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NON-UNIQUENESS FOR THE p-HARMONIC FLOW

NORBERT HUNGERBUHLER

ABSTRACT. If f5:Q C R™ — S is a weakly p-harmonic map from a bounded
smooth domain Q in R™ (with 2 < p < m) into a sphere and if fy is not stationary
p-harmonic, then there exist infinitely many weak solutions of the p-harmonic flow
with initial and boundary data fo, i.e., there are infinitely many global weak solutions
f:Q x Ry — ' of

orf — div(|Vf\p*2Vf) = |Vf[Pf  weakly onQ x R,
f =fp onthe parabolic boundary of Q x R..

We also show that there exist non-stationary weakly (m— 1)-harmonic maps fo: B™ —
g1,

1. Introduction. Let M and N be compact smooth Riemannian manifolds (M pos-
sibly having a boundary) with metrics v and g respectively. Let m and n denote the
dimensions of M and N. For aC'-map f: M — N the p-energy density is defined by

® () = [
and the p-energy by
@) E(f) := /M e(f) di.

Here, p denotesareal number in [2, oo, |dfy]| is the Hilbert-Schmidt norm with respect
toy and g of the differential dfy € Tx(M) ® T (N) and 1 isthe measure on M which is
induced by the metric. In local coordinates E(f) is given by:

1 e
Eu) = [ (@i © £)dafa,t) 23/7 dx.

Here, U C M and Q C R™ denote the domain and the range of the coordinates on M
and it is assumed that f(U) is contained in the domain of the coordinates chosen on N.
Upper indices denote components, whereas d,, denotes the derivative with respect to the
coordinate variable x*. We use the usual summation convention.

First we consider variations of the energy-functional of the form f. = f + e with
p € CgO(B,,(x). R”) with B,(x) C U such that f.(U) is contained in the domain of the
coordinates chosen on N provided |¢| is small enough. The resulting Euler-Lagrange
equations are
A3) Dof = —(rgijaat'asf) Y9, 1]
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in local coordinates. Here, the operator

Apf = \%aﬁ(ﬁ(wﬁg”aamﬁf;)g17waaf|)

iscalled p-Laplaceoperator (for p = 2 thisisjust the L aplace-Beltrami operator and does
not depend on N). On the right hand side of (3) the I'}J- denote the Christoffel-symbols
related to the manifold N. According to Nash’'s embedding theorem we can think of N
as being isometrically embedded in some Euclidean space R since N is compact. Then,
if we regard f asafunctioninto N C R¥, equation (3) admits a geometric interpretation,
namely

4 Opf L T¢N

with A, being the p-Laplace operator with respect to the manifolds M and R If N is
a unit sphere, then (4) becomes A,f = Af for a function \:Q — R. Multiplying the
equation with f one obtains A = —|Vf|P.

For p > 2 the p-Laplace operator is degenerated elliptic. (Weak) solutions of (3) are
called (weakly) p-harmonic maps.

On the other hand, vanishing variations of the form

(5) 09 = (x+ ()
with ¢ € C3°(B,(x). R™) and |¢| small enough, lead to

0= /Q VI 0,810,181y, g, (05F1 o) dx.
If M islocally Euclidean, this can be rewritten as

2. cia gin 1 -
(6) /Q [VF[P20,f 9,90 dx = /Q E)|Vf|paj¢ dx.
For a non-constant metric 7y this reformulation isin general not possible since
s = /(7,819,210 f1550

is not a gradient then.
Weakly p-harmonic maps in W-P(M, N) which satisfy (6) are called stationary p-
harmonic and satisfy the system

@ 80| VP = pay(| VF P-20,f19,f1)

indistributional sense. Here, W-P(M, N) denotesthe nonlinear Sobolev space of functions
g € WEP(M, R¥) with g(x) € N for almost every x € M. Notice that (7) is formally
obtained from (4) by multiplication with Vf. So, (smooth) p-harmonic maps are always
stationary. This is in general not true for weakly p-harmonic maps and we will see
examplesfor this later on.
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The heat flow related to the p-energy is described by

