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Rational Solutions of Painlevé Equations
Yuan Wenjun and Li Yezhou

Abstract. Consider the sixth Painlevé equation (P6) below where α, β, γ and δ are complex parame-
ters. We prove the necessary and sufficient conditions for the existence of rational solutions of equa-
tion (P6) in term of special relations among the parameters. The number of distinct rational solutions
in each case is exactly one or two or infinite. And each of them may be generated by means of transfor-
mation group found by Okamoto [7] and Bäcklund transformations found by Fokas and Yortsos [4].
A list of rational solutions is included in the appendix. For the sake of completeness, we collected all the
corresponding results of other five Painlevé equations (P1)–(P5) below, which have been investigated
by many authors [1]–[7].

1 Introduction and Main Results

The six Painlevé equations
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(P6)

were first derived around the turn of the century in an investigation by Painlevé and
his colleagues [2], [5], where α, β, γ, δ are complex parameters. Although first dis-
covered from strictly mathematical considerations, the Painlevé equations have ap-
peared in various of physical applications [1]–[7]. They may also be thought of as
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Rational Solutions of Painlevé Equations 649

nonlinear analoques of the classical special functions [6]. Therefore, they have be-
come one of the most important classes of nonlinear differential equations.

Many results [1]–[7] show that the rational solutions of Painlevé equations are
related to some partial differential equations in nonlinear wave theory and physical
problems. A remarkable example is that the rational solutions are the analogue of
multi-solitons for the second Painlevé equation (P2). Therefore, to characterize the
existence of rational solutions and to try to generate all the rational solutions for
Painlevé equations (say, Problem∗) are significant subjects.

Problem∗ has been investigated in many articles [1]–[5]. Main results are stated
as following theorem where conclusion 5 was proved by Kitaev, Law and McLeod [7].

Theorem A

(1) There is no rational solution for (P1).
(2) There exists exactly one rational solution for (P2) when the parameter α ∈ Z.
(3) (P3) with γδ �= 0 has rational solutions if and only if α+ βε = 4n, n ∈ Z, ε2 = 1.
(4) There exist rational solutions for (P4) if and only if the parameters satisfy α = n1,
β = − 2

9 (6n2 − 3n1 + ε)2 = −2(1 + 2n3 − n1)2, n1, n2, n3 ∈ Z, ε2 = 1.
(5) (P5) with δ �= 0 has a rational solution if and only if for some branch λ0 =

(−2δ)−
1
2 the parameters belong to one of the following cases with k,m ∈ Z:

(i) {2α = (λ0 + k)2,−2β = m2} where m ≥ 0, k + m is odd, and α �= 0 where
k < m;

(ii) {−2β = (λ0 + k)2, 2α = m2} where m ≥ 0, k + m is odd, and β �= 0 where
k < m;

(iii) {−2β = (α1 + m)2, λ0γ = k} where α1 = 2α so that m ≥ 0 and k + m is
even;

(iv) {2α = 1
4 k2,−2β = 1

4 m2, λ0γ /∈ Z} where k,m > 0 and k, m are both odd.

In other words, only for equation (P6) the Problem∗ has not been answered. In
this paper, we will solve it making use of the Bäcklund transformation and employing
the polynomial Hamiltonian system [5], [7].

Our main results are:

Theorem 1.1 Equation (P6) has a rational solution if and only if the parameters belong
to one of the following cases

(I) {α ∈ C, β = −αh2, γ = α(h − 1)2, δ = 0} ∪ {α = 1
2 , β = −γh2, γ ∈ C,

δ = 1
2 − γ(h− 1)2} ∪ {α ∈ C, β = 1

2 , γ = αh2, δ = 1
2 − α(h− 1)2} ∪ {α ∈ C,

β = −αh2, γ = 1
2 , δ = 1

2 − α(h− 1)2} where h �= 0, 1 ∈ C;
(II) {2α = n2,−2β = (λ+ n)2, 2γ = r2, 1−2δ = q2}∪{−2β = n2, 2α = (λ+ n)2,

2γ = r2, 1 − 2δ = q2} ∪ {2γ = n2, 2α = (λ + n)2, −2β = r2, 1 − 2δ =
q2} ∪ {1 − 2δ = n2, 2γ = (λ + n)2, −2β = r2, 2α = q2} where 1 + λ + q = r,
n ∈ Z, r and λ satisfy

(1) r = m + λ /∈ Z, m ∈ N; or
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(2) λ /∈ Z,−r ∈ N; or

(3) r ∈ Z, λ ∈ N; or

(4) r, λ ∈ Z, {λ > 1, r ≤ 0} ∪ {λ < 0, λ < r ≤ 0}; or

(5) r, λ ∈ Z, λ > 1, r > λ; or

(6) r, λ ∈ Z, λ = 1, r �= 1; or

(7) r, λ ∈ Z, λ = 0, r ∈ Z.

Further, we can clarify Theorem 1.1 in the following theorem.

Theorem 1.2 In Theorem 1.1,

(1) if case {I, α = 0} ∪ {I, γ = 0} ∪ {II, (4) or (5) or (6) or (7)} occurs, then
equation (P6) has infinite distinct rational solutions;

(2) if case {II, αβγ(1− 2δ) �= 0 and (1) or (2) or (3)} occurs, then equation (P6) has
exactly two distinct rational solutions.

(3) if case {I, α �= 0} ∪ {I, γ �= 0} ∪ {II, αβγ(1 − 2δ) = 0 and (1) or (2) or (3)}
occurs, then equation (P6) has exactly one distinct rational solution.

In Section 5, we shall give the list of rational solutions for equation (P6) in each of
all above cases after completing the proofs of Theorem 1.1 and Theorem 1.2. Some
of them may be generated by means of some Bäcklund transformations and a trans-
formation group. Our proofs depend heavily on the availability the Bäcklund trans-
formations which change a solution to another solution for the same equation with
maybe different parameters. In Section 2, we shall introduce these transformations.
Another key idea of our proofs is making use of the Hamiltonian system developed
by Okamoto [7], which is equivalent to equation (P6), and will be stated in Section 3.
In Section 4, we shall give some preliminary propositions.

For the sake of convenience, we give some definition and notations.

Definition 1.1 A rational function P(z)
Q(z) is said to be a proper if P(z) ≡ 0 or

deg P(z) < deg Q(z), where P(z), Q(z) are polynomials.

Throughout this paper, unless otherwise stated, the expression P(z)
Q(z) denotes a

proper, irreducible rational function. ω(z) := ω(z, α, β, γ, δ) denotes a rational so-
lution of equation (P6) with parameters α, β, γ, δ. C denotes an arbitrary complex
number which may have distinct values in different places. {I.δ = 0} is a simple
notation of the case {I.α ∈ C, β = −αh2, γ = α(h− 1)2, δ = 0}, and so on.

