstructible.

Accordingly, let G have n vertices of degree k and two vertices, u and v, of
degree k — 1, where k > 3, since k = 2 is not very interesting. The special case
k — 3 is treated in [3] and a closely related problem is considered in [2]. If
uvEE(G\ then G — u has one vertex of degree k — 2 (that is, v) and k — 2
vertices of degree k — 1. There is only one way to rejoin u to get the proper
degree sequence, so that G is reconstructible.

If uv & E(G), then there are k ways to rejoin u to G - u to get the correct
degree sequence. So let H be obtained from G — u by adjoining a new vertex x
adjacent to v and to any k — 2 of the other k — \ vertices of degree k — 1 in
G — u. Then degHx = A: — 1. Call the other vertex of degree k — 1 in H w. This
is illustrated below. Vertices of degree k — 1 are marked by dark dots.

If G is not reconstructible, then without loss of generality, we can take H as a
reconstruction of G.

c ; c ;
Figure 1.1

We have G — u — H — x, and since G and / / are reconstructions of each other,
we must have G — v — H — w, since v and w are the other vertices of degree
k — 1 in G and H, respectively (see [1]). Accordingly, let/>: G — u ->.// - w be an
isomorphism.

G - v H - W

Figure 1.2

1.3 LEMMA. 77/ere exist positive integers kx and k2 such that either:
(i)pk'(u) — x andpk2(w) = v; or
(ii)pk](u) — v andpk2(w) = x.

PROOF. Let V= V{G) U V(H). Then p: V- {v,x} -*V- {u,w}. Consider
p(u). Either p(u) e {t>, x}, or we can find p\u). Either /?2(M) e {v, x}, or we
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[3] Partial automorphisms 319

can find p3(u). Sincep is one-to-one and onto, and Vis finite, we must eventually
have pk'(u) G {v, x). Similarly, pk2(w) E {v, x).

1.4 DEFINITION. Let F be a graph with isomorphic subgraphs G and H and let
6: G -» H be an isomorphism. If 8 can be extended to an automorphism of F then
6 is a partial automorphism of F.

We will embed G and 7/ into a graph F for which p of Lemma 1.3 becomes a
partial automorphism of F. This will enable us to determine much of the structure
of G and H.

For let F = G + uv. Then clearly, # + wx - F, by Figures 1.1 and 1.3. Let \p
be the natural isomorphism between H + wx and F, that is, \p(x) = w and
$()>) = y ioT y ¥" x. Since F — v = G — v - H — w - F — w, we have 0 = ^/>:
F — v -> T — w i s a n isomorphism, where the product ^p is read from right to
left.

u (-x)

Figure \3

1.5 LEMMA. 6 is a partial automorphism of F.

PROOF. 6 maps F(F) - {v} to F(F) - {>v}. Extend 6 to F(F) by putting
= w. To show that 0 is an automorphism of F, notice that 6 maps F — v to

F — w. Therefore 6 maps the vertices of degree k — 1 in F — v to those of degree
fc — 1 in F — w, that is, it maps the vertices adjacent to v in F to those adjacent to
w in F. Therefore the extension 6{v) = w completes 0 to an automorphism of F.

This automorphism of F will enable us to determine much of the structure of G
and H. In some cases it determines G and H completely.

2.pk'(u) = x mipk2(w) - v

We assume throughout this section that the first alternative of Lemma 1.3
holds, namely that pk'(u) = x and pkl(w) = v. In this case the vertices u and w
lie in different orbits of (6).
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320 W. L. Kocay [4]

Let U be the orbit of « and W the orbit of w, that is, U —
{u,6(u),e2(u),...,0k'-\u)} and W = {w,6(w),e2(w),...,dk*(w) = v). If we
write «, = 8'(u), for i = 0, \,2,...,kx - 1, and w, = 0''(w), for j = 0, l,2,...,fc2,
then I / = {«0, « „ . . . , « t i _ , } and JT = {*„,*„. • • , ! % } , where wfc2 = ©. | f/|= A:,

= k2+ 1.

Let g = gcdC*!, k2 + 1).

2.1 DEFINITION. We define a bipartite graph G'(kx, k2) with vertices A =
{a0, av...,ak^x) and B = {bo,bu...,bk2}. Vertex a, is joined to bt, bi+g,
bi+lg,..., and to &,_„ 6,+ g-1 ( />I+2g-i,.-., for i = 0,...,A;, - 1, and where the
arithmetic is computed modulo k2 + 1.

