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Nonstandard Ideals from Nonstandard

Dual Pairs for L
1(ω) and l

1(ω)

C. J. Read

Abstract. The Banach convolution algebras l1(ω) and their continuous counterparts L1(R
+, ω) are

much studied, because (when the submultiplicative weight function ω is radical) they are pretty much

the prototypic examples of commutative radical Banach algebras. In cases of “nice” weights ω, the only

closed ideals they have are the obvious, or “standard”, ideals. But in the general case, a brilliant but very

difficult paper of Marc Thomas shows that nonstandard ideals exist in l1(ω). His proof was successfully

exported to the continuous case L1(R
+, ω) by Dales and McClure, but remained difficult. In this paper

we first present a small improvement: a new and easier proof of the existence of nonstandard ideals

in l1(ω) and L1(R
+, ω). The new proof is based on the idea of a “nonstandard dual pair” which we

introduce. We are then able to make a much larger improvement: we find nonstandard ideals in

L1(R
+, ω) containing functions whose supports extend all the way down to zero in R

+, thereby solving

what has become a notorious problem in the area.

1 Preliminary Definitions

Our notion of a radical weight ω : R
+ → R

+ will be the usual one; ω must be mea-

surable and submultiplicative, and one must have ω(s)1/s → 0 as s → ∞.

Given a radical weight ω, we define the radical convolution algebras l1(ω) and
L1(R

+, ω) in the usual way. If the Banach algebra A is either l1(ω) (the discrete case)
or L1(R

+, ω) (the continuous case), we identify the dual space A
∗ with l∞(1/ω) or

L∞(R
+, 1/ω), so A ∩ A

∗ contains all the functions with compact support (bounded

measurable functions in the continuous case) from N → C (discrete case) or R
+ → C

(continuous case). Many of our proofs are equally valid in the discrete case or the
continuous case. In particular, the proof that nonstandard ideals I exist withα(I) > 0
is the same in both cases. Only when we want α(I) = 0 do we have to specialise to

the continuous case.

If s ∈ N0 (discrete case) or R
+ ∪ {0} (continuous case) the standard ideal Is ⊂ A

is the collection of all functions f ∈ A that are supported in the interval [s,∞).
Any nonzero closed ideal that is not one of the ideals Is is called a nonstandard ideal.

If A has no nonstandard ideals it is called unicellular. Also the right shift operator
Rs : A → A is as usual the map with Rs f (t) = f (t − s) (if t > s) or zero otherwise,
and the left shift Ls : A

∗ → A
∗ is the dual map with Ls f (t) = f (t + s). We know that

‖Rs‖A = ‖Ls‖A∗ ≤ ω(s); and because ω is a radical weight we know that Ls : A → A

and Rs : A
∗ → A

∗ are densely defined but unbounded operators. A finite linear
combination of the maps Ls (or Rs) will be called a “generalised polynomial” in L =

Received by the editors July 9, 2004; revised November 12, 2004.
AMS subject classification: Primary: 46J45; secondary: 46J20, 47A15.
Keywords: Banach algebra, radical, ideal, standard ideal, semigroup.
c©Canadian Mathematical Society 2006.

859

https://doi.org/10.4153/CJM-2006-035-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-035-6


860 C. J. Read

L1 (or R = R1), generalised because in the continuous case non-integer values of s

are allowed.

2 A Brief History of the Problem

The main example in this area is the paper [6] by Marc Thomas, which solved a

problem of Shilov dating back to 1940. The extension by Dales and McClure [2] to
the continuous case leaves unsolved the question of whether there are nonstandard
ideals with α(I) = 0, something which Dales recognised as significant at the time,
and that question is solved affirmatively in this paper.

In the positive direction, the main theorem is the result of Domar [3] which asserts
that if the weight function ω is star-shaped, i.e., − 1

n
logω(n) is an increasing function

of n ∈ N, then l1(ω) has no nonstandard ideals. Domar also proved a continuous
version of this result: if η(t) = − logω(t) is a convex function of t , and if for some

ε > 0 one has η(t)/t1+ε → 0, then L1(R
+, ω) has no nonstandard ideals. There is

also an account of this work in Dales [1].
The question of whether one can have nonstandard weak-∗ closed ideals (see def-

inition and discussion below) was raised by S. Grabiner (private communication; his

interests in the weak-∗ topology on L1(R
+, ω) and in nonstandard ideals are seen in

[4, 5]). The question of whether one can have compact multiplication on the alge-
bras L1(R

+, ω) and l1(ω) and yet still have nonstandard ideals is also discussed and
answered affirmatively by Thomas in the discrete case, and by Dales and McClure in

the continuous case. In this paper we give examples of weak-∗ closed ideals where
the weight function can be chosen so as to give compact multiplication and yet non-
standard ideals still exist on L1(R

+, ω), with α(I) = 0.