2 Transformations for Equation (P6)

As noted before, the availability of transformations is essential in our program. The
following theorem is due to Okamoto [8]. It can be checked by direct calculation.
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Theorem B Equation (P6) admits a symmetric group of discrete transformations, gen-
erated by the following three transformations:

T1

(
ω(z)
)

:= ω1(z,−β,−α, γ, δ) = ω−1

(
1

z

)
;

T2

(
ω(z)
)

:= ω2(z,−β,−γ, α, δ) = 1− ω−1

(
1

1− z

)
;

T3

(
ω(z)
)

:= ω3

(
z,−β,−α,−δ +

1

2
,−γ +

1

2

)
=

z

ω(z)

where ω(z, α, β, γ, δ) is a solution for equation (P6) with parameters α, β, γ, δ.

Remark This group has 24 transformations denoted by Ti (i = 1, 24).

For equation (P6), Fokas and Yortsos [4] were the first to receive the Bäcklund
transformations. We shall write them below:

Theorem C Let ω(z) be a solution of equation (P6) such that

Φ(ω) :≡ 2 f ′ +
g

z
+ κ

z + 1

z(z − 1)
f �≡ 0,

where

f := z
ω ′

ω
+
τ − κ− 1

2(z − 1)
ω +
τ + κ + 1

2(z − 1)ω
+
τ (z + 1)

2(z − 1)
−

(
1

2
+
µ

4

)
,

g := f 2 +
µ

2
f + υ, κ := β1 − α1 − 1 �= 0,

τ := α1 + β1, (α1)2 = 2α, (β1)2 = −2β,

µ := −
4

κ
(γ + β − 1), υ := 2δ − 1 +

(
µ

4
+
κ

2

) 2

.

Then the function ω̃(z) := S
(
ω(z)
)

defined by

ω̃(z) = ω(z) +
2(z + 1) f ′ − 4ω f ′

Φ(ω)

is a solution of equation (P6) with parameters

α̃ :=
1

2

(
(2α)

1
2 + 1
) 2
, β̃ := −

1

2

(
(−2β)

1
2 − 1

) 2
, γ̃ := γ, δ̃ := δ.
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3 Hamiltonian System for Equation (P6)

In 1986, Okamoto [7] gave some polynomial Hamiltonians H j(z, ω, v) associated
with each of the six Painlevé equations such that

ω ′ =
∂H j

∂v
; v ′ = −

∂H j

∂ω
(3.1)

defines a system of first order differential equation (say, Hamiltonian system H j for
(P j)) for (ω, v) where ω solves equation (P j). He proved that each Hamiltonian sys-
tem (3.1) is equivalent to the corresponding Painlevé equation. Now we state the
result for (P6).

H6 =
1

z(z − 1)

{
ω(ω − 1)(ω − z)v2

− [−λ(ω − 1)(ω − z) + rω(ω − z)− (q + 1)ω(ω − 1)]v

+
1

4
(C2 − 2α)(ω − z)

}
.

Theorem D Equation (P6) is equivalent to the Hamiltonian system H6 below:

z(z − 1)ω ′ = λz + [(r − λ)z − (C + r)]ω + Cω2 + 2ω(ω − 1)(ω − z)v,(3.2)

z(z − 1)v ′ =
1

4
(p2 −C2)− [(r − λ)z − (C + r)]v − 2Cωv

− (3ω2 − 2zω − 2ω + z)v2,

(3.3)

where

p2 = 2α, λ2 = −2β, r2 = 2γ, q2 = 1− 2δ, C = 1 + λ + q− r.(3.4)

4 Preliminary Results for Equation (P6)

Theorem 4.1 ω(z) = h (�= 0, 1) is a constant solution of equation (P6) if and only if

α ∈ C, β = −αh2, γ = α(h− 1)2, δ = 0.(4.1)

Moreover, if α = 0, then equation (P6) has infinite distinct constant solutions; if
α �= 0, then equation (P6) has exactly one distinct constant solution.

Proof Substituting ω(z) = h into equation (P6), we have

2
(
β(h− 1)2 + γh2

)
z3

+ [αh2(h− 1)2 − 2βh(h− 1)2 − γh2(1 + 2h) + δh2(h− 1)2]z2

+ [−2αh3(h− 1)2 + βh2(h− 1)2 + γh2(h2 + 2h)− δh2(h− 1)2]z

+ [αh4(h− 1)2 − γh4] = 0.
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Thus, the coefficients of zi , i = 0, 1, 2, 3 must be zero, and then (4.1) holds.

The following Theorem 4.2 plays an important role in proofs of main results.

Theorem 4.2 ω(z) is a nonconstant rational solution of equation (P6) if and only if
ω(z) is a nonconstant rational solution of the Riccati differential equation

z(z − 1)ω ′ = λz + [(r − λ)z − (p + r)]ω + pω2(4.2)

where p2 = 2α, λ2 = −2β, r2 = 2γ, q2 = 1− 2δ, p = 1 + λ + q− r.

Proof First of all, we prove that ω(z) is a nonconstant rational solution of equa-
tion (4.2) if and only if v(z) ≡ 0 if

(
ω(z), v(z)

)
is a pair nonconstant rational solution

of the Hamiltonian system H6.

The sufficiency is obvious. Now we prove the necessity.

Suppose that v(z) �≡ 0. Notice that ω(z) is a rational function, from (3.2) we know
that v(z) must be a rational function.

If z = z0 is a pole of ω(z) with multiplicity τ , then z = z0 is a zero of v(z) with
multiplicity at least τ .

From (3.3) we can obtain

ω(z) = −
C

3v
+

1

3
(1 + z) +

ε

3
R(z),(4.3)

R2(z) = −3z(z − 1)v ′ + a1 − (a2z − a3)v + (1− z + z2)v2,(4.4)

where ε2 = 1, a1 := 3
4 p2 + 1

4C2, a2 := 3r − 3λ + 2C , a3 := C − 3r, R(z) is a rational
function. It is easy to see from (4.3) and (4.4) that R(z) is a polynomial.

If z = z1 is a zero of v(z), from (4.3) we see that limz→z1 ωv = −C
3 . Substitute it

into (4.4) and (3.3), then we can get R(z1) = 0.

Now we prove that the supposition does not hold according to four different cases.
Otherwise:

Case 1: deg R(z) > 1. v(z) is a rational solution of equations (4.4) and (3.3).
Then equation (4.4) implies limz→∞ v(z) = ∞. Thus by (4.3) we can deduce that
limz→∞(ω − z) = ∞. From equation (3.2), however, we have limz→∞(ω − z) = 0,
a contradiction.

