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Abstract

Patterns of underwater human-generated noise events and durations of noise-free intervals (NFIs) are soundscape
metrics that can potentially affect animal communication and behavior. Due to the arduous task of manual analysis,
these metrics have not been described in Glacier Bay National Park and Preserve (GBNP). To surmount this
challenge, we created a machine-learning (ML) model trained on 18 hr of labeled audio samples from a hydrophone
operating in GBNP since 2000. The validated convolutional neural net transfer-learning model (GBNP-CNN) was
used to classify several categories of sound sources in nearly 9,000 hours of data from the same hydrophone, enabling
our study of vessel noise between 2017 and 2020. We focused on the occurrence and duration of NFI and the hourly
proportion (HP) of vessel noise. As expected, shorter NFI and higher HP were found during daytime hours. The
GBNP-CNNF1 scorewas 75%, largely due to themodel’s confusion of vessel noisewith harbor seal roars. Therefore,
NFI lengths should be considered minimum estimates, but the errors do not qualitatively affect diurnal or seasonal
patterns. In 2018, mean daytime NFI during peak tourism months (June–August) was less than half the duration
compared toMay and September (1.3 min vs. 2.9 min). In 2020, when large-vessel tourismwas substantially reduced
but small-craft activity continued, we found that HP decreased in June–August. In conjunction with other soundscape
metrics, monitoring NFI trends using ML models such as GBNP-CNN will provide crucial information for
management and conservation of acoustic habitats and sensitive species in GBNP.

Impact Statement

This study describes the first longitudinal examination of patterns and durations of vessel noise events and quiet
intervals in the underwater environment of Glacier Bay National Park and Preserve. Previously, this type of
analysis was hampered by the magnitude of the task of classifying and measuring noise events. To address this
issue, we explored the use of a convolutional neural net to detect vessel noise in passive acoustic recordings.
Machine learning is a field of growing interest in natural resource management that has the potential to enable
rapid and accurate data summaries. Developing these techniques will help National Park Service managers more
fully describe the underwater acoustic environment and assess the effects of vessel traffic, which is primarily
related to tourism, on marine mammal communication.
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1. Introduction

Soundscape monitoring is of high priority to the United States (U.S.) National Park Service (NPS), which
considers the preservation of natural sounds to be integral towildlife conservation and ecosystem health in
both marine and terrestrial environments (Hatch and Fristrup, 2009; Buxton et al., 2019). In Southeast
Alaska, Glacier Bay National Park and Preserve (GBNP) is an important habitat for many protected
species that rely on sound for essential life history functions. In the summer months, GBNP is also a
tourism destination where daily cruise tours and private vessels take visitors into park waters to view
glaciers, humpback whales, seals, and other wildlife. These tourism vessels generate sound that can
dominate the acoustic environment, which also contains natural environmental and animal sound sources
(Frankel et al., 2017; McKenna et al., 2017; Gabriele et al., 2018, 2021).

The underwater soundscape of GBNP is unique amongmarine protected areas in the United States due
to its remote location as park waters are isolated from much of the vessel traffic occurring in the Inside
Passage of Southeast Alaska. Vessels entering GBNP waters are strictly managed throughout the May–
September tourist season with a quota system that limits daily visitors and requires permits at peak
visitation times (McKenna et al., 2017).

Passive acoustic monitoring is one tool that NPS managers use to observe sound sources in the
underwater environment, including vessels, and as a result, GBNP is one of the very few places in the
world that can identify the individual vessels that are producing underwater sound or have measured
the sound profiles of individual vessels. Since 2000, the NPS has monitored underwater sound near the
entrance to GBNP. In collaboration with the Naval Surface Warfare Center Carderock Division, a single
cabled hydrophone was installed to continuously record underwater sounds. Over the past two decades,
recordings from the hydrophone have provided data for NPS researchers to better understand the sources
and biological implications of underwater sound pollution in Glacier Bay, with direct relevance to vessel
management (Frankel and Gabriele, 2017; McKenna et al., 2017; Gabriele et al., 2021).

Management decisions about vessel traffic rely on a thorough understanding of GBNP’s underwater
sound environment, to protect both the natural environment as a resource and the marine biota that rely on
the natural underwater soundscape to carry out essential life functions. For this reason, the GBNP
Resource Stewardship Strategy lists a goal to “maintain underwater acoustic monitoring station in Bartlett
Cove and conduct periodic quantitative analyses to describe change in the underwater soundscape over
time” (Nadeau et al., 2017). Previous efforts to analyze and monitor the underwater soundscape in GBNP
have focused on characterizing ambient noise, studying humpback whale and harbor seal vocal patterns,
and using agent-based models to understand communication masking and exposure to vessel noise
(Frankel and Gabriele, 2017; McKenna et al., 2017; Fournet et al., 2018; Gabriele et al., 2018, 2021).