3 Further Definitions

The definitions of Section 1 are standard practise. Not quite so standard, but to us
very useful, are the following:

Definition 3.1

(i) Let A denote the algebra l1(ω) or L1(R
+, ω). Let f ∈ A and φ ∈ A

∗. We define
the function [ f :φ] : N0 → C (respectively, R

+ → C) by

(3.1) [ f :φ](s) = φ(Rs f ).

We will refer to this function as the interaction between f and φ.

(ii) If f , g : N → C (discrete case) or R
+ → C (continuous case) and s ∈ N (discrete

case) or R
+, we say f ≪ s if f is supported on [0, s], and g ≫ s if g is supported

(essentially supported in the continuous case) on [s,∞). We say g ≫ f (“g lies
beyond f ”) if f ≪ s and g ≫ s for some s (continuous case), but in the discrete

case we require f ≪ s − 1 and g ≫ s for some s ∈ N. Either way, the condition
given ensures [g : f ] = 0 when g ∈ A and f ∈ A

∗ are such that g lies beyond f .
(iii) For nonzero f , we also define α( f ) to be the minimum of the support of f

(essential support in the continuous case), and β( f ) its maximum (or infinity
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if the support is not compact). If I ⊂ A is a nonzero closed ideal, we define
α(I) to be the minimum of α( f ) for f ∈ I (and this really is a minimum, not

an infimum, because if ‖ fi‖ = 1 and α( fi) is a decreasing sequence tending to t ,
one has α(

∑

∞

n=1 ± 2−n fn) = t for a suitable choice of signs).
(iv) If p is a nonzero generalised polynomial, we likewise define α(p) to be the

largest power of R that divides p(R), so that one has α(p(R) f ) = α(p) + α( f )

for all such p and f . We define β(p) to be the degree of p.
(v) If f ≫ φ with f ∈ A and φ ∈ A

∗, then obviously [ f :φ] = 0. We say the ele-
ments f ∈ A and φ ∈ A

∗ are a nonstandard dual pair if they are both nonzero,
we do not have f ≫ φ, yet we find that the function [ f :φ] is identically zero.

Obviously it is the last part of this definition that gives us a method—so to speak,

a style of proof—when looking for nonstandard ideals. The algebra A as defined
above will have nonstandard ideals if and only if it has nonstandard dual pairs; for
[ f :φ] = 0 if and only if φ annihilates the closed principal ideal generated by f (which
is easily seen to be the closed linear span of all the translates Rs f , s ≥ 0). If that

ideal is standard, i.e., if it is the ideal Iα, α = α( f ), then the only functionals φ
annihilating it will be those with φ ≪ α and hence, φ ≪ f . So the existence of a
nonstandard dual pair ( f , φ) definitely implies the existence of a nonstandard ideal
(with α(I) = α( f )). Conversely, a simple application of the Hahn–Banach theorem

shows that if there is any nonstandard ideal I, then there is a nonstandard dual pair
( f , φ) with α( f ) = α(I). Thus, the hunt for nonstandard ideals becomes a hunt for
nonstandard dual pairs.

One further subtlety, which can also be attacked using nonstandard dual pairs, is
the issue of the weak-∗ topology and the question of whether one can have weak-∗
closed nonstandard ideals. In the discrete case A = l1(ω), the weak-∗ topology is the
topology σ(l1(ω), c0(1/ω)); in the continuous case it is defined to be the topology
σ(L1(R

+, ω),C0(R
+, 1/ω)), where C0(R

+, 1/ω)) is the Banach space of continuous
functions φ : R

+ → C such that φ(t)/ω(t) → 0 as t → ∞.

The Hahn–Banach theorem is again our friend when converting statements about

weak-∗ closed ideals into statements about dual pairs; one may check that there is
a weak-∗ closed, nonstandard ideal I ⊂ A with α(I) = t if and only if there is
a nonstandard dual pair ( f , φ) with φ ∈ c0(1/ω), (respectively, C0(R

+, 1/ω)) and
α( f ) = t .

4 Geometric Progressions and Cancellation in [ f :φ]

This paper is mainly about explicit construction of nonstandard dual pairs; let us
assume that A is l1(ω) or L1(R

+, ω) as above, with f ∈ A and φ ∈ A
∗ elements

of compact support such that we do not have f ≫ φ but instead φ ≫ f . In the

continuous case, the Titchmarsh convolution theorem tells us that the interaction
[ f :φ] is nonzero with

(4.1) α([ f :φ]) = α(φ) − β( f ).