Case 2: deg R(z) = 1. v(z) is a rational solution of equations (4.4) and (3.3). Then
we can infer from (4.4) that limz→∞ v(z) = a (�= 0,∞). If limz→∞ ω = ∞, then
we can get from (3.3) that limz→∞

z
ω
= 3

2 . But (3.2) gives limz→∞
z
ω
= 1. This

contradiction shows that limz→∞ ω(z) = b (�=∞). Note that ω(z) is not a constant,
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then (4.3) yields C �= 0. Substitute (4.3) into (3.2), then we can obtain that

−Cz(z − 1)

[(
1

v

) ′
+ d ′
]

= Cd− 3dr − 3d2 + (3λ + 3dr − 3dλ + 4Cd− 2C)z + 6d(d− 1)(d − z)v

−

[(
Cr −Cλ +

2

3
C2

)
z −

1

3
C2 −Cr

]
1

v
+

C3

9

(
1

v

) 2

,

(4.5)

where d := 1
3 (1 + z) + ε

3 R(z). At present, d is a constant. Thus from (4.5) we know
that v(z) only admits simple zeros.

When d(d − 1) �= 0, the pole of v(z) must be z = d. Hence, v(z) = a z−3d+1
z−d ,

R(z) = −ε(z − 3d + 1). Differentiating equation (4.4) three times in turn, we have

2RR ′ = −3(2z − 1)v ′ − 3z(z − 1)v ′ ′ − a2v ′ − (a2z − a3)v ′ ′ + (2z − 1)v2

+ 2(1− z + z2)vv ′,
(A.1)

2(R ′)2 + 2RR ′′ = −6v ′ − 2(6z − 3 + a2)v ′ ′ − (3z2 − 3z + a2z − a3)v ′ ′ ′ + 2v2

+ 4(2z − 1)vv ′ + 2(1− z + z2)
(

vv ′ ′ + (v ′)2
)
,

(A.2)

4R ′R ′′ + 2(R ′ ′)2 + 2RR ′′ ′ = −18v ′ ′ − [3z(z − 1) + a2z − a3]v(4) + 12vv ′

− 3a2v ′ ′ ′ + (2z − 1)[6vv ′ ′ + 6(v ′)2 − 9v ′′ ′]

+ (1− z + z2)(2vv ′ ′ ′ + 6v ′v ′ ′).

(A.3)

Substitute v(z) = a z−3d+1
z−d , R(z) = −ε(z− 3d + 1) into equations (4.4) and (A.1), we

can obtain that

(z − d)2(z − 3d + 1)2 = −3a(2d− 1)z(z − 1)− a(a2z − a3)(z − 3d + 1)(z − d)

+ a1(z − d)2 + a2(1− z + z2)(z − 3d + 1)2,

(A.4)

2(z − 3d + 1)(z − d)3

= −3a(2d− 1)(2z − 1)(z − d) + 6a(2d− 1)z(z − 1) + 2a(a2z − a3)(2d− 1)

+ a2[(2z − 1)(z − d)− a2a(2d− 1)(z − d) + 2(2d− 1)(1− z + z2)](z − 3d + 1).

(A.5)

In equation (A.4) comparing the coefficient of term z4, we get a2 = 1. Set z = d
we have that

3ad(d− 1) = (1− d + d2)(2d − 1)(A.6)
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Clearly, 2d �= 1. Otherwise a = 0 implies v(z) ≡ 0. In equation (A.5), setting z =
3d − 1 and combining equation (A.6), we deduce that a3 = a2d. In equation (A.4),
setting z = 3d− 1 and noting that above results, we obtain that

a1(2d − 1) = 3a(3d− 1)(3d − 2).(A.7)

In equation (A.4), comparing the coefficients of terms degree three, two and one of z
in turn, we get that

12d2 + 2d + aa2 − 1 = 0,(A.8)

13d2 − 10d− 5aa2d + aa2 − a1 + 3a(2d− 1) + 1 = 0,(A.9)

−24d3 + 23d2 + 10d− 3a(2d− 1) + 2da1 + 7aa2d2 − 1 = 0.(A.10)

Equation (A.9) added to equation (A.10) makes that−24d3 + 36d2 + 2aa2d2 + aa2 +
a1(2d − 1) = 0. Substitute equations (A.7) and (A.8) into above equation, we give
that

−24d4 − 28d3 + 26d2 − 2d + 1 + a(27d2 − 27d + 6) = 0.(A.11)

We know that d satisfies equations (A.6) and (A.11). On the other hand, equa-
tions (A.6) and (A.11) do not have a common solution for either a = 1 or a = −1.
This contradiction shows that d(d− 1) = 0.

Let d = 0. Then R(z) = −ε(z + 1), v(z) = a z+1
z+e , where e is a constant. Substitute

them into equations (4.4) and (4.5), noting that v(−1) = 0 gives 3a1 = C2, then
eliminate the term containing derivative yields that

[
(3λ− 2C)z −

C

3
(1− z + z2)

]
a2(z + 1)2 + 2Cr(z + 1)a(z + e) +

C

3
(z + 1)2(z + e)2.

(A.12)

Comparing the coefficients of all terms of z we have that a2 = 1,

3λ− 2C +
C

3
(1 + 2e) = 0,(A.13)

6(3λ− 2C) + 6rCa + Ce2 + C + 4Ce = 0,(A.14)

3(3λ− 2C) + C + 6rCa(e + 1) + 2Ce = 0,(A.15)

−1 + 6rae + e2 = 0.(A.16)

From equations (A.13) and (A.15) we can get 2rCa(1 + e) = 0. Hence r = 0 or
e = −1. Noting that the zero of v(z) is z = −1, from equation (A.16) we know that
r = 0 still gives e = −1. However, by equation (4.4), we see that v(z) does not have
pole z = 1 at all, a contradiction.

https://doi.org/10.4153/CJM-2002-024-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-024-0


656 Yuan Wenjun and Li Yezhou

Let d = 1. Then R(z) = −ε(z − 2), v(z) = a z−2
z− f , where f is a constant. In the

manner of the former method we can obtain that

[2Cz2 + (2C − 9r)z + 2C − 9r − 9]a2(z − 2)2

+ 6Cra(z − 2)(z − f ) + C(z − 2)2(z − f )2 = 0.
(A.17)

In equation (A.17) comparing coefficients of terms all degree of z, we can get that
a2 = − 1

2 ,

(2C − 9r) + 4C f = 0,(A.18)

3(2C − 9r) + 9 + 12Cra + 2C f 2 = 0,(A.19)

−
5

2
(2C − 9r)−

9

2
− 6Cra f − 12Cra− 4C f 2 − 4C f = 0,(A.20)

−(2C − 9r) + 9 + 6Cra f + 2C f 2 = 0.(A.21)

From the later three equations we can deduce that (2C − 9r)− 72 + 8C f = 0. Then
combining equation (A.18) we can obtain that C f = 18, (2c − 9r) = −72. Set
z = 1 in equation (A.17). We deduce that 9

2 − (2C − 9r)− 6Cra(1− f )−C f 2 = 0.
Subtracting equation (A.21) gives 9+12Cra+6C f 2 = 0. Then minus equation (A.19)
is 3(2C − 9r) − 4C f 2 = 0. Thus f = 3. Now in equation (4.4) calculating residue
at z = 3 for v(z) and noting that Resz=3 v(z) = a, we have that a = − 18

7 . This
contradicts 2a2 = −1.

Case 3: deg R(z) = 0,R(z) �= 0 v(z) is a rational solution of equations (4.4) and
(3.3). Then v(z) = 1

P(z) , where P(z) is a polynomial. When deg P(z) > 1, equa-

tion (4.3) gives limz→∞ ωv = −C
3 . Combining equations (3,3) and (4.4) we can

deduce that R(z) = 0, a contradiction. Moreover (4.4) can yield v(z) �≡ Const.
Therefore deg P(z) = 1. Noting that P(z) is a factor of ω(ω − 1)(ω − z), we see
that the form of v(z) must be as one of the follows: v(z) = a

1+εR+z , v(z) = a
−2+εR+z ,

v(z) = a
1+εR−2z , where a is a constant.