Here, we focus on the presence and absence of vessel noise to quantify the proportion of time that
vessel noise is audible in the recording location (McKenna et al., 2017), and the pattern and duration of
“noise-free intervals (NFIs).” NFIs are a biologically relevant measurement of underwater acoustic
conditions for humpback whales and other soniferous species in GBNP which rely on sound for life
functions and may be impacted by extended durations of uninterrupted vessel noise (Lynch et al., 2011;
Betchkal, 2019; Erbe et al., 2019). For example, while humpback whales have been observed to increase
the source level of their vocalizations to overcome increases in ambient sound levels (i.e., Lombard effect;
Lombard, 1911), they are also likely to stop vocalizing as ambient sound levels increase especially if the
noise source is amotorized vessel (Fournet et al., 2018).When vessel noise was present, whales were one-
third to nearly one-half as likely to vocalize in the presence of vessel noise compared to vessel noise-free
conditions (Fournet et al., 2018). Thus, the duration of vessel noise intervals in comparison to vessel
noise-free conditions is biologically relevant to humpback whales and ostensibly other marine animals in
GBNP. While the NFI is a standard metric used in terrestrial soundscape analysis, it has not yet been
described in GBNP or other studies of marine environments. Monitoring NFIs in addition to ambient
sound levels, provides additional information about habitat conditions for humpback whales and other
marine species.
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In this study, we utilize a convolutional neural network (CNN) machine-learning (ML) model trained
on previously labeled hydrophone data collected in GBNP. The trained model allows us to automate the
detection and classification of vessel noise with higher resolution and longer sampling periods. The CNN
was verified with acceptable performance on 3 years (2017, 2018, and 2020) of passive acoustic data
collected betweenMay and September whenmost vessel-based tourism occurs inGBNP (McKenna et al.,
2017; Gabriele et al., 2021). The sound levels of these data were previously analyzed to evaluate the
acoustic impact of dramatic tourism reduction at the onset of the COVID-19 pandemic in 2020 (Gabriele
et al., 2021). Adding an additional metric to the soundscape analysis of the existing dataset, here, we
utilize the CNN to quantify the hourly proportions (HP) of vessel noise to vessel noise-free, and the
occurrence and duration of vessel NFIs. While this project was limited in scope and resources, ongoing
availability of continuous audio recordings from GBNP may enable additional analysis to continue to
provide information about soundscape conditions to park managers and stakeholders.

2. Methods

2.1. Instrumentation

A single cabled hydrophone has been recording in Glacier Bay National Park since 2000. The acoustic
recorder is deployed within the park waters near Bartlett Cove (58.43501 N, 135.92297 W) on an
anchored tripod (1 m above the seabed) at a depth of 30 m (Figure 1). The calibrated omnidirectional
hydrophone is ITC type 8215Awith a nominal sensitivity �174 dB re 1 V/μPa (Gavial ITC Inc., Santa
Barbara, CA, USA). Continuous audio data transmitted to a control unit at the park headquarters via a
submerged cable was sampled at 22,048 Hz to generate 5-min AIF files (Gabriele et al., 2021).

2.2. Passive acoustic dataset

In this study, we sought to perform a new analysis of the most recently available data (continuous audio
recordings from 2017, 2018, and 2020; Gabriele et al., 2021). The recording system was inactive in 2019.
Our strategy for analyzing this data started with creating an MLmodel from previously labeled data from
the same hydrophone. Then, we labeled a subset of the most recent data via human observation and used
the ML model to classify the remainder of this recent dataset.

Themain visitor season for passenger and private vessels to transit through park waters is June–August
annually, and “shoulder” season, characterized by fewer vessels, in the months of May and September.
Acoustic data sampled betweenMay 1 to September 30 in 2018 and 2020, and June 1 toAugust 31 in 2017
were analyzed in monthly time periods. May and September 2017 were not analyzed due to data
availability. Minor data gaps of a few hours to a few days are interspersed throughout the analyzed data
due to brief system outages.