®) af — Agf L TiN
©) flizo = fo

or explicitly for (8)
(10) onf — Dpf = (pe(f))l’ﬁA(f)(Vf. vf)

where A(f)(-, -) is the second fundamental form on N. For p = 2 Eells and Sampson
showed in their famous work [6] of 1964, that there exist global solutions of (8)—(9)
provided N has non-positive sectional curvature and that the flow tends for suitable
tx — oo to a harmonic map. Existence and uniqueness of partially regular solutions of
the harmonic flow on Riemannian surfaces(i.e. p = m = 2) has been shown by Struwein
[10] and recently Freire[7] proved uniquenessin this casein the class of weak solutions.
Existence for p = 2 in higher dimensions (i.e. m > 2) has been obtained by Chen and
Struwe in [4]. Coron [5] constructed maps ug such that the 2-flow u: B® x R, — S with
initial and boundary data ug has infinitely many weak solutions. In fact, Coron showed
that for suitable weakly 2-harmonic maps ug: B3 — & the construction of Chen [2] and
Chen-Struwe [4] leads to a weak solution u(x, t) of the flow which satisfies a certain
monotonicity property (see[11] or [4]) in contrast to u(x, t) := ug(xX) whichisalso aweak
solution of the flow. Since a monotonicity formula is not available for the p-harmonic
flow for p > 2, this approach cannot be carried over to the latter situation. Recently,
Coron’sresult has been reproved in [1] by a different technique. In this paper, we prove
non-uniquenessof the p-harmonic flow in case p > 2 by combining ideas of [1] and [9].
We will establish the following theorem:

THEOREM 1. Iffp: Q C R™ — S isaweakly p-harmonic map froma bounded smooth
domain Q of R™ (with 2 < p < m) into a sphere, and if fy is not stationary p-harmonic
then there exist infinitely many weak solutions of the p-harmonic flow with initial and
boundary data fy, i.e., there areinfinitely many global weak solutionsf: Q x R, — S of

(11) af — div (|Vf|P2Vf) = |Vi[Pf  weaklyon Q x R.
(12) f =fo ontheparabolic boundary of Q x R..

REMARKS. (a) Q can be replaced by any smooth compact Riemannian manifold M
whichislocally flat.

(b) Inthe last section we will actually construct examples of non-stationary weakly
p-harmonic maps.

2. Existence of a global weak solution. In this section we establish a special case
of the following theorem, which is proved in [9]. The approximate solutions of the p-
harmonic flow constructed in the proof will beused in Section 3 to establish the existence
of multiple solutions.
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THEOREM 2. For 2 < p < dim(M) there exists a global weak solution of the p-
har monic flow between Riemannian manifolds M and N for arbitrary initial data having
finite p-energy in the casewhen thetarget N is a homogeneousspacewith aleft invariant
metric. The solution f: M X [0, co) — N satisfies the energy inequality

1,7 1 1
(13) 5 o P ded+ 5 [ 1dfMIPdu < 5-/M |df ()P

forall T > 0.

PROCF. (inthecaseM =Q andN = S"):
For fo, g € WHP(Q, 9") fixed,

f e WPQ.S) = {we WP(Q.S) :w—f € WP(Q. S)}

andh > Olet . .
— - Py —1f _Qnl2
Eqf) : /Q(p|vn +=f = gf?) ox.

By the direct method of the calculus of variations we find a function w & V\/ftp(Q. Sh)
such that
Eg(w) = inf  Eg(f).

d.p,
feW:P(@.9)

The set of arguments for which the infimum of Ey is attained is usually denoted by
argmin Eq. Now we define recursively afamily fi € W, P(Q. S") by

fiss € argmink;,  fori=0,1,....

Noticethat f; is aweak solution of the Euler-L agrange equation to energy E;, ., i.e., there
holdsfor everyi=1,2,...