Alternatively, we could have defined G\kx,k2) by saying that vertex bt is
joined to a,, a,+g, ai+2g,..., and to a,+ 1, ai+g+u ai+2g+x,..., for / = 0 ,1 , . . . ,k2,
and the arithmetic is computed modulo kx.

2.2 LEMMA. The induced subgraph T[U U W] contains a spanning subgraph
isomorphic to G\kx, k2).

PROOF. The mapping a, -» «,-, i = 0,1,...,Ar, - 1 and 6, -> w,, / = 0 ,1 , . . . ,Ar2,
is an embedding of G\kx, k2) into T[U U FT]. For u(= u0) is joined to w (= w0)
and to c ( = wk2). Since | £/|= A:,, | W\= k2+l,g = gcd(Ar,, A:2 + 1), and 6 is an
automorphism of T[U U W], we see that the above embedding is indeed an
isomorphism.

By Lemma 2.2 we can consider G'(kx, k2) as a subgraph of T[U U W]. We will
identify the sets A with U and B with W, and consider 0 as acting on G'(^i» ̂ 2)
as an automorphism.

If g > 1, there are two orbits of edges: the orbit containing uowo, uowg,
u0w2g,..., and its translations under 9; and the orbit containing HOW*2,

u0w2g_,,..., and its translations under 6. The first orbit contains the edge uw
( = W0H>0) and the second orbit contains uv ( = MO

W*2)'

2.3 THEOREM, / / g = gcdCA;,, A;2 + 1) = 1, then G^H.

PROOF. If g — 1 there is only one orbit of edges, since w0 is joined to all vertices
of W. Therefore G = T-uv^T-uw~H.

Thus, in particular, if A;, = A;2, then g — 1, and G-H.
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[s] Partial automorphisms 321

If g > 1, then the degree of w, in G'(kx, k2) is 2(k2 + l ) /g and the degree of wt

is 2kx/g. G'(kx, k2) is illustrated in Figure 2.1 where the two edge-orbits are
shown in solid and broken lines.

G ' ( 3 , 5 ) , g=3

Figure2.1

G'(ku k2) is a regular graph only when 2kx/g = 2(k2 + l)/g, that is, when
kx = k2 + 1. In this case g = kx = k2 + 1, and G'(ku kx — 1) is a 2-regular
graph. In fact it is a polygon of length 2kx in which alternate vertices and edges
belong to different orbits of (6). Since F is ^-regular, where k > 3, we gain very
little information about G and H.

When k = 3, we must have g = kx = k2 + 1, for otherwise the degree of «, or
W: would be at least 4.

3./>*'(M) = o and/;*2^) = x

We assume throughout this section that the second alternative of Lemma 1.3
holds, namely />*'(«) = v and/>*2(w) = x.

3.1 THEOREM. J/fc, = k2, then G-H.

PROOF. Consider the orbit of (d) containing u in F. It contains u,
6(u),61(u),...,ek>(u) = v, 8(v) = w, 8(w),62(w),...,0k*(w) = u. The orbit
contains kx + k2 + 1 = 2kx + 1 vertices. Consider the edge uv e E(T).
Ok> + \uv) = Okl+\u)0kt + \v) = wu. Therefore, G = T - uv ^ T - uw - H,
since edges uv and uw are in the same edge-orbit of (0).

3.2 DEFINITION. We define a graph G(kx, k2) with vertices 0,1,2,...,kx + k2

such that vertex i is adjacent to vertices i + kx, i — kx, i + kx + 1, and i — kx — 1,
where the arithmetic is calculated modulo kx + k2 + 1.
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322 W.L. Kocay [6)

Properties of the graph G(kx, k2) are important for the following reason. Let U
denote the orbit of (6) containing u. Then U = {u, 6(u), 6\u),..., 0*'(M) = v,
6(v) = w, 6(w),...,ek*(w) = u}. Write H, = 0'(«), for i = 0 ,1 ,2 , . . . ,* , + k2.
ThenM = H0, V = uki, and w = uki + l, and U= {uo,uu...,uk]+ki}.

3.3 LEMMA. The induced subgraph T[U] contains a spanning subgraph isomorphic
to G{kx, k2).

PROOF. The correspondence a: G(kx, k2) -» T[U] given by a(/) = w,, /' =
0 , 1 , . . . ,kx + k2 embeds an isomorphic copy of G(kx, k2) into T[U]; for u ( = M0)
is adjacent to v ( = uk ) and to w (= uki + l), and 0 is an automorphism of T[U].

In view of Lemma 3.3, we will consider G(kx, k2) as a subgraph of T[U], with
vertices u0, «„. . . ,« f c i + ; k 2 on which 6 acts according to the rule 0(w,) = M,+1,
where the subscript is computed modulo /c, + k2 + 1.