2.3. Machine-learning methods

2.3.1. Machine-learning model development
Data for training the ML model used here was taken from a set of Bartlett Cove hydrophone recordings
(mainly from 2000, 2001, and 2008) previously labeled by U.S. Navy acoustic engineers using custom-
built analyst software (Kipple andGabriele, 2004). These recordings come from the same hydrophone and
data acquisition system as was newly analyzed for this publication. This custom Navy analyst software
displays a spectrogram while playing the sound from a short clip taken from the beginning of every hour
(Kipple and Gabriele, 2004; McKenna et al., 2017). The length of each short clip labeled by the analyst in
previously published work varied slightly, between 21 and 23 s. Most often, the length was 22.3 s. Over
the course of several years of data collection, this process created several thousand labeled short clips in
previously published categories that included several sizes of marine vessels, humpback whales, and
harbor seals. The label simply indicates that an analyst believed the putative sound source to be present
within a range of the hydrophone (Figure 2a).
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We created an ML model, as described in the next paragraph, for six categories: (1) humpback whale,
(2) harbor seal, (3) small marine vessel (MV), (4) medium MV, (5) large MV, and (6) none of the above.
We kept all six categories becausewe seek to create an explainablemodel with utility for awider variety of
studies beyond the scope of this work. The number of training data points was capped at the number of
usable humpback whale vocalization clips (N = 479), so that the training set would be balanced.
Humpback vocalizations were mainly short transients (Fournet et al., 2015) while the harbor seal roars
were typical of previously noted vocalizations (Matthews et al., 2017). Small MV are believed to be
recreational craft with high RPM outboard motors and large MVare known to be the commercial cruise
ships that are selectively permitted to enter GBNP. The “none” or “other” category can include ambient
noise and acquisition system interference of various types. The wide range of unknown sound sources in
this naturalistic data is a challenge to creating a high-performing ML model.

A CNN ML classification model was trained for these six categories of putative sound sources
recorded at the hydrophone in Bartlett Cove (Figure 2b). An image-based transfer-learning approach
was implemented on the basis of the AlexNet CNN computer vision model (Krizhevsky et al., 2012).
AlexNet was originally designed for and trained on photographic images, which allowed it to learn a
variety of basic geometric shapes and patterns.We chose to leverage transfer learning because of the small

Figure 1. Map showing the location of the cabled hydrophone (orange star) at Bartlett Cove within
Glacier Bay National Park (adapted from Gabriele et al., 2021).
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number of labeled samples from the humpbackwhale category. This CNN transfer-learning approachwas
also recently used with ResNet-50 for fish acoustics on a tropical reef (Munger et al., 2022).

We created images for re-training the AlexNet architecture by processing the previously published
22.3 s hydrophone sound clips into 2D short-time wavelet transformed images (scalograms; Figure 2b).
The scalograms (see Figure 3a,b for two examples) were generated using the Matlab functions cwtfil-
terbank() and cwt() with the signal decimated from 22,048 Hz to 1,378 Hz. The default analytic Morse
(γ= 3, β= 60) wavelet was consistently used with 16 voices per octave (Lilly, 2016). This Morse wavelet
is exactly symmetric in frequency space (γ = 3) with a time-bandwidth product β= 60. This combination
of image generation parameters was chosen to balance processing time and accuracy by limiting the
frequency bandwidth to 600 Hz.

We transferred AlexNet into a newmodel inMatlab (MathWorks Inc., 2018) by replacing the last three
layers of AlexNet. The entire AlexNet CNN was then retrained with the six-category sound source
scalograms until the cross-validation accuracy plateaued with balanced high performance (Figure 3c). For
each category, 20% of the data (n = 96 from each category) were held out as independent samples for
cross-validation.

This new transfer AlexNet scalogrammodel for the Bartlett Cove hydrophone (GBNP-CNN) was then
used to classify continuous recordings using the same methodology at a larger scale (Figure 2c).
Continuous audio files from previously recorded but unanalyzed GBNP data were split into 22.3 s,
non-overlapping segments for consistency with the previously labeled data used for training the GBNP-
CNN. Using the same method as described above to create scalograms, each contiguous 22.3 s segment
was classified using theMatlab classify() function with the GBNP-CNN as the input model. This returned
a score for each of the six categories, such that we assigned the highest scoring categorical label to the
audio clip. While multiple sources are sometimes present in each clip, and each source can have a distinct
duration, the GBNP-CNN top score is used simply to select a single putative source for each clip.
As described next, for the purposes of this study, we then separated the labels into vessel and non-vessel
(Figure 2d). We also tested a three-class (vessel/no-vessel/none) model using the same AlexNet transfer
method on scalograms and found similar cross-validation results. We also attempted to use Fourier
spectrograms for the data processing, but the spectrograms were much less accurate for the transient
biological sources.