(14) Mrs (%(fi —fi_y)) — div (| VA P2VH) = |VE[Pf

in distributional sense and f; = fo on 9 Q in the trace sense. In (14) Mr,e denotes the
orthogonal projection onto the tangent space T¢ S".
Sincef; minimizes E;_, we havein particular E;_,(fi)) < E;_,(fi—1), i.e,

1 1 1
DITEP + 2 f 2 v L
(15) /Q(p|Vf.| + o I — il )olxg/Q SIV-afP o
Now we define the function f™: Q x R, — S by
t0(, )= forte [ih.(+1h).

Thus, rewriting (14) by using the notation a ™ for the forward difference quotient in time
with step length h, i.e., (9 ™f)(t. x) = #(f(t+h.x) — f(t. X)), we get

(16) M. 90 T — div (VO P-27f0) = |7f®)pr()
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in distributional senseon Q x (h. oo) and fM = f, on the parabolic boundary of Q x R..
Summing up (15) we obtain

1 kh 1 1
1 "¢ (h) |2 < ) (kh)|P = [ VP
(17) 2/0 /Q|a £ dxdt+p/Q|Vf (kh)|Pdx < p/Q| folP dx.

So, in particular we see that {f(™},., is a bounded set in L*(0. 0o; WHP(Q. S7)) and
hence every sequencein {f}, ., has asubsequencef; := ™ such that

(18) fi—fo—f—fo weakly*inL>(0,00; W5P(Q))

foramapf € L=(0.00; W, P(Q. 7).

It is now easy to see, that the difference quotient for fixed step length H > 0 of
the sequence {f™}1-n-0 is bounded in L2(0. 00; L?(Q)) by a constant which does not
depend on H. Since the set {f}., is precompact in the space L"(0. T; L"(Q)) for all
r<p’ =% (see[9, Lemma2]) wehavethat {9 *Vf }1-0 isboundedin L?(0, 00; L%(Q))
and hencef hasadistributional timederivativeinthelatter space. Infact, asaconsequence
of the partial integration rule for the discrete operator ™, we obtain

aMf® — af  weakly inL2(0. 00; L%(Q))
and moreover
19 Mt g0 NfO —af  weaklyin L?(e, 0o; L3(Q
(h)

for arbitrary e > 0. Thisallows to passto the limit in the first term in equation (16).
Now, by the compactnessresult in [8] there exists a sequence h — 0 such that

(20) Vi — Vi strongly in L9(0, T; LY(Q)) forall g < p
and hence (since { Vf (™}, isbounded in LP(0, T; LP(Q)))
(21) (VEOP2f0 — VP2V weakly inLP (0. T; LP(Q)).

Thisallowsto passtothelimit in the p-L aplaceterm of equation (16) (andin the boundary
condition). Now, we are left with the problem to do this also on the right-hand side of
(16). To overcome this difficulty, we use a similar techniqueasin [3].

By taking the wedge product of (16) with f, we get

(22) Mt 90 COATO —div (VIO P-2vf® A £0) = 0,
Using the previously stated results, we can passto the limit in (22) and obtain

(23) af Af—div(|VE[P2VEAf) =0
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in distributional sense. A short calculation shows that for every function 7 €
C3(Q x R4; R) therelation

(24) (af — div (| VF[P~2Vf) — |VEPf) - fr =0

automatically holds in distributional sense, provided |f| = 1 a.e. in Q. Note, that any
function ¢ € CP(Q x R+; R™1) can be decomposed in the following way

(25) p=tF- o) —fAEAQ).

Using the facts that f € L(0,00;WAP(Q. ")) and aif € L2(0.00;L%(Q)) and an
approximation argument we obtain that v = f A ¢ and 7 = f - ¢ are admissible test-
functions in (23) and in (24). Subtracting the resulting equations and using (25), we
get

o — div (| VF|P~2Vf) = |VF|Pf

in distributional sense. Thusf isaweak solution of (11) and (12).
By passing to the limit in (17) we get the energy inequality stated in the theorem.

3. Proof of Theorem 1. We assumethat fp: Q — S' is weakly p-harmonic but not
stationary. That meansthat for someindex o

(26) 3a| ViolP # P (| Vio|P~20,f0f)).