Notice that G(k{, k2) consists of an edge-disjoint union of polygons. For the
sequence w0, uk], u2ki, u3kf,...,u0 gives a polygon of length (&, + k2 + l ) /g , ,
where g, = gcd(fc,, k{ + k2 + 1) = gcd(&,, A:2 + 1). The translations of this
polygon under 0 give a set of g1 vertex-disjoint polygons.

Similarly, the sequence «0, uki+l, u2{ki+l),...,u0 gives a polygon of length
(*, + A:2 + l ) /g 2 , where g2 = gcdCA:, + 1, kx + k2 + 1) = gcd^ , + 1, k2). Its
translations under 6 give a set of g2 vertex-disjoint polygons, which are edge-dis-
joint from the first set.

These two sets of polygons decompose the edge set of G{kx, k2) into two
edge-orbits of (d). The first set is the orbit containing the edge uouk = uv and
the second set contains uouk + 1 = uw. Since G = T — uv and H — Y — uw, we
cannot use the argument of Theorem 2.1 to prove that G - H.

By Theorem 2.1, we need not consider the case kx—k2 anymore.

3.4 THEOREM. If \kx - k2\- 1, then G(kx, k2) is 3-regular. If\kx- k2\> 2,
then G(kx, k2) is 4-regular.

PROOF. Suppose that kx = k2 + 1. Then it, + k2 + 1 = 2/c, and g, = kx.
The orbit of uv consists of g, "polygons" of length 2. In this case g2 =
gcd(fc, + 1, k2) — gcd(k2 + 2, k2). If k2 is odd, then g2 = 1, and the orbit of uw
is a single polygon of length 2A:,. In this case G(k{, k2) is a polygon of length 2kx

with main diagonals present.
If k 2 is even, then g2 = 2, and the orbit of uw breaks into two polygons, each of

length kx. G(kx, k2) is then a A;rprism, that is, two polygons with corresponding
vertices joined by a matching.
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[7] Partial automorphisms 323

Now let kx = k2 — 1. Then kx + k2 + 1 = 2k2. This case is equivalent to the
above. Thus, if \kx — &2|= 1, G(kx, k2) is one of the 3-regular graphs described
above. This is illustrated in Figure 3.1. The two orbits of edges are shown in solid
and broken lines.

Finally, if |kx — k21> 2, then degenerate "polygons" of length 2 do not occur,
and G(kx, k2) is a 4-regular graph.

k1=4,

Figure 3.1

3.5 COROLLARY. Ifk = 3, then \kx - k2\= 1, and T = G(kx, k2).

PROOF. Since F is 3-regular and connected, and G(kx, k2) is a subgraph of F,
we must have F = G(kx, k2).

This result and the following one are also given in [3] where only k = 3 is
considered.

3.6 COROLLARY. If k = 3, then G is reconstructible.

PROOF. By Theorem 3.4 and Corollary 3.5, F is completely determined if k = 3;
it is either a prism or a polygon with main diagonals. This determines G and H
uniquely. But then G and H are found not to be reconstructions of each other [3],
a contradiction. We conclude that G is reconstructible.

The case k = 4 is somewhat more difficult. If \kx — k2\= I, then F ^
G(kx, k2), but only contains G(kx, k2) as a proper subgraph. There is little that
can be said without more information. Similarly, if k > 5, then all we know is that
G(kx, k2) is a subgraph of F.
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324 W. L. Kocay [8]

But if k = 4 and \kx - k2\> 2, then by Theorem 3.4, T = G(kx, k2) and the
structure of F is completely determined. Thus the graphs G and H are completely
determined, and if there is a non-reconstructible graph of this type, it must be one
of the G 's or H 's in this family.

It is not an easy matter to show that G and H are reconstructible in this case,
and this illustrates an interesting point. Given two very similar graphs, how does
one decide if they are reconstructions of each other or not? As Section 4 indicates,
this can be a difficult question to answer.

4. Reconstructing G and H

In this section we assume that k = 4, \k{ — k2\^ 2, and that T = G(kx, k2),
and we show that G and H are in fact reconstructible graphs. We begin with
several remarks about the structure of G(kx, k2). As above, g, = gcd(&, + k2 + 1)
and g2 = gcd(fc, + 1, k2).

4.1 LEMMA. gcd(g,, g2) = 1.

PROOF. If g = gcd(g,, g2), then g\kx and g\kx + 1, so g = 1.