Equation (4.1) is, of course, obvious in the discrete case.
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Now choose any a > β(φ) − α( f ) so that Ra f ≫ φ and [Ra f :φ] = 0. Choose
also a nonzero complex constant A. Since [Ra f : Rag] = [ f :g] for any compactly sup-

ported f and g, there is some cancellation in the expression [ f + ARa f :φ−A−1Raφ].
In fact, two terms [ f :φ] + [ARa f : − A−1Raφ] cancel out, the term [Ra f :φ] = 0
so [ f + ARa f :φ − A−1Raφ] = [ f : A−1Raφ], and α([ f + ARa f :φ − A−1Raφ]) =

a + α(φ) − β( f ) = a + α([ f :φ]). Indeed, we may take a finite “geometric progres-

sion”

(4.2) φ ′
=

n
∑

k=0

(−A−1Ra)kφ

and obtain even more cancellation: [ f + ARa f :φ ′] = [ f : (−A−1Ra)nφ] with α([ f +

ARa f :φ ′]) = na +α(φ)−β( f ) = na +α([ f :φ]). Of course, any hope that we might
achieve [ f +ARa f :φ ′] = 0 by letting n → ∞ is immediately dashed because ω has to
be a radical weight; the infinite series

∑

∞

k=0(−A−1Ra)kφ will certainly not converge,
whether in l∞(1/ω) or in L∞(R

+, 1/ω).

Nonetheless, “geometric progressions” can be used to perturb a pair ( f , φ) in such
a way that the new elements f ′

= f + ARa f and φ ′ as in (4.2) have an interaction

that starts much further along the real line than [ f :φ]. We shall now use this idea to
construct our first nonstandard dual pairs ( f , φ).

5 Some Dual Pairs ( f , φ) Which Are “Nonstandard if They Converge”

In this section we shall prove a lemma which can be used to exhibit nonstandard dual
pairs in “real life” cases. We begin with a recursive definition that takes two increasing
sequences of positive integers as its input, and gives an elaborate “progression of
geometric progressions” as its output. This definition, and the lemma that follows

it, are not quite complicated enough to give nonstandard ideals I with α(I) = 0;
but they form the basis of a very nice short proof that nonstandard ideals exist with
α(I) > 0. This proof is given in Section 7, after a suitable weight function is defined
in Section 6. Then in Sections 8–9 we add the necessary extra complexity to get ideals

with α(I) = 0.

Definition 5.1 Let (an)∞n=0 and (An)∞n=0 be strictly increasing sequences of positive
integers with a0 = 1. Define q0(R) = R2, ρ0(R) = A0R (where R is, as usual, the
right shift operator), and for n ∈ N0 define

(5.1) pn(R) =

n
∑

k=0

AkRak .

Then recursively define polynomials ρn(R), qn(R), hn(R), δn(R) (n ∈ N) as follows.

(5.2) hn(R) = −A−1
n

pn−1(L)Ran ,
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(N.B. The operator (5.2) is indeed a polynomial in R for all n, because L is a left
inverse for R and the degree of pn−1 is an−1 < an.)

δn(R) = −A−1
n Ranρn−1(R),(5.3)

qn(R) =

a
2

n
−1

∑

k=0

hn(R)kδn(R),(5.4)

and finally

(5.5) ρn(R) = hn(R)a
2

nρn−1(R).

These definitions allow us to state our key lemma.

Lemma 5.2 Let sequences be given as in Definition 5.1. Let A = l1(ω) or L1(R
+, ω)

as usual, and let f0 ∈ A, φ0 ∈ A
∗ with f0 ≪ φ0 ≪ a1/2− 2. Let us also assume the an

increase sufficiently rapidly that an+1 > 2an for all n ≥ 0. Noting that the degree β(qn)

is a function of a0, a1, . . . an, let us assume, as a further condition of rapid increase, that

β(qn) < an+1 − a1/2 for all n ∈ N0. In the continuous case, let us assume that φ0 is a

continuous function.

Suppose that the weight ω is chosen in such a way that the sums

(5.6) f =

∞
∑

n=0

AnRan f0 = lim
n→∞

pn(R) f0

and

(5.7) φ =

∞
∑

n=0

qn(R)φ0

are norm convergent in A and A
∗, respectively. Then ( f , φ) is a nonstandard dual pair

(with α( f ) = 1 + α( f0), and φ weak-∗ continuous).