We will prove a general conclusion which is that there does not exist a solution
which is form as v(z) = a

b+z in equation (4.4) under this case, where b is an arbitrary
constant. If it is not true, substituting v(z) = a

b+z into equations (4.4), (A.1), (A.2)
and (A.3) respectively, we can obtain that

(b + z)2R2 = 3az(z − 1) + a1(z + 1)2 − (a2z − a3)a(b + z) + (1− z + z2)a2,

0 = 3(2z − 1)(b + z)− 6z(z − 1) + a2(b + z)− 2(a2z − a3)

+ a(2z − 1)(b + z)− 2a(1− z + z2),

0 = 3(b + z)2 − 2(6z − 3 + a2)(b + z) + 3(3z2 − 3z + a2z − a3) + a(b + z)2

− 2a(2z − 1)(b + z) + 3a(1− z + z2),

0 = −6(b + z)2 + 9(2z − 1)(b + z) + 3a2(b + z)− 4(a2z − a3)

+ 3a(2z − 1)(b + z)− 4a(1− z + z2)− 12(z2 − z)− 2a(b + z)2.
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Comparing the coefficients of degree one and constant of z in the above equation, we
can obtain that

2bR2 = −3a + 2ba1 − aa2b− aa3 − a2,(B.1)

b2R2 = b2a1 + aba3 + a2,(B.2)

0 = 6b + 3− a2 + a + 2ab,(B.3)

0 = −3b + a2b + 2a3 − ab− 2a,(B.4)

0 = 3b2 − 2(−3 + a2)b− 3a3 + ab2 + 2ab + 3a,(B.5)

0 = 6b + 3 + a + 2ba + 3a2 − 4aa2,(B.6)

0 = 6b2 + 9b + 4a + 2ab2 + 3ab− 4aa3 − 3a2,(B.7)

Thus equations (B.3) and (B.6) give a2(a − 1) = 0. If a = 1, then equation (B.5)
yields a2 = 8b + 4. And equation (B.4) implies 2a2 = 2 + 3b. Substituting them into
equations (B.5) and (B.7), we can infer that (8b + 3)b = 0 and 4b2 − 9b − 6 = 0. It
is easy to see that the solution of the former equation b = 0 or b = − 3

8 do not satisfy
the later equation. This is impossible. If a2 = 0 and a �= 1, then equations (B.3)
and (B.4) can give 4a3 = 3(a − 1). Substituting a2 = 0 and 4a3 = 3(a − 1) into
equations (B.5) and (B.7), we can obtain that 6b−11a+9+2ab+6a2 = 0. Combining
equation (B.3), we can infer that a = 1, a contradiction. This contradiction shows
that our conclusion holds in this case.

Case 4: R(z) ≡ 0 v(z) is a rational solution of equations (4.4) and (3.3). It is easy to
verify that ω(z) = 1

3 (1 + z) is not a solution of equation (P6) under any parameters.
Otherwise, substituting it into (P6), we get that

0 =

(
1

6
+

3

4
β

)
1

z + 1
+

(
1

6
−

3

4
γ

)
1

z − 2
+

(
−

5

6
+ 3δ

)
1

1− 2z

+

(
−

2

27
α +

1

6
γ

)
1

z2
+

(
1

6
β +

2

27
α

)
1

(z − 1)2

+

(
−

1

3
−

1

18
α−

2

3
β +

1

12
γ +

2

3
δ

)
1

z

+

(
−

1

3
−

1

18
α +

2

3
γ −

1

12
β +

2

3
δ

)
1

z − 1
.

It is easy to see that each term of above equation must be zero. Hence, by the former
four terms, we can obtain that α = 1

2 , β = − 2
9 , γ = 2

9 , δ = 5
18 . But these parameters

do not make that the last two terms are equivalent zero. This is impossible. Therefore
C �= 0. Now equation (4.5) can be written as follows:

3Cz(z − 1)v ′ =
1

3
C3 + [C − r − 1 + (6λ + 4r − 2)z + (a2 + 3C − 1)z2]v2

−C

(
a2z −

1

3
C − r

)
v + 2(1 + z)(z − 2)(1− 2z)v3.
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By the above equation we know that v(z) only admits simple pole z = −1, 2, 1
2 .

And whose zero must also be simple. At the same time limz→∞ v(z) = 0. Hence
equation (4.4) makes us know that if z = −1, 2, 1

2 is a pole of v(z) then we must have
that Resz=−1 v(z) = −2, Resz=2 v(z) = −2, Resz= 1

2
v(z) = 1. Set v1(z) := − 2

z+1 ,

v2(z) := − 2
z−2 , v3(z) := 2

2z−1 . Therefore, v(z) = vi(z) or v(z) = vi(z) + v j(z) or
v(z) = v1(z) + v2(z) + v3(z), where i, j = 1, 2, 3, i �= j. On the other hand: the first
form of v(z) do not occur in the same proof method of Case 3.

v(z) = v1(z) + v2(z) is not a solution of equation (4.4). Otherwise, substituting it
into equation (4.4), we get that

6z(z − 1)(2z2 − 2z + 5) = a1(z + 1)2(z − 2)2 + 2(a2z − a3)(2z − 1)(z + 1)(z − 2)

+ 4(1− z + z2)(2z − 1)2.

Comparing the coefficient of term z4 and setting z = 1, 0,−2 in the above equa-
tion, we obtain that a1 + 4a2 − 4 = 0, 2a1 − a2 + a3 = 0, a1 − a3 + 1 = 0,
2a1 + 20a2 + 10a3 + 11 = 0. It is easy to verify that the system has no any solu-
tion, a contradiction.

v(z) = v1(z) + v3(z) is not a solution of equation (4.4). Otherwise, substituting it
into equation (4.4), we deduce that

6z(z − 1)(2z2 − 6z − 1) = a1(z + 1)2(2z − 1)2 + 2(a2z − a3)(2z − 1)(z + 1)(z − 2)

+ 4(1− z + z2)(z − 2)2.

Comparing the coefficient of term z4 and setting z = 1, 0, 2 in the above equation,
we have that a1 + a2− 2 = 0, a1− a2 + a3 + 1 = 0, a1 + 4a3 + 16 = 0, 3a1 = −4. This
system is also a contradiction.

v(z) = v3(z) + v2(z) is not a solution of equation (4.4). Otherwise, substituting it
into equation (4.4), we have that

6z(z − 1)(2z2 − 7) = a1(z − 2)2(2z − 1)2 + 2(a2z − a3)(2z − 1)(z + 1)(z − 2)

+ 4(1− z + z2)(z + 1)2.