If we write xgx + yg2 = 1, where x and y are integers, then we can write

*, + k2 + 1 = (a + b)gxg2,

where a and b are appropriate integers. These are useful expressions for finding a
kx and fc2, once g, and g2 are given, since the structure of G(kx, k2) is better
understood in terms of g, and g2 than in terms of kx and k2.

G(kx, k2) consists of g, cycles of length (a + b)g2 and g2 cycles of length
(a + b)gx. The two sets of cycles intersect each other regularly, almost like a
cartesian product. In fact, if a + b — 1, so that kx + k2 + 1 = gxg2, it is easy to
see that G(kx, k2) is isomorphic to the cartesian product Cgx X Cg2 of two cycles.

We call the first set of cycles the gx-cycles, and the second set the g2-cycles.
Edges of the g,-cycles are called gx-edges of G(kx, k2), and edges of the g2-cycles
are called g2-edges. Thus the edges of G{kx, k2) are partitioned into g,-edges and
g2-edges.

G(kx,k2) is always embeddable on the torus, in which form its structure is
graphically visible. This is illustrated in Figure 4.1.
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G(3,14) g1=3, g2=2, kj+k2+l=18

Figure 4.1

We call this the gx-drawing of G(kx, k2). The g,-cycles appear as straight
horizontal lines, and the g2-cycles appear as vertical lines which must "wrap
around" the torus several times in order to complete the cycle. In the g2-drawing,
these properties are reversed.

We define the "wrap around", wx and w2, as follows. Let N = kx + k2 + 1.

4.2 DEFINITION. In the g,-drawing, the wrap around is w,, where

gxk2 = wxkx (mod AT),

and

-N/2gx<wx<N/2gx.

In the g2-drawing, the wrap around is w2, where

g2kx = w2k2 (modiV),

and

- J V / 2 g 2 < w 2 < J V / 2 g 2 .

In words, wx is the amount by which the g2-cycles wrap around in the
g,-drawing each time they go around the torus. For example, referring to Figure
4.1, we see that w, = 2.

It is easy to see that the formulas of Definition 4.2 define the appropriate
quantity. If we examine the congruence

gik2 = wlkl (mod TV),

we see that gx\kx, and g, | N, so that

k
k2 = wx^- (mod N/gx),

o 1

so that we can, in fact, take -N/2gx < wx < N/2gx. Now g21 k2 and g21 N/gx by
Lemma 4.1, and gcd(g2, kx/gx) = 1. It follows that g2|w,, and we can write
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w\ = ai#2> which gives:

4.3 LEMMA. WX and w2 satisfy:
(i) wx = a,g2 andw2 — a2gx,for integers al anda2,
(ii) k2/g2 = axkx/gx (mod N/gxg2),
(m) ^l/gi = a2k2/g2 (mod N/gxg2),
(iv) -N/2gxg2 < a, < N/2gxg2, for i = 1,2.

It is easy to see that these congruences uniquely determine a, and a2, and hence
wx and w2, since g c d ^ / g , , N/gxg2) = $cd(k2/g2, N/gxg2) - 1. We make
several further observations.

4.4 LEMMA. G(kx, k2) is a cartesian product if and only ifwx — 0 or w2 = 0.

4.5 LEMMA, / / g , = 1, then | w, |# 1, for i = 1,2.

PROOF. If g, = 1 and | w, |= 1, this would imply multiple edges in G{kx, k2), or
that A:, = k2, a contradiction.

4.6 LEMMA, / / g , = g2 = 1, fAen | w, | ^ | w21.

PROOF. If | wx |= | w2 \, then this would imply that the g,-drawing and g2-draw-
ing of G(ku k2) were identical, which would imply that G = H. But since we
assume that G & H, this is a contradiction.

Finally, we mention that as well as the automorphism 6: ut -* M,+1, G(ku k2)
admits a dihedral flip p: w, -» «_,-, where the subscript is computed modulo
kx + k2 + 1. The existence of p is most easily seen from Definition 3.2. It
preserves the edge-orbits of (6).

In order to prove that G and H are reconstructible, we use the following
approach. If A' is a graph with fewer vertices than G, let s(G, X) denote the
number of induced subgraphs of G which are isomorphic to X, that is,

s(G,X)=\{V'CV(G)\G[V']^X}\.