2.3.2. Verification
Time-stamped audio clips of 22.3 s duration labeled by theGBNP-CNNmodel as humpbackwhale (3,091
clips), seal (2,112 clips), and grouped vessel type (4,278 clips) classification categories were randomly

Figure 2. Schematic of the methodology showing the supervised machine-learning (ML) modeling
process from (a) compiling previously labeled 22 s sound clips, (b) to training anMLmodel (GBNP-CNN)
on six categories of labels, (c) to using the trained model to categorize newer, continuous data from the
same hydrophone. Finally, (d) the non-vessel and vessel labels are grouped separately to form
vessel NFIs.
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selected for manual review and verification. An experienced observer (S.M.H.) individually reviewed the
9,481 audio clips (58 hr of data) for classification accuracy as a spectrogram image with playback in
Raven Pro software (Version 1.6, Cornell University). Each sound source classification was visually and
aurally checked to verify accuracy, and clips were manually rated according to precision including if a
different and/or additional sound source was audible (Figure 2c).

Figure 3. (a) Awavelet scalogram from a 22.3 s clip recorded from the Bartlett Cove GBNP hydrophone
taken in August 2020. This sample was manually annotated by an experienced analyst to contain a
humpback vocalization. It also contained a very short electrical glitch. There was no audible vessel noise
in this clip. (b) A wavelet scalogram of a hydrophone recording taken on June 1, 2020. An experienced
analyst determined that this sample contained vessel noise without audible biological noise. The vessel
signal is visible as nearly continuous sound at 100 and 200 Hz. However, the CNNmodel scored this as a
biological signal, apparently due to the intermittency that is similar to vocalizations. This image was
generated identically to Figure 3a using Matlab. (c) Cross-validation performance of the AlexNet
transfer-learned model on the hold-out six-category expert-labeled data from Bartlett Cove reported as
raw numbers (N = 576 total samples, n = 96 from six categories). Overall accuracy of the model on this
cross-validation data was 96%, though nearly 10% of the harbor seal sounds are misclassified as vessels.
Here, we see that both harbor seals and humpback whales can be misclassified as vessels.
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In total, GBNP-CNN classified 1,407,907 sound clips (8,672 hr) from the 3 years of recent GBNP
data. We then combined all vessel classes into a single vessel group and specifically focused on the
classification results for the grouped vessel category. Clips for which the GBNP-CNN classified sound
sources that were not vessels (whale, seal, or none) were grouped as “vessel noise-free” (Figure 2d).
GBNP-CNN performance was quantified by comparing classification of 3,103 audio clips (selected
randomly from all classified clips) to an experienced analyst’s annotated observations of the presence of
all sound sources within the same time-stamped file, as described in Section 3.1. In some instances, the
analyst detected multiple sound sources, though we constrained GBNP-CNN to choose a single
classification for each sound clip. In all cases, the test clip ML label was scored as correct if the analyst
noted the same sound source.

2.4. Quantifying vessel noise-free intervals

We calculated the proportion of each hour that contained vessel noise (hourly proportion, HP) and
defined the duration of vessel NFIs as continuous timespans uninterrupted by putative vessel noise.
All non-vessel categorizations (ambient and biologic) were grouped together as NFI. NFIs were
computed by concatenating the total length of consecutive sound clips uninterrupted by vessel noise.
HPs were quantified by calculating the total number of audio clips with vessel noise detected as a
percentage of all classified audio clips in hourly bins. For each year, diel patterns of vessel noise-free
samples were calculated for each month of data collection (May–September) and by time of day
(daytime defined as 06:00–20:00 AKDT and nighttime defined as 20:00–06:00 AKDT; Gabriele
et al., 2021).

NFI duration measurements were also used to calculate cumulative probability curves for NFI
between 22.3 s to over an hour for each individual month fromMay to September, separated by daytime
and nighttime hours. The empirical cumulative distribution curve for each month and time grouping
was calculated using the Statistics and Machine Learning Toolbox in Matlab 2021b (MathWorks Inc.,
2021).

3. Results

3.1. Machine-learning model performance

Performance of the GBNP-CNN on the new test set of continuous recordings was evaluated by
comparing the GBNP-CNN classification (predicted class) to new analyst-verified data annotations
(true class) of time-aligned acoustic data files (Table 1). Based on comparison of 3,103 random clips
throughout the data set, precision, recall, and F1 metrics for vessel noise detections were calculated.
Precision was 77%, meaning that of all clips classified as vessel, only 77% of those clips contained
vessel noise (and the other 23% were false positives). The recall of GBNP-CNN was slightly lower
(73%), meaning that only 73% of the clips containing vessel noise were identified (the other 27%were
false negatives). The F1 score, which combines precision and recall scores, was 75%. Generally,
GBNP-CNN was slightly more likely to underestimate vessel detections, but the bias is not substan-
tially different from the 75% F1 score.