Comparing the coefficient of term z4 and setting z = 1, 0,−1 in the above equa-
tion, we have that a1 + a2 − 2 = 0, a1 − 4a2 + 4a3 + 16 = 0, a1 − a3 − 1 = 0,
27a1 + 20 = 0. This system is still a contradiction.

v(z) = v1(z) + v2(z) + v3(z) is not a solution of equation (4.4). Otherwise, substi-
tuting it into equation (4.4), we can obtain that

6z(z − 1)[(z − 2)2(2z − 1)2 + (z + 1)2(2z − 1)2 − 2(z + 1)2(z − 2)2]

= a1(z + 1)2(z − 2)2(2z − 1)2 + 36(1− z + z2)3

− 6(a2z − a3)(z2 − z + 1)(z + 1)(z − 2)(2z − 1).

Comparing the coefficient of term z6 and setting z = 1, 0,−2 in the above equa-
tion, we can infer that a1 − 3a2 = 0, a1 + 3a3 + 9 = 0, a1 + 5a2 − 5a3 + 25 = 0,
210a2 + 105a3 + 1373 = 0. This system is a contradiction, too.
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All of these contradictions show that v(z) ≡ 0.
Now by Theorem D and the former result we know that this theorem holds.

Proposition 4.3 If α = 0, then the Riccati equation (4.2) has the integration as follow-
ing

ω(z) =
zr

(z − 1)λ
(
λy(z) + C

)
where y(z) is a primitive of (z−1)λ−1

zr .

Proof When α = 0, (4.2) is a first order linear differential equation which is inte-
grable. Hence this result is trivial.

Proposition 4.4 Either
∫

1
zn(z−1) dz or

∫
1

z(z−1)n dz is not a rational function, where
n ∈ N.

Proof We know that
∫

1
z(z−1) dz = ln z−1

z +C is not a rational function. Furthermore,
the general result follows clearly by induction and from∫

1

zn(z − 1)
dz =

∫
1

zn−1(z − 1)
dz +

1

(n− 1)zn−1
,

∫
1

z(z − 1)n
dz = −

∫
1

(z − 1)n−1z
dz −

1

(n− 1)(z − 1)n−1
.

Theorem 4.5 Let α = 0, ω(z) be a rational solution of (P6). Then any pole of ω(z)
must be zero or one.

Moreover

(1) if z = 0 is a pole of ω, then −r ∈ N;
(2) if z = 1 is a pole of ω, then λ ∈ N.

Proof In this case, equation (4.2) becomes

z(z − 1)ω ′ = λz + [(r − λ)z − r]ω.

Let z = z0 be a pole of ω(z). If z0 �= 0, 1, then Resz=z0
ω ′

ω
= 0 from above formula.

This is impossible. Hence z0 = 0 or 1.
If z = 0 is a pole of ω(z) with multiplicity n, then

n = −Resz=0
ω ′

ω
= lim

z→0
z(z − 1)

ω ′

ω
= lim

z→0

[
λz

ω
+ (r − λ)z − r

]
= −r.

If z = 1 is a pole of ω(z) with multiplicity m, then

m = −Resz=1
ω ′

ω
= − lim

z→1
z(z − 1)

ω ′

ω
= − lim

z→1

[
λz

ω
+ (r − λ)z − r

]
= λ.

We have proved this theorem.

Theorem 4.6 Let α = 0, λ2 = −2β, r2 = 2γ, q2 = 1− 2δ, r = 1 + λ + q. Then
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(I) if equation (P6) has exactly one nonconstant rational solution ω(z) if and only if the
parameters λ, r and q satisfy

(1) r = m + λ /∈ Z, m ∈ N; or

(2) λ /∈ Z,−r ∈ N; or

(3) r /∈ Z, λ ∈ N; or

(II) if equation (P6) has two distinct nonconstant rational solutions if and only if the
parameters λ, r ∈ Z and satisfy

(4) {λ > 1, r ≤ 0} ∪ {λ < 0, λ < r ≤ 0}; or

(5) λ > 1, r > λ; or

(6) λ = 1, r �= 1; or

(7) λ = 0, r ∈ Z.

Moreover, equation (P6) has infinite distinct nonconstant rational solutions.
For each case, the corresponding rational solution is of the form

ω(1)(z) := ω(z) =
m−1∑
i=0

(−1)m−1−i λ

m− 1 + λ− i

(
m− 1

i

)
z1+i(z − 1)m−1−i ;

ω(2)(z) := ω(z) = 1 +
r

λ + 1

(
z − 1

z

)
+

r(r + 1)

(λ + 1)(λ + 2)

(
z − 1

z

)2

+ · · · +
r(r + 1) · · · (−2)(−1)

(λ + 1)(λ + 2) · · · (λ− r)

(
z − 1

z

)−r

;

ω(3)(z) := ω(z) = −
λ

r − 1

(
z

z − 1

)
−

λ(λ− 1)

(r − 1)(r − 2)

(
z

z − 1

)2

− · · · −
λ!

(r − 1)(r − 2) · · · (r − λ)

(
z

z − 1

)λ
;

ω(4)(z) := ω(z) = ω(2)(z) + C
zr

(z − 1)λ
;

ω(5)(z) := ω(z) = ω(3)(z) + C
zr

(z − 1)λ
;

ω(6)(z) := ω(z) =
z

(1− r)(z − 1)
+ C

zr

(z − 1)
;

ω(7)(z) := ω(z) = Czr.

Proof (I) By Theorem 4.3 and Theorem 4.5,there exists a constant c0 such that
ω(z) = λ zr

(z−1)λ

(
y(z) + c0

)
. It is clear that λ �= 0, zr

(z−1)λ is not a rational. Thus
either r or λ is not an integer.
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If ω(z) is a polynomial with degree m ≥ 1, then limz→∞ z ω
′

ω
= r − λ. Thus, by

Theorem 4.5, we deduce

ω(1)(z) = λ
zm+λ

(z − 1)λ

∫
(z − 1)λ−1

zλ+m
dz

= λ
zm+λ

(z − 1)λ

∫ (
z − 1

z

)λ−1(
1−

(z − 1)

z

)m−1

d
z − 1

z

= λ
zm+λ

(z − 1)λ

∫ m−1∑
i=0

(
m− 1

i

)
(−1)m−1−i

(
z − 1

z

)m−2+λ−i

d
z − 1

z

= λ
zm+λ

(z − 1)λ

m−1∑
i=0

1

m− 1 + λ− i

(
m− 1

i

)
(−1)n−1−i

(
z − 1

z

)m−1+λ−i

= λzm
m−1∑
i=0

1

m− 1 + λ− i

(
m− 1

i

)
(−1)n−1−i

(
z − 1

z

)m−1−i

=
m−1∑
i=0

(−1)m−1−i λ

m− 1 + λ− i
z1+i(z − 1)m−1−i.