To say that G and H are reconstructions of each other is to say that
s(G, X) = s(H, X), for every X such that v(X) < v(G) (see [2]). In order to
prove that G and H are not reconstructions of each other, we find some X such
that s(G, X) =£ s(H, X). Since H is the only possible reconstruction of G, it will
follow that G and H are in fact reconstructible graphs.
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We know that T = G(ku k2), and that G = T - uouki and H - T - uouki,
where we take V(G) = V(H) = {u0, ul,...,uki+ki+l). If' V C V(G) such that
G[V] s X, then as long as V does not contain any of u0, uki, or uki, we will also
have H[V'ki] = X. The same will be true if V contains only one of «0, ukl, uki, or
if V contains uki and uki, but not w0. We can accordingly restrict the set V to
subsets of V(G) which contain w0, and at least one of uk and uk . We make the
following definition.

4.7 DEFINITION. Given a graph X, we define

*'(G, X) =\{V'Q V{G)\uQ G F', {iiti, uk2) D V

A similar definition holds for s'(H, X).

0, and

In order to show that G and H are not reconstructions of each other, we will
find a graph X such that s'{G, X) # s'(H, X). This is most easily done in terms
of the parameters g,, g2, w,, and w2. There are many special cases which must be
examined, and so the proof of the desired result follows through a sequence of
lemmas.

4.8 LEMMA. //1 W, |= 1 and g, = 2, then G and H are not reconstructions of each
other.

PROOF. Let X be the graph in Figure 4.2.

Figure 4.2

We consider two cases: wl = 1 and w, = - 1 .
Case 1. H>, = 1. The graph T - G{kx, k2) is of the form indicated in Figure 4.3.

Since all graphs on 9 or fewer vertices are known to be reconstructible (see [1]) we
can assume that N/g{ > 5.

3

/ /

\

ai

/

bi

/

b2

a3 r

/
b3

a4

/
b4

a5 •••

/ /

s •••

Figure 4.3
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328 W. L. Kocay [12]

Notice that any g,-edge of T has exactly one path of length 2 joining its
endpoints, but that a g2-edge has exactly 2 paths of length 2 joining its endpoints.
Since the edge e of X has two such 2-paths, any embedding of X into G or H must
have e as a g2-edge. Without loss of generality, we can take this edge to be a3b2.
Thus the vertex a of X must correspond either to o2 or to b3. Clearly, this gives no
embeddings of X into T. But if the edges bxb2 or a3aA were deleted, there would
be an embedding. But T - bxb2 s T - a3at s G, so that s\G, X) = 2, whereas
s'(H, X) = 0. This is because all g,-edges are similar, all g2-edges are similar, and
deleting an edge of T cannot increase the number of 2-paths. It follows that G and
H are not reconstructions of each other.

Case 2. w, = - 1 . It is easy to verify that in this case the graph T is isomorphic
to that when w, = 1. The same argument applies.

4.9 LEMMA. //1 wx \ = 2 and gx = 1, then G and H are not reconstructions of each
other.

PROOF. Let X denote the graph in Figure 4.4.

Figure 4.4

Case \.wx = 2. The graph T is illustrated in Figure 4.5.

ao a. a 2 a 3 a4 a 5 a6 a7 a8 a9

\

\

Figure 4.5

Since all graphs on 9 or fewer vertices are reconstructible, we can take N/gx > 10.
Notice that any g,-edge a2a3 of T has exactly two 2-paths joining its endpoints:

a2axa3 and a2aAa3. But a g2-edge a2a4 has exactly one such 2-path: a2a3a4. It
follows that any embedding of Xinto T must have e as a gredge, say a2ay

The vertex a of X must then correspond to a2 or a3, and b must correspond to
a, or a5> respectively. But aoax E E(T) and a3a5 e E(T). It follows that * is a
subgraph of T - aoax and of T - a3ay But T - aoax = T - a3a5 = G, so that
s'(G, X)-2 and s'(H, X) = 0. Thus G and H are not reconstructions of each
other.
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Case 2. wx = -2. The arguments are almost identical to Case 1. We again have
s'(G, X) = 2 and s'(H, X) = 0.

4.10 LEMMA. If\wx\= 1 and g, = 3, then G and H are not reconstructions of each
other.

PROOF. Let A' denote the graph in Figure 4.6.

Figure 4.6

As before, we have two cases.
Case 1. wx = 1. The graph T is illustrated below in Figure 4.7.

bo

co

• l

b l

c l

• 2

b 2

C 2

a 3

b 3

C 3

a 4

\

C 4

\ \ \ \ \ N

Figure 4.7

Since all graphs on 9 or fewer vertices are reconstructible, we can take
N/gx > 4. Consider a g2-edge a2b2. The number of 3-paths joining a2 to b2 is
five: a2axbxb2, a2cxbxb2f a2cxc2b2, a^c^c^, and a2a3b3b2. For a g,-edge a2a3,
the number of 3-paths is 3 if N/gx s* 5: a2b2b3a3, a2b2c2a3, and a2cxc2a3. If
N/gx = 4, there is a fourth path: a2axaoa3.