While this performance is not as finely tuned as a facial recognition model, for example, it is sufficient
to inform the following statistics for noise-free percentage and longitudinal changes in vessel noise
patterns. Test performance was significantly lower than cross-validation on due to several factors. For
one, there is variability in the quality of the data from year to year as the hydrophone data acquisition
system requiresmaintenance. Another point is that the detected vessels are likely to vary from year to year.
These non-controlled noise factors lead to a larger variance in the signals that correspond to a broadly
applied label. We must also consider that the labels applied to the test set came from a different analyst
compared to the training and cross-validation.
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3.2. Quantifying frequency and interval duration of vessel noise-free conditions

3.2.1. Patterns of occurrence
GBNP-CNN results for the presence or absence of vessel noise in each sample were tabulated as a
percentage of the entire hour for all complete hours of recorded data without recording gaps (HP,
Figure 4). Between May and September (June to August in 2017) a consistent diel pattern of more vessel
noise-free samples was observed during nighttime (20:00–06:00 AKDT), compared to daytime hours
(06:00–20:00AKDT). In 2017 and 2018, many nighttime hours were mostly or entirely vessel noise-free,
but daytime hours were vessel noise-free typically only 50% or less of all daytime hours combined.
Comparatively, in 2020, many daytime hours were vessel noise-free and were similar to nighttime hours
in 2017 and 2018. During the peak-tourism months in June–August in all years, less than half of the time
within each hour was vessel noise-free (HP) during morning (06:00–09:00) and afternoon (15:00–18:00)
peak times. In 2018, HP during the months of June, July, and August (~42% of all hours) was higher

Figure 4. Temporal summary of GBNP-CNN ML classifier detections of vessel noise free intervals for
2017 (a), 2018 (b), and 2020 (c), plotted by day (May–September) and hour (0–23). Color (yellow–
green–blue) indicates the aggregated duration of vessel NFIs per hour; hours with the fewest vessel NFIs
(i.e., constant vessel noise) are bright yellow and hours with minimal to no vessel noise are dark blue.
White sections are data gaps. 2020 (c) was an anomalous year with much lower vessel traffic due to
COVID-19 lockdown.

Table 1. Comparison of vessel noise detections between the ML predicted output and human-analyst data annotations of 3,103
random 22.3 s sound clips.

Human analyst (true class) Vessel noise 1,273 377

Vessel noise-free 462 991

Vessel noise Vessel noise-free

GBNP-CNN ML model (predicted class)

Note. The ML classifier correctly identified 77% of positive occurrences of vessel noise in the test samples, and correctly identified 68% vessel noise-free
sound clips (true negative rate). The F1 score for GBNP-NPP, which combines the precision (77.2%) and recall (73.4%), was 75%.
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compared to the shoulder seasonmonths ofMay and September (37% and 24% of all hours, respectively).
In June, July, and August 2017, 36% of hours contained at least one sound clip with vessel noise, which is
a ~6% decrease of HP compared to what we observed in 2018. Not surprisingly, HPwere reduced in 2020
(~25% in June, July, andAugust) as comparedwith 2017 and 2018. This difference across years is slightly
more pronounced in the daytime hours, compared to nighttime.

Across all years, more vessel noise-free samples were detected during nighttime hours. The largest
percentage of HP was detected in June, July, and August 2018 during daytime hours (~53%; Figure 5). In
contrast, the samemonths in 2020 had the lowest percentage of HP (32–27%). During the shoulder season
months ofMay and September in 2020, only 10%of nighttime samples contained vessel noise. In the peak
season months of June, July, and August in 2020, 7–21% of nighttime samples contained vessel noise
(Figure 5). In comparison, in 2018, 21–27% of nighttime samples from June through August contained
vessel noise.

3.2.2. Durations of vessel noise-free intervals
Duration of vessel NFIs was measured as continuous timespans uninterrupted by vessel noise (Figure 6).
NFI during daylight hours was shorter (mean 7.18 min and median 0.22 min) than nighttime (mean
7.40 min and median 1.15 min). Across the 5 months, mean NFI during the main tourism season in June,
July, and August, were shorter than NFI in May and September (Figure 7 and Appendix A). The longest
mean NFI durations were observed in 2020 during nighttime hours (mean 7.5 min and max 4.76 hr), and
between June and August in all years approximately 100 NFI of greater than 60 min duration were
observed in nighttime hours (Figures 6 and 7).