If ω(z) is not a polynomial, then λ, r, q satisfy (2) or (3) corresponding to case (1)
or (2) in Theorem 4.5. Moreover, by the partial integration, we can obtain

ω(2)(z) = λ
zr

(z − 1)λ

∫
(z − 1)λ−1

zr
dz

=
zr

(z − 1)λ

∫
z−r d(z − 1)λ

=
zr

(z − 1)λ

[
z−r(z − 1)λ −

∫
(z − 1)λ dz−r

]

= 1 +
rzr

(λ + 1)(z − 1)λ

∫
z−r−1 d(z − 1)λ+1

= · · ·

= 1 +
r

λ + 1

(
z − 1

z

)
+

r(r + 1)

(λ + 1)(λ + 2)

(
z − 1

z

)2

+ · · · +
r(r + 1) · · · (−2)(−1)

(λ + 1)(λ + 2) · · · (λ− r)

(
z − 1

z

)−r

,

and

ω(3)(z) = λ
zr

(z − 1)λ

∫
(z − 1)λ−1

zr
dz

= −
λ

r − 1

zr

(z − 1)λ

∫
(z − 1)λ−1 dz−r+1
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= −
λ

r − 1

zr

(z − 1)λ

[
z−r+1(z − 1)λ−1 −

∫
z−r+1 d(z − 1)λ−1

]

= −
λ

r − 1

(
z

z − 1

)
−

λ(λ− 1)

(r − 1)(r − 2)

zr

(z − 1)λ

∫
(z − 1)λ−2 dz−r+2

= · · ·

= −
λ

r − 1

(
z

z − 1

)
−

λ(λ− 1)

(r − 1)(r − 2)

(
z

z − 1

)2

− · · · −
λ!

(r − 1)(r − 2) · · · (r − λ)

(
z

z − 1

)λ
.

Conversely, it is easy to verify that for each i = 1, 2, 3, ω(i)(z) is the exactly non-
constant rational solution of equation (P6) satisfying condition (i), respectively.

(II) Let ω1(z) and ω2(z) be two distinct nonconstant rational solutions of equa-
tion (P6). By Theorem 4.3 and Theorem 4.5, we see that there exist two distinct
constants C1 and C2 such that ω1 − ω2 := λ(C1 − C2) zr

(z−1)λ is a rational function.
Therefore r, λ ∈ Z and then q = r − λ − 1 ∈ Z, equation (P6) has infinite distinct
rational solutions. At the same time, the primitive y(z) in Theorem 4.3 must be a
rational function.

If case {λ > 1, 0 < r ≤ λ} occurs, then

y(z) =

∫
(z − 1)λ−1

zr
dz =

∫ λ−1∑
i=0

(
λ− 1

i

)
zi−r(−1)λ−1−i dz

=

λ−1∑
i=0

i �=r−1

(−1)λ−1−i

i − r + 1

(
λ− 1

i

)
zi−r+1 + (−1)λ+r

(
λ− 1

r − 1

)
ln z + C,

which is not a rational function.
If case {λ < 0, r > 0} occurs, then

y(z) =

∫
(z − 1)λ−1

zr
dz =

1

λ

∫
1

zr
d(z − 1)λ

=
(z − 1)λ

λzr
+

r

λ

∫
(z − 1)λ

zr+1
dz

=
(z − 1)λ

λzr
+

r

λ(λ + 1)

(z − 1)λ+1

zr+1
+ · · · +

r(r + 1) · · · (r − λ− 2)

λ(λ + 1) · · · (−1)

(z − 1)−1

zr−λ−1

+
r(r + 1) · · · (r − λ− 1)

λ(λ + 1) · · · (−1)

∫
dz

(z − 1)zr−λ
,

which is not a rational function by Theorem 4.4.
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If case {λ < 0, r ≤ λ} occurs, then

y(z) =

∫
(z − 1)λ−1

zr
dz =

∫
(z − 1 + 1)−r

(z − 1)1−λ
dz

=

∫ −r∑
i=0

(
−r

i

)
(z − 1)i−1+λ dz

=

−r∑
i=0

i �=−λ

1

i + λ

(
−r

i

)
(z − 1)i+λ +

(
−r

−λ

)
ln(z − 1) + C,

which is not a rational function.
If λ = 1 and r = 1, then

y(z) =

∫
dz

z
= ln z + C,

which is not a rational function, too.
All of this infers that r, λ satisfy one of condition (4) to condition (7). Further-

more, we can get the expresses as following in the same manner.
When case (4) occurs, we have

ω(4)(z) = λ
zr

(z − 1)λ

∫
(z − 1)λ−1

zr
dz

=
zr

(z − 1)λ

∫
z−r d(z − 1)λ

=
zr

(z − 1)λ

[
z−r(z − 1)λ −

∫
(z − 1)λ dz−r

]

= 1 +
rzr

(λ + 1)(z − 1)λ

∫
z−r−1 d(z − 1)λ+1 = · · ·

= 1 +
r

λ + 1

(
z − 1

z

)
+

r(r + 1)

(λ + 1)(λ + 2)

(
z − 1

z

)2

+ · · · +
r(r + 1) · · · (−2)(−1)

(λ + 1)(λ + 2) · · · (λ− r)

(
z − 1

z

)−r

+ C
zr

(z − 1)λ

= ω(2)(z) + C
zr

(z − 1)λ
.

When case (5) occurs, we get

ω(5)(z) = λ
zr

(z − 1)λ

∫
(z − 1)λ−1

zr
dz

= −
λ

r − 1

zr

(z − 1)λ

∫
(z − 1)λ−1 dz−r+1
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= −
λ

r − 1

zr

(z − 1)λ

[
z−r+1(z − 1)λ−1 −

∫
z−r+1 d(z − 1)λ−1

]

= −
λ

r − 1

(
z

z − 1

)
−

λ(λ− 1)

(r − 1)(r − 2)

zr

(z − 1)λ

∫
(z − 1)λ−2 dz−r+2

= · · ·

= −
λ

r − 1

(
z

z − 1

)
−

λ(λ− 1)

(r − 1)(r − 2)

(
z

z − 1

)2

− · · · −
λ!

(r − 1)(r − 2) · · · (r − λ)

(
z

z − 1

)λ
+ C

zr

(z − 1)λ

= ω(3)(z) + C
zr

(z − 1)λ
.

The rest is trivial.

Theorem 4.7 Let ω(z) is a nonconstant rational solution of equation (P6). Then

(1) any pole z = z0 of ω is simple and z0 �= 0, 1, Resz=z0 ω =
1
p z0(1− z0), if α �= 0.

(2) ω(z) is one of the forms P(z)
Q(z) , −λr−λ + P(z)

Q(z) and 1+λ−r
p z + λp+(r−λ−1)(λ+q)

2−(r−λ) + P(z)
Q(z) where

deg P = deg Q− 1, if α �= 0.
(3) p ∈ Z or λ ∈ Z or r ∈ Z or q ∈ Z.

Proof By Theorem 4.2, we see that ω(z) satisfies the equation (4.2). If α �= 0, then
we know that from (4.2) any pole z = z0 of ω(z) must be simple and z0 �= 0, 1.
Moreover we have

Resz=z0 ω = lim
z→z0

(z − z0)ω

= lim
z→z0

(z − z0)

[
z(z − 1)

p

ω ′

ω
−
λz

ωp
−

(r − λ)z + (p + r)

p

]

=
1

p
z0(1− z0).

Conclusion 1 follows.
Consider the Laurent expression of ω(z) near z =∞:

ω(z) = azn + bzn−1 + O(zn−2)

for some a, b ∈ C, n ∈ N, a �= 0. Substitute this into (4.2). Then comparing coeffi-
cients of the leading and next terms and noting conclusion 1, we can get conclusion 2.