In the graph X, ex, e2, e3, and e4 are all similar edges. Their endpoints each
have three 3-paths connecting them, two of which are internally disjoint, with the
third intersecting them both. In any embedding of X into F, not all of ex, e2, e3,
and eA can appear as g2-edges; for no four g2-edges form a cycle. Therefore, we
can take e, as a g,-edge in some embedding, and we can take this edge to be a2a3.

If we examine the three (possibly four) 3-paths joining a2 to a3, we see there is
only one way of choosing them so as to conform to the structure of X mentioned
above. This is illustrated in Figure 4.8.
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Figure 4.8

The vertex a oi X must correspond either to c, or to bv If a corresponds to c,,
then b must correspond to fc, or c0. If a corresponds to b3, then b must
correspond to c3 or bA. We are interested in embeddings of X into G or H such
that V{X) contains u0 e V(T) and at least oneof {uk], uki}. If we consider the
four possible combinations for a and b, we find that s'(G, X) = 6 and s'(H, X)
= 2, so that G and H are not reconstructions of each other.

Case 2.wx = - 1 . The analysis is very similar to Case 1. We obtain s'(G, X) = l
and s\H, X) = 3.

4.11 LEMMA. If\ w, |= 2 and g, = 2, f/ie« G and H are not reconstructions of each
other.

PROOF. Let X denote the graph in Figure 4.9.

X:

Figure 4.9

Case 1. H>! = 2. The graph F is illustrated in Figure 4.10. As before we can
assume that N/gx > 5.

ao

bo

\

\

a l

b l

a2

b2

a3

b3

a4

b4

X
Figure 4.10

Notice that a g2"
edge a2^2 has four 3-paths connecting its endpoints a2axbxb2,

a2b0blb2, a2a^bxb2, anda2
fl3^3^2- A gt-edge a2«3 has five such 3-paths: a2b2b3a3,
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a2b2a4a3, a2b2bla3, a2albiaJ, and a2bobla3. Consider the edge e of X. Its
endpoints are connected by three 3-paths, two of which intersect and which are
disjoint from the third. Suppose there is an embedding of X into T in which e
appears as a g2-edge, say e = a2b2. Examining the 3-paths joining a2 to b2 listed
above, we see that we must take X as in Figure 4.11; there are no other
possibilities.

Figure 4.11

But in T, &,a3 e £( r ) . Therefore Xis a subgraph of T — bla3 = H.
Now suppose there is an embedding of X in which e appears as a g,-edge a2a3.

If we examine the 3-paths listed above, we see there are only four possible
embeddings (Figure 4.12).

X
Figure 4.12

The doubly labelled vertices can be labelled either way. But bxb2 £ E{Y). Thus
is a subgraph of T - bxb2 = G. It follows that s'(G, X) = 4, and s'(H, X) = 1,

so that G and H are not reconstructions of each other.
Case 2. w, = -2. The arguments are almost identical to Case 1. We obtain

s'(G, X) = 4 and s'(H, X)=\.

4.12 LEMMA. / / g, = g2 = 1, and |w2|>|w1|= 3, then G and H are not re-
constructions of each other.

PROOF. Let X denote the graph in Figure 4.13.

X:

Figure 4.13
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Case 1. wx = 3. The graph F is illustrated in Figure 4.14.

'10

Figure 4.14

We can assume that N/gx > 10. Consider a g^edge a3a4 of F. There are five
3-paths joining a3 to a4: a3a2a,a4, fl3fl2fl5a4> o3a0a5a4, a3a6a-ja4, and a3aoa,a4.
To show that these are all the 3-paths joining a3 to a4, notice that g2 = 1. Thus a3

and a4 are in the same g2-cycle of F. If there were a 3-path from a3 to a4 using
only g2-edges, it would follow that |w2|= 3. But \w2\> 4, so that every 3-path
from a3 to a4 must use a gredge. Since N/gx > 10, we obtain the desired result
by inspecting Figure 4.14.

A g2-edge a3a6 has three 3-paths joining its endpoints: a3a4a5a6, a3a4a-,a6,

and a3a2a5a6-
Consider the edge e of X. In X, there are three mutually internally disjoint

3-paths joining its endpoints. So in any embedding of X into F, e must appear as
a g,-edge, a3a4 say. By examining the five 3-paths listed above, we see there is
only one such set of 3-paths, giving two ways of embedding X, as shown in Figure
4.15.