NFI was more likely to be longer at nighttime, particularly at the end of the tourist season in September
(Figure 8). Nighttime NFI in September was 50% likely to be greater than a minute and a half long, and
10% likely to be greater than 30min. DuringMay, June, July, andAugust nighttimeNFIwere ~50% likely
to be greater than a minute. June and July nighttime NFI were ~10% likely to be greater than 5 min, May
nighttime NFI were 10% likely to be greater than 6.5 min, and August nighttime NFI were 10% likely to
be greater than 11 min. During daytime hours in all months, NFI was 50–60% likely to be less than 1 min

Figure 5. Monthly proportion of samples containing vessel noise calculated from hourly proportions
(HP) as a percentage of all acoustic samples in each month from May to September for both daytime
(a) and nighttime (b) time periods.
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long. During September andMay, daytimeNFIwere 10% likely to be greater than 6.5min long. InAugust
daytime NFI were 10% likely to be greater than 4 min long, and in June and July, daytime NFI were only
10% likely to be greater than 2.5 min long (Figure 8).

4. Discussion

During the peak season for tourism inGlacier BayNational Park, vessel noisewasmore prominent in both
total the total amount of time and the duration of continuous intervals of vessel noise. During the shoulder
seasonmonths ofMay and September, intervals of vessel noise were comparatively shorter and the hourly
proportion of samples containing vessel noise was lower.

Aside from wind noise, tourism-related vessel noise is a primary component of the GBNP underwater
soundscape (McKenna et al., 2017; Gabriele et al., 2018). Because tourism currently concentrates in
summer, conditions during the shoulder season months ofMay and September are less noisy compared to
peak months of June, July, and August. Similarly, diel sound levels parallel vessel activity patterns with

Figure 6. Occurrence of vessel noise-free interval (NFI) durations in the peak months of recreational
vessel activity in June through August (a,b), and shoulder season months of May and September (c,d). In
all months, durations of vessel NFIs were longer during nighttime hours (b,d). The shortest vessel NFIs
were observed during the daytime in June–August (a).
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higher occurrence of vessel noise during daytime hours (relative to nighttime) when most vessel activity
occurs. This observation is consistent with previous soundscape observations of comparatively more
vessel noise during daytime hours (06:00–20:00 AKDT), compared to nighttime hours (20:00–06:00
AKDT; Gabriele et al., 2018, 2021). It is possible for other sound sources such as weather or animals to
contribute to sound levels, but both abiotic and biotic natural sources are unlikely to follow the precise
patterns of vessel-based human activities during the peak tourism season.

4.1. ML model misclassification errors

We suspect that many GBNP-CNN classification errors were due to confusion of vessel noise with
harbor seal roars, although in 20% (255/1,272) of correctly classified clips with vessel noise presence,

Figure 7. Boxplots of summary statistics for vessel noise-free interval (NFI) length (min) in each month and
yearof data, separated by daytime (a) and nighttime (b) hours. Themedianduration is indicated by themidline
in each box, and the dots above are all outlier values. Median values that are not centered in the boxplot
indicate skewness. Each 22.3 s sample evaluated by theGBNP-CNN is equal to ~0.37min.Due to data gaps in
May and September 2017, the May and September comparisons only include data from 2018 and 2020.

Environmental Data Science e14-11

https://doi.org/10.1017/eds.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.36


there was also a harbor seal roar in the recording. In instances where there was vessel noise in a clip, but
misclassified as vessel noise-free, harbor seal roars were also found 15% (59/377) of the time. In
contrast, 52% (243/462) of clips without vessel noise that were erroneously classified as containing
vessel noise contained only harbor seal roars. Thus, we surmise that the GBNP-CNN confusion of
vessel noise with harbor seal roars was a major source of false positives and a smaller number of false
negatives. This biases the duration of NFI, but is unlikely to affect the diurnal or seasonal patterns
of NFI.

The GBNP-CNN classification errors related to confusion between harbor seals and vessel noise may
have been due to the similar frequency range of the sounds. Although harbor seal roars are more entropic
than vessel noise, the sound-pressure level at the hydrophone and consistent repetition throughout the
breeding season may have resulted in additional misclassifications of vessel noise. For the full season,
performance for detecting vessel noise-free samples was precision (77% false positive rate), recall (73%
false negative rate), and F1 score (75%). Isolating only the passive acoustic data collected during August
and September, when harbor seals rarely vocalize, the precision (79%), recall (79%), and F1 score (79%)
improved modestly. In May, June, and July, when harbor seals are most vocally active, GBNP-CNN fails
to find as much vessel noise (73% F1 score) compared to the full season. In areas without a harbor seal
population, this apparently significant misclassification issue would be less of a problem.