Now we prove conclusion 3.
If α = 0, then p = 0 ∈ Z.
If α �= 0, then ω(z) = P(z)

Q(z) implies λ = 0 ∈ Z by the equation (4.2). When

ω(z) = −λ
r−λ+ P(z)

Q(z) occurs, let deg Q = n, z1, . . . , zn be zeros of Q(z); from conclusion 1
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and conclusion 2 we obtain

ω(z) =
−λ

r − λ
+

1

p

n∑
i=1

zi(1− zi)

z − zi
.(4.6)

It holds that from the equation (4.2) ω(0) = 0, 1 + r
p ; ω(1) = 1, λp . Therefore

ω(0) = 0, ω(1) = 1 and equation (4.6) gives p = n; ω(0) = 0, ω(1) = λ
p and

equation (4.6) implies λ = n; ω(0) = 1 + r
p , ω(1) = 1 and equation (4.6) deduces

r = −n; ω(0) = 1 + r
p , ω(1) = λ

p and equation (4.6) gives q = −(n + 1).

When ω(z) = az + b + P(z)
Q(z) occurs where a = 1+λ−r

p , let deg Q = n, z1, . . . , zn be
zeros of Q(z) (in this case, n maybe is zero), from conclusion 1 and conclusion 2 we
obtain

ω(z) =

(
1−

q

p

)
z + b +

1

p

n∑
i=1

zi(1− zi)

z − zi
.(4.7)

Hence ω(0) = 0, ω(1) = 1 and equation (4.7) gives q = n; ω(0) = 0, ω(1) = λ
p

and equation (4.7) implies r = n + 1; ω(0) = 1 + r
p , ω(1) = 1 and equation (4.7)

deduces λ = −(n + 1); ω(0) = 1 + r
p , ω(1) = λ

p and the equation (4.2) gives p = −n.
Note that λ = 0, r = 0 and q = −1 are trivial; we have proved conclusion 3.

The proof of this theorem is complete.

Theorem 4.8 Let p ∈ Z, λrq �= 0, p − λ �= 1 and condition (3.4) hold. Suppose that
ω(z) is a nonconstant rational solution of equation (P6). Then

S+

(
ω(z)
)
= ω(z) +

2(z + 1) f ′+ − 4ω f ′+
Φ+(ω)

and

S−
(
ω(z)
)
= ω(z) +

2(z + 1) f ′− − 4ω f ′−
Φ−(ω)

are rational solutions of equation (P6) with parameters

p+ = p + 1, λ+ = −(−λ− 1), r+ = r, q+ = q

and

p− = −(−p + 1), λ− = λ− 1, r− = r, q− = q

respectively, where S+ and S− are two special Bäcklund transformations.

Proof If we can prove Φ+(ω) �≡ 0 and Φ−(ω) �≡ 0 then Theorem C will give this
theorem.
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Suppose that Φ+(ω) ≡ 0. Then we get that from the conditions and Theorem C

f+ =
λ(z + 1)

(z − 1)ω
+

2pω

z − 1
+

(2r − 3λ− p)z − 3p − 2r − λ

2(z − 1)
−

(
1

2
+
µ

4

)
,

z(z − 1) f ′+ =
1− z

2
υ −

1

2

[µ
2

(z − 1) + κ(z + 1)
]

f+ −
z − 1

2
f 2
+ .

Combining equation (4.2), we have

−
λ2(1 + z)

2
+ a1(z)ω + a2(z)ω2 + a3(z)ω3 +

4p2

(z − 1)
ω4 = 0,(4.8)

where

a1 = −
λ(z + 1)

z − 1
[(r − λ)z − (p + r)]−

2λz)

z − 1
+

2(z − 1)

λ(z + 1)

[µ
2

(z − 1) + κ(z + 1)
]

+ λ(z + 1)

[
(2r − 3λ− p)z − 3p − 2r − λ

2(z − 1)
−

(
1

2
+
µ

4

)]
,

a2 =
2(2λp + p + λ)

z − 1
+ 2pλ + 2(p + λ) +

z − 1

2
υ

+
1

2

(µ
2

(z − 1) + κ(z + 1)
)[ (2r − 3λ− p)z − 3p − 2r − λ

2(z − 1)
−

(
1

2
+
µ

4

)]

+
z − 1

2

[
(2r − 3λ− p)z − 3p − 2r − λ

2(z − 1)
−

(
1

2
+
µ

4

)]2

,

a3 =
2p

z − 1
[(1 + r − λ)z − p − λ] +

p

z − 1

[µ
2

(z − 1) + κ(z + 1)
]

+ 2p

[
(2r − 3λ− p)z − 3p − 2r − λ

2(z − 1)
−

(
1

2
+
µ

4

)]2

.

If p �= 0, then from (4.8) and Theorem 4.7 we can obtain thatω(z) is a polynomial.
Moreover, still by Theorem 4.7, we get ω(z) ≡ az + b where a = 1

p (1 + λ − r).
Substituting it into equation (4.2) and then comparing the coefficient of the leading
term z2, we have that q = 0. This is impossible. Therefore p = 0, and (4.8) becomes

−
λ2(1 + z)

2
+ a1(z)ω + a2(z)ω2 = 0(4.9)

Suppose that a2(z) �≡ 0 or a1(z) �≡ 0. From (4.9), transformation T3 and The-
orem 4.7, we can deduce that z

ω
:= az + b + c

z+1 and ω(0) �= 0, where a, b, c ∈ C.
Note that any pole of ω(z) is either zero or one by Theorem 4.4, we then deduce that
ω(z) = z+1

az or z+1
a(z−1) . However, the two forms of ω(z) are not appeared in Theo-

rem 4.6. This contradiction shows that a2(z) ≡ 0 and a1(z) ≡ 0. Hence λ = 0, a
contradiction. It implies that Φ+(ω) �≡ 0.

Similarly, we can get Φ−(ω) �≡ 0.

Theorem 4.9 Let p = 1 + λ + q − r ∈ Z, 2α = p2 �= 0, (λ + p)2 = −2β, r2 = 2γ,
q2 = 1− 2δ, λrq �= 0. Then
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(I) if equation (P6) has exactly one nonconstant rational solution ω(z) if and only if λ,
r, q satisfy (1) or (2) or (3).

(II) if equation (P6) has two distinct nonconstant rational solutions if and only if λ, r, q
satisfy (4) or (5) or (6) or (7).

Moreover, equation (P6) has infinite distinct nonconstant rational solutions.
Furthermore, ω(z) are forms of

ωp.i(z) := ω(z) = Sp

(
ω(i)(z)

)
, i = 1, 2, . . . , 7(4.10)

respectively, where parameters p̃ = p ∈ Z, λ̃ = (λ + p), r̃ = r, q̃ = q; λ, r, q satisfy the
corresponding conditions (1), (2), . . . ,(7).

Proof In view of Theorem 4.7 and the Bäcklund transformations S+ and S− in The-
orem 4.8, we can determine the rational solutions below:

When p = 0, Theorem 4.6 gives

ω0.i(z) := S0

(
ω(i)(z)

)
= ω(i)(z).