Figure 4.15

But in the first case asa6 G E(T) and in the second case axa2 e E(T). If
N > 10, there are no other edges induced by these vertices. We conclude that if
N > 10, then A" is a subgraph of F - a5a6 and of F - a,a2. But F - a5a6 = T -
axa2 = G, so that s'(G, X) = 2, and s'(H, X) = 0.

If N = 10 and w, = 3, it is easy to check that we must also have |»v2|= 3, a
contradiction. It follows that G and H are not reconstructions of each other.

Case 2. wx = - 3 . The analysis is identical. We again have s'(G, X) = 2 and
s\H, X) = 0.
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4.13 LEMMA. 7/g, = g2 = 1 and | w, |>| w2 \> 4, then G and H are not reconstruc-
tions of each other.

PROOF. We define a graph Y(m), for any integer m > 2, consisting of two paths
of length m — 1, with corresponding vertices joined by a matching. 7(5) is
illustrated in Figure 4.16.

_ob

Y(5) J

V '
Figure 4.16

Let X = Y(\ w, |). Notice that in F, any g,-edge or g2-edge has exactly two
3-paths joining its endpoints. This is because | M>, |, | vv21> 4. The edge e2 of X also
has this property. This if e2 is embedded into F as a g,-edge, or g2-edge, the
embedding of e, and e3 is essentially forced, and this in turn forces the rest of the
embedding. But since X = Y(\ w{ |) and | w, \>\ w21, it is easy to see there are no
embeddings of X into G or H if e2 is chosen as a g,-edge. There are too many
additional edges induced by these vertices.

But if e2 is chosen as a g2-edge, the resulting embedding has only one extra
edge, either ab' or a'b, if \wl |< [N/2gx\, and two extra edges, ab' and a'b, if
\wx |= [N/2gx\. In the first case, X is a subgraph of T — ab'= G, so that
s'(G, X) = 1 and s'(H, X) = 0. In the second case, X + a'b is a subgraph of
T- ab' = G, but not of H, so that s'(G, X + a'b) = 1 and s'(H, X + a'b) = 0.
In either case, G and H are not reconstructions of each other.

4.14 LEMMA. / / g, = 1, g2 = 2, |tv, |3» 4, anrf |w2|> 3, then G and H are not
reconstructions of each other.

PROOF. With these values of the parameters, it is quite easy to see that any edge
of F has exactly two 3-paths joining its endpoints, since N > 10. We look at three
cases.

Case 1. l^ l^ lw, |. Let X = Y(|M>2| +1). It is easy to see that there are no
embeddings of X into G or H if the edge e2 of X appears as a g2-edge since
| w21 +1 >| w, |. But if e2 appears as a g,-edge, then X embeds into T with a single
additional induced edge, ab' or a'b. So X is a subgraph of T — a'b or of F — ab',
both of which are isomorphic to G. Thus, s'(G, X) = 1 and s'(H, X) = 0.

Case 2. \ w, |= | w2 \ +1 . Let X = Y<\ wx |) = y(| w21 +1). As in Case 1, there is an
embedding of X into G when e2 is a g,-edge, so that s'(G, X) > 1. If X is
embedded into F with e2 appearing as a g2-edge, then only a single extra edge is
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induced, ab' or a'b, both of which are g,-edges. It follows that X is a subgraph of
G in this case. So s'(G, X) = 2 and s'(H, X) = 0.

Case 3. | w, |>| H>2 | +1 . Let X — Y(\ wx |). There are no embeddings of X into G
or H if e2 appears as a g,-edge. If e2 appears as a g2-edge, there will be an
embedding, with one extra edge induced, a g,-edge. Thus X is a subgraph of G, so
that s'{G, X) = 1 and s\H, X) = 0.

4.15 LEMMA. 7/g, ?= 3 a/u/ \wy\>2, then G and H are not reconstructions of each
other.

PROOF. We define a graph W(m) for any integer m> 3, consisting of two
cycles of length m, with corresponding vertices joined by a matching. W{5) is
illustrated in Figure 4.17.

W ( 5 ) : e

Figure 4.17

Notice that the edge e of W(m) has exactly two 3-paths connecting its
endpoints. Let X = W(N/gx). This is possible, since W/g, > 3; for otherwise the
g,-cycles of F would have length at most two.