Figure 8. Cumulative probability distributions for the duration of vessel noise-free intervals for both
(a) daytime and (b) nighttime hours from May to September. June, July, and August probabilities include
data from 2017 and 2018. Due to data gaps, May and September probability distributions only include
data from 2018.
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While harbor seals might be a substantial source of misclassification, other confounding factors may
also be significant as theGBNP-CNNF1 score in the absence of harbor seal vocalizations was 79%.Other
potential instances for error include when vessel noise is intermittent and in the same frequency range as a
whale, whichmay occur when the vessel is far away from the hydrophone, and as a result the GBNP-CNN
classifies the sound as a whale. Alternatively, misclassification may also occur in instances where there is
significant whale and vessel noise coincident, and the GBNP-CNN determination is mixed. While
revisions to the GBNP-CNN model are outside the scope of this initial investigation of data summariza-
tionmethods, developing strategies to deal with these coincidences is an excellent subject for future work.

While misclassifications are not desirable, the resulting seasonal and diurnal patterns of vessel noise
we found based on continuous acoustic sampling are comparable to previous observations of under-
water sound levels in GBNP (Gabriele et al., 2021). Previous results from the same hydrophone and
location, based on over 10,000 hourly 30-s acoustic samples collected in June–August 2000–2008,
reviewed by an experienced human analyst indicated that in 2000–2002, 51% of samples were free of
vessel noise, which fell to 49% in 2007–2008 (McKenna et al., 2017). To compare GBNP-CNN results
of hourly samples from full 24-hr periods in June–August with the same years in the current study: 2017
indicated that 37% of samples were free of vessel noise, whereas in 2018, 41% of samples were vessel
noise-free (GBNP, unpublished data). In 2020 during the initial COVID-19 lockdown, the proportion of
vessel noise-free samples was 68%. In contrast, our GBNP-CNNmodel results suggest that for all hours
of the day in June, July, andAugust 2017, 64%of hourswere free of vessel noise (HP), and 59% in 2018,
and ~75% in 2020.

Underwater NFI was shorter than we had anticipated based on results from terrestrial soundscape
monitoring stations in GBNP (D. Betchkal, pers. comm.), which may reflect that sound travels faster and
farther underwater than in the air. Alternatively, it may also reflect that our results represent minimumNFI
estimates because vessel and vessel-noise-free classification errors at the resolution of 22.3 s are likely to
break longer intervals into smaller pieces. Furthermore, since the errors tend to be scattered in time, they
are more likely to break intervals as opposed to combining them, even though the false positive and false
negative rates are similar.

4.2. Shorter vessel noise-free intervals may negatively impact animal communication

The duration of NFIs is highly relevant to humpback whale conservation. A commonly observed
humpback whale vocalization in GBNP is a contact call known as the “whup” (Wild and Gabriele,
2014; Gabriele et al., 2018). Eachwhup call is on average less than 1 s in duration, however a 3-year study
in GBNP found that the majority of observed whup calls are grouped (61%) with half of the subsequent
calls occurring within 1 min of the last whup (Wild and Gabriele, 2014). Bouts of whup calling were
observed to include as many as 34 calls over a duration of nearly 6.5 min. In this analysis, NFI only
averaged (mean) over 6.5min in the nighttime shoulder season hours in 2020 (Appendix 1). In our results,
NFI was mostly likely to be greater than 6.5 min during nighttime hours in August and September (16%
and 29% likely, respectively; Figure 8). In May–July during nighttime and all months during daytime
hours, NFI was 10% or less likely to be greater than 6.5 min (Figure 8). During the peak season daytime
hours, the average NFI was 1.4 min which may not even be long enough for two successive whup calls.
Thus, even though GBNP-CNN likely underestimated NFI, our results suggest that vessel noise appears
to be frequent enough to interfere with bouts of humpback whale “whup” contact calls, and that the best
timing for humpbackwhale acoustic communication is during nighttime hours whenNFI is more likely to
be long enough for the full vocal exchange to occur.

Monitoring NFI in supplement to sound level monitoring can provide additional information about
acoustic environment conditions during time periods of increased vessel traffic. Furthermore, using
automated tools such as GBNP-CNN to identify NFI can potentially provide near real-time results as data
are available. A significant caveat of automated methods is the potential for incorrect classification (false
positive or false negative), but intermittent human-verification and model re-training can reduce errors.
During peak season and other times of increased vessel activity, utilizing automated methods can provide
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information about soundscape anthropogenic disturbance to managers on short timelines that may enable
timely management action, fostering better acoustic habitat preservation.