When p = n ∈ N, Theorem 4.8 deduces

ω1.i(z) : = S1

(
ω0.i(z)

)
= S+

(
ω(i)(z)

)
= ω(i)(z) +

2(z + 1) f ′1 − 4ω(i) f ′1
Φ1

(
ω(i)(z)

) ,

ωn.i(z) : = Sn

(
ω(i)(z)

)
= S+

(
ωn−1.i(z)

)
= ωn−1.i(z) +

2(z + 1) f ′n − 4ωn−1.i f ′n
Φn

(
ωn−1.i(z)

) ,

ω−1.i(z) : = S−1

(
ω(i)(z)

)
= S−

(
ω(i)(z)

)
= ω(i)(z) +

2(z + 1) f ′−1 − 4ω(i) f ′−1

Φ−1

(
ω(i)(z)

) ,

ω−n.i(z) : = S−n

(
ω(i)(z)

)
= S−

(
ω−(n−1).i(z)

)
= ω−(n−1).i(z) +

2(z + 1) f ′−n − 4ω−(n−1).i f ′−n

Φ−n

(
ω−(n−1).i(z)

) ,

are the rational solutions of equation (P6), where parameters satisfy

α0 = 0, αn = αn−1 − 1 = −n, p̃n = p̃n−1 + 1 = n;

β0 = −λ, βn = βn−1 − 1 = −λ− n, λ̃n = −(−λ̃n−1 − 1) = λ + n;

α−n = α−n−1 + 1 = n, p̃−n = −p̃−(n−1) + 1 = −n;

β−n = β−(n−1) + 1 = λ + n, λ̃−n = (λ̃−(n−1) − 1) = λ− n.

It follows that κn = κ−n = −λ − 1 �= 0 (otherwise, λ = −1 implies r = 0 by
Theorem 4.6).

The rest is trivial.
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5 Proofs of Main Results

Proof of Theorem 1.1 First, Theorem 4.1 shows that there is a constant solution in
equation (P6) if and only if the parameters of equation (P6) satisfies case {I.δ = 0}.
Moreover, the transformations T20 = T2 ◦ (T2 ◦T1 ◦T3)2, T10 = (T2 ◦T3)2 and T4 =
T1◦T3 change this result to other three cases {I.α = 1

2}, {I.β = −
1
2} and {I.γ = 1

2}.
The rational solution in these cases are generated as shown in the following figure:

{I.α = 1
2}�T20

{I.β = − 1
2}

T10←−−−− {I.δ = 0}
T4−−−−→ {I.γ = 1

2}

Second, Theorem 4.6 tells us that if α = 0, then equation (P6) has a nonconstant
rational solution if and only if the parameters belong to one of cases (1)–(7). Starting
from the case {II.α = 0}, the transformations T1,T15 = T1 ◦T2 ◦T1 and T8 = (T2 ◦
T1 ◦T3)2 change it to the cases {II.β = 0}, {II.γ = 0} and {II.δ = 1

2}, respectively.
And the Bäcklund transformation Sn in Theorem 4.9 changes the case {II.α = 0}
to the case {II.α = n2} for each n ∈ Z. Furthermore, the transformations T1,
T15 and T8 change {II.α = n2} to the cases {II. − 2β = n2}, {II.2γ = n2} and
{II.1− 2δ = n2}, respectively. The rational solutions in these cases are generated as
shown in the figure below:

{II.α = 0}

S−n Sn

{II.2γ = n2}
T15←−−−− {II.2α = n2}

T8−−−−→ {II.1− 2δ = n2}�T1

{II.2β = n2}

This figure can also be expressed as following:

{II.p = 0}

S−n Sn

{II.r = n}
T15←−−−− {II.p = n}

T8−−−−→ {II.q = n}

T1

{II.λ = n}

Therefore, at last, it is easy to see that this theorem holds by Theorem 4.6, Theo-
rem 4.7 and above results.

Proof of Theorem 1.2 This theorem follows from Theorem 4.1, Theorem 4.6, The-
orem 4.8 and the proof of Theorem 1.1.
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6 A List of Rational Solutions for P6 (α, β, γ, δ)

Subcase ω(z)

{I.δ = 0} h, h(�= 0, 1) ∈ C

{I.α = 1
2}

hz
(h−1)z−1 , h(�= 0, 1) ∈ C

{I.β = 1
2} hz + 1− h, h(�= 0, 1) ∈ C

{I.γ = 1
2} hz, h(�= 0, 1) ∈ C

{II.p = 0.(1)}
∑m−1

i=0
λ(−1)m−1−i

m−1+λ−i

(m−1
i

)
z1+i(z − 1)m−1−i

{II.p = 0.(2)} ω(2)(z) := 1 + r
λ+1 ( z−1

z ) + r(r+1)
(λ+1)(λ+2) ( z−1

z )2

+ · · · + r(r+1)···(−2)(−1)
(λ+1)(λ+2)···(λ−r) ( z−1

z )−r

{II.p = 0.(3)} ω(3)(z) := − λ
r−1 ( z

z−1 )− λ(λ−1)
(r−1)(r−2) ( z

z−1 )2

− · · · − λ!
(r−1)(r−2)···(r−λ) ( z

z−1 )λ

{II.p = 0.(4)} ω(2)(z) + C zr

(z−1)λ

{II.p = 0.(5)} ω(3)(z) + C zr

(z−1)λ

{II.p = 0.(6)} z
(1−r)(z−1) + C zr

(z−1)

{II.p = 0.(7)} Czr

{II.p = n.(i)} ωn.i(z) := Sn

(
ω(i)(z)

)
= ωn−1.i(z) + 2(z+1) f ′n−4ωn−1.i f ′n

Φn(ωn−1.i (z))

{II.p = −n.(i)} ω−n.i(z) := S−n

(
ω(i)(z)

)
= ω−(n−1).i(z) +

2(z+1) f ′−n−4ω−(n−1).i f ′−n

Φ−n(ω−(n−1).i (z))

{II.λ = 0.(i)} T1

(
ω(i)(z)

)
= ω−1

(i) ( 1
z )

{II.λ ∈ Z.(i)} T1

(
ωλ.i(z)

)
= ω−1

λ.i ( 1
z )

{II.r = 0.(i)} T15

(
ω(i)(z)

)
= [1− ω(i)(

z−1
z )]−1

{II.r ∈ Z.(i)} T15

(
ωr.i(z)

)
= [1− ωr.i(

z−1
z )]−1

{II.q = 0.(i)} T8

(
ω(i)(z)

)
=

z[ω(i)−1]
ω(i)(z)−z

{II.q ∈ Z.(i)} T8

(
ωq.i(z)

)
=

z[ωq.i−1]
ωq.i (z)−z
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[1] H. Airault, Rational solutions of Painlevé equations. Stud. Appl. Math. 61(1979), 31–53.
[2] N. P. Erugin, The analytic theory and problems of the real theory of differential equations connected

with the first method and with the methods of the analytic theory. Differential Equations 3(1967),
943–966.

https://doi.org/10.4153/CJM-2002-024-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-024-0


670 Yuan Wenjun and Li Yezhou

[3] A. S. Fokas and M. J. Ablotz, On a unified approach to transformations and elementary solutions of
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