It is easy to see that any g2-edge of F has exactly two 3-paths joining its
endpoints. If N/gl ¥= 4, then any gj-edge of T also has this property. Thus if
N/gx ¥= 4, any embedding of X into T is forced, once the edge e has been
embedded. It is easy to see that X can be embedded in F with e as a g2-edge, but
not as a g,-edge. This gives s'{G, X) = 0 and s'(H, X) = N/gu if JV/g, ¥= 4. If
N/S\ ~ 4, then a g^edge of F has exactly three mutually internally disjoint
3-paths connecting its endpoints. But in this case X = W(4) is the graph of the
cube, which is transitive on edges, so that we can assume, without loss of
generality, that any embedding of X into F has e as a g2-edge. The embedding is
then forced, as above, which gives s'(G, X) = 0 and s'(H, X) = N/gv Thus G
and H are not reconstructions of each other.

4.16 LEMMA. / / w, = w2 — 0, then G and H are not reconstructions of each other.

PROOF. By Lemma 4.1, gcd(g,, g2) = 1, so g, ¥= g2. Without loss of generality,
take gi > g2 > 3, and let X = W(N/g{). We use the same arguments as Lemma
4.15 to show that G and H are not reconstructions of each other.
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4.17 T H E O R E M . / / k = 4 and \kx — k2\> 2 then G is reconstrucible.

PROOF. We know that if G is not reconstructive, then G and H are reconstruc-
tions of each other, where G = T — uouki, H = T — uouki, and T = G(kx, k2).

If F is a cartesian product Cg| X Cgi, then w, = w2 = 0. By Lemma 4.16, G and
H are not reconstructions of each other. Otherwise, by Lemma 4.4, wx ¥= 0 =£ w2.
Thusg, + \wx\>2.

Case 1. g, + | w, |= 2. By Lemma 4.5, this is impossible.
Case 2. g, + | wx |= 3. There are two possibilities: gx = 2 and | w, |= 1 or g, = 1

and |w, |= 2. By Lemmas 4.8 and 4.9, G and H are not reconstructions of each
other.

Case 3. g, + |w, |= 4. There are three possibilities: g, = 3 and \wx \— 1, g, =
|w, |= 2, or g, = 1 and |w, |= 3. The first two possiblities are dealt with by
Lemmas 4.10 and 4.11.

For the third possibility, notice that by Lemma 4.3, g21 wx. Therefore, g2 = 1 or
g2 = 3. Suppose first that g2 = 1. If | w21= 2, then we can reverse the roles of g,
and g2 and use Lemma 4.8. It's impossible to have |w2|= 3, by Lemma 4.6. If
| vv21> 4, then we use Lemma 4.12.

Suppose next that g2 = 3. If |w2|= 1, then we reverse the roles of g, and g2,
and use Lemma 4.10. If \w2\> 2, then we interchange g, and g2, w, and w2, and
use Lemma 4.15. Thus, in all cases, G and H are not reconstructions of each
other.

Case 4. g, + | w, \> 5, Consider g2 + | w2 \. If g2 + | w21< 4, then we can reverse
the roles of gx and g2, and use one of Cases 1, 2, or 3 above. So we can assume
that g2 + |w 2 |^ 5. If gx = g2 = 1, then by Lemma 4.13 we are done. If g, = 1
and g2 = 2, then we use Lemma 4.14. Otherwise both of g, and g2 are at least 2,
so one of them, say g,, is at least 3. We then use Lemma 4.15.

We see that in all cases, G and H are not reconstructions of each other. It
follows that G is reconstructible.

5. Concluding remarks

The fact that 0 is a partial automorphism of T forces much of the structure of G
and H. In some cases it determines G and H completely. In the cases for which
only some of the structure of G and H has been determined, it would seem
natural to set G — a = H — b for appropriate vertices a and b of degree k, in
order to get a second mapping 6'. If we can find an appropriate graph V such
that 0 and 0' extend to automorphisms of I", then the group (6, 6') must act on
F . This would force much more of the structure of G and H, and may make it
possible to produce a counterexample to the reconstruction conjecture.

https://doi.org/10.1017/S1446788700022291 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022291


336 W. L. Kocay [20)

References

[1] J. A. Bondy and R. L. Hemminger, 'Graph reconstruction-a survey', / . Graph Theory 1 (1977),
227-268.

[2] W. L. Kocay, 'Some new methods in reconstruction theory', Proceedings of the Ninth Australian
Combinatorial Conference, (Springer-Verlag), to appear.

[3] W. L. Kocay, 'Partial automorphisms and the reconstruction of bi-degreed graphs', Congr.
Numer., to appear.

Department of Mathematics
The University of Manitoba
Winnipeg, Manitoba
Canada

https://doi.org/10.1017/S1446788700022291 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022291