In order to prove Theorem 1, it is sufficient to show that the weak solution f constructed
in the previous section is not constant in time. To do thiswe use asimilar ideaasin [1].

Using variations of the form (5) for the energy Eg we find that for the approximating
solutions f™ introduced in the previous section there holds

@7) gEMEm Ly £ 4 ;_L)aa|Vf(h)|P = 9(|VEOP-29,£0) . ,£0).

Let us assume by contradiction that the limit function f is constant

(28) f(-.t) =fo

for all timest > 0 and hence especially Ep(f(-.t)) = Ey(fo). By (20) we may assume

that VI — Vf = Vfy ae. on [0, 00) x Q. Thus, using Fatou's Lemma and the energy
inequality (17), we have that

‘/OT_/Q |Vfo|P dx dt ‘/()T./Qm|Vf(h)|dedt

IN

o
imi (W
IanHl(r)ﬁ./O /Q|Vf P dxdt

< /OT/Q |Vfo|P dxdt
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which implies that

vi® — Vf strongly in LP, (Q x [0, 00]).

loc

Using the energy inequality once more we get

%/()T‘/Q|Vfo|pdxdt
gIiLn_ng(%/OT/Ot/Q|a(h)f(h)(7)|2dxdrdt+i/OT/QWf(h)(t)dedt)
< %.[)T./(2|Vfo|pdxdt

and this yields that
oM™ 0 strongly in LA(Q x R,).

Thisalows to passto the limit in (27) and we get
3a| VP = pag(| VP20, 0,8))

in contradiction to (26) which provesthat (28) cannot hold true.
Now we havethetwo distinct solutionsf (-, t) = fo and thelimit f of the approximating
functions ™. Then
_ [ fo®¥) fort<r
00 = f(x,t—7) fort>r

isaninfinite family of solutions of (11) and (12) and the theorem is proved.

REMARKS. (@) Theorem 1 remainstrue for an arbitrary homogeneous space N with
a left invariant metric as target manifold in place of a sphere: The construction of the
approximating solutions and the passageto the limit are described in [9], the second part
of the proof (i.e. Section 3) remains unchanged.

(b) It would be a challenging problem to investigate whether the inverse implication
of Theorem 1 holdstrue: If fo: Q — N is a stationary weakly p-harmonic function, then
the solution of (11) and (12) is unique.

4. Examples of non-stationary p-harmonic maps. We show now that there exist
non-stationary weakly (m — 1)-harmonic maps fo: B™ — S™. The idea to use the
conformal invariance of the p-energy in dimension p is similar to the construction of
Coronin[5].

Let us consider the map

w:S™t gl xi— 1 tovon(x)

where m: S — R™ 1 U {oo} = R™ " isthe stereographic projection and v: ™ —
R™tisa bijective conformal map, i.e., v belongs to the Mdbius group of R™ " whichis
generated by dilatations x — Ax, isometric maps and inversionsx — X/ [x|? (and in two
dimensions by the complex Mobius transformations). Hence w is a conformal map.
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ThefunctionB™ — S™2, x — % belongsto WP if p < mandisweakly p-harmonic.

I
Because of the conformal invariance of the p-energy in dimension p the map

fo:B™"— S™L  xi— W(%)

is also weakly p-harmonic if p = m— 1. Now for fy there holds

LEMMA 1. If fyis stationary then

(29) /SH IVw|™ Ly do(y) = 0.
PROCF. First, we observethat forp=m—1
p X dx = p
(30) o VP b= [ 1910y o)

= [ [VWPy doy).

We now use x| — 1 asatest-function in (7) and obtain that for every index o

XO’
P2 dgx = P
(31) /B V| S ./Bm |Vfo|Pa|x| dx
]
= p-2 . X— =
p/Bm |Vf0| dufo aﬁfo X dx=0.
=0
The combination of (30) and (31) givesthe desired result. ]

It is easy to see that e.g. for adilatation v: x — Ax with A # 1 the condition (29) is
violated.
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