For example, NFI monitoring could be utilized in conjunction with other bioacoustic analysis methods
(e.g., human listener andMLmodels) to evaluate whale vocalization behavior in the absence and presence
of vessel noise over specific intervals (e.g., 1 min, 5 min, 1 hr). Quantifying the duration and patterns of
NFI and humpback whale vocalizations may provide information about how humpback whales adapt
their acoustic communication in a spectrum of vessel noise conditions. For example, it is possible that
under certain ambient conditions, humpback whales may employ a behavioral strategy of waiting for
quieter periods to communicate with conspecifics for presumablymore effective communicationwith less
expended effort. Coordinated monitoring of NFI and humpback whale communication may also reveal
instances of communication masking or cessation of vocalizations due to vessel noise overlapping
humpback whale vocalizations. Using a 4-element hydrophone array, this phenomenon has been
documented in the Beardslee Island entrance location within GBNP (Fournet et al., 2018), and would
be valuable to compare with conditions at the single hydrophone location in Bartlett Cove where there is
comparably more vessel traffic. Integrating whale movement observations from either visual or tag-based
methods may also reveal potential impacts of the patterns and durations of NFI on whale behavior.

5. Conclusion

Developing methods to quantify NFI in the marine soundscape of GBNP is a valuable tool to
supplement other passive acoustic and marine mammal observation methods for evaluating manage-
ment needs. The NFI is an established metric in terrestrial soundscape monitoring, and its extension to
underwater data can provide important information and enable valuable comparisons for evaluating
overall soundscape conditions in GBNP. The GBNP-CNNML model applied here to quantify NFI is a
starting point for future iterations that could be used to detect humpback whales, harbor seals, and other
sensitive marine species almost as quickly as the passive acoustic data are available. Using this
multiclass model allows the ML classification results to be interpreted and explained in terms of the
supposed sound source, rather than simply “vessel” or “no-vessel.” The next steps are to improve our
vessel noise model with additional training data, develop methods that allow the GBNP-CNN to
identify reliably more than one sound source per clip, and potentially use decidecade bands to compress
the model and increase speed.
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Appendix A
Tables of the median, mean, and maximum vessel noise-free interval (NFI) length (min) for each year, month, and time of day. Each
22.3 s sample evaluated by the GBNP-CNN is equal to ~0.37 min. Due to data gaps (indicated by “X”), May and September
measurements only include data from 2018 and 2020. Data were not available for May or September in 2017. Median values were
consistently lower than mean values, indicating that the data distribution is positively skewed toward longer NFI.

Cite this article: Haver SM, Gustafson KB and Gabriele CM (2023). Rapid assessment of vessel noise events and quiet periods
in Glacier Bay National Park and Preserve using a convolutional neural net. Environmental Data Science, 2: e14. doi:10.1017/
eds.2022.36

Year

Median vessel noise-free interval duration (min)

May
day

May
night

June
day

June
night

July
day

July
night

August
day

August
night

September
day

September
night

2017 X X 0.74 1.11 0.74 1.15 0.74 1.12 X X

2018 0.74 1.11 0.74 1.11 0.55 1.11 0.37 1.11 0.74 1.86

2020 1.11 2.23 0.74 1.11 0.74 1.13 0.74 2.23 1.11 2.97

All years combined 0.74 1.49 0.74 1.11 0.74 1.11 0.74 1.49 0.74 2.23

Year

Mean vessel noise-free interval duration (min)

May
day

May
night

June
day

June
night

July
day

July
night

August
day

August
night

September
day

September
night

2017 X X 1.33 2.30 1.35 2.06 1.93 4.76 X X

2018 2.44 2.90 1.14 1.95 1.06 1.90 1.74 3.56 3.38 11.71

2020 4.03 5.51 1.96 2.15 1.58 1.89 2.55 6.60 3.43 7.63

All years combined 3.11 3.74 1.46 2.12 1.32 1.94 2.10 4.77 3.41 9.33

Year

Maximum vessel noise-free interval duration (min)

May
day

May
night

June
day

June
night

July
day

July
night

August
day

August
night

September
day

September
night

2017 X X 51.64 55.36 133.37 53.87 84.96 145.26 X X

2018 109.97 142.29 68.73 63.53 40.87 124.09 93.99 89.16 199.13 270.09

2020 156.78 102.17 146.38 105.89 70.59 64.64 93.62 285.32 149.72 131.89
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