In the course of proving this lemma, we shall also give some more explanation of

Definition 5.1. Note that this lemma is not dependent on a specific choice of weight
function ω. We just need to find one such that the sums (5.6) and (5.7) do indeed
converge.

Proof The method of proof is to establish the following fact: for all n ∈ N0,

(5.8)
[

pn(R) f0 :

n
∑

k=0

qk(R)φ0

]

= [ f0 :ρn(R)φ0].

This is enough to prove the lemma, for the following reason:
For n > 0, note that the polynomial hn(R) = −A−1

n pn−1(L)Ran has α(hn) =

an − β(pn−1) = an − an−1 ≥ an/2, by our rapid increase condition. We can
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then use (5.5) to estimate α(ρn) = a2
nα(hn) + α(ρn−1) ≥ a3

n/2. And then, since
φ0 ≫ f0, α([ f0 :ρn(R)φ0]) ≥ α(ρn) + α(φ0) − β( f0) ≥ α(ρn) ≥ a3

n/2. As

n → ∞, this expression tends to infinity. Given formula (5.8), we therefore know
that α([pn(R) f0 :

∑n

k=0qk(R)φ0]) tends to infinity. But if the sums (5.6) and (5.7) are
norm convergent, certainly the function [ f :φ] is the pointwise limit, as n tends to in-
finity, of the functions [pn(R) f0 :

∑n

k=0qk(R)φ0]. Therefore [ f :φ] = 0. But f is a sum

of A0R f0 and higher terms which translate f0 further to the right; soα( f ) = 1+α( f0).
And likewise φ is a sum of R2φ0 and higher terms, of which the n-th term translates
φ0 at least α(δn) to the right ((5.4) giving qn(R) as a sum of terms hn(R)kδn(R)). But
α(δn) ≥ an by (5.3) so the higher terms involve translating by at least a1 > 2. We

therefore have α(φ) = 2 + α(φ0). Plainly, then, f and φ are both nonzero and we
do not have f ≫ φ. So ( f , φ) is a nonstandard dual pair. Now we have chosen φ0

weak-∗ continuous; this is automatic in the discrete case, and in the continuous case,
it follows because we have chosen φ0 to be continuous. Therefore, φ will be a norm-

convergent sum of weak-∗ continuous functionals, so it will be weak-∗ continuous.
Thus the lemma will be proved.

All that remains is to prove equation (5.8). The proof is by induction on n.

When n = 0, (5.8) is the assertion [A0R f0 :R2φ0] = [ f0 : A0Rφ0], which is true
for any compactly supported f0 and φ0 ([A0R f0 : R2φ0](t) = A0〈R1+t f0,R

2φ0〉 =

A0〈Rt f0,Rφ0〉 = [ f0 :A0Rφ0](t) for all t ≥ 0).

For n > 0, let us first consider the polynomial qn. We are committed to mak-
ing qn(R) a “geometric progression” as in (5.4). It has been chosen such that much of
the expression [pn(R) f0 :

∑n

k=0qk(R)φ0] will cancel for reasons similar to our elemen-

tary argument in the previous section. The convenient way to see this cancellation
is to note that pn(R) = AnRan + pn−1(R). We have arranged for a term of form
[pn−1(R) f0 :hn(R)kψ] to cancel with a term [AnRan f0 :hn(R)k+1ψ], where hn(R) is the
(operator) ratio for our “geometric progression” qn(R). For [g :ψ] is a bilinear func-

tion of g and ψ; [g :ψ] = [Ran g : Ranψ] for all compactly supported g and ψ; and
L : A

∗ → A
∗ is the dual map to R : A → A. Therefore for any compactly supported

ψ, one has

[pn−1(R) f0 : hn(R)kψ] = [pn−1(R)Ran f0 :Ran hn(R)kψ]

= [Ran f0 : pn−1(L)Ran hn(R)kψ]

= [AnRan f0 :A−1
n pn−1(L)Ran hn(R)kψ]

= −[AnRan f0 :hn(R)k+1ψ].

Using this formula we can simplify the expression [pn(R) f0 :qn(R)φ0]. For

(5.9) [pn(R) f0 :qn(R)φ0] =

a
2

n
−1

∑

k=0

[(AnRan + pn−1(R)) f0 :hn(R)kδn(R)φ0]

= [AnRan f0 :δn(R)φ0] + [pn−1(R) f0 : hn(R)a
2

n
−1δn(R)φ0]

https://doi.org/10.4153/CJM-2006-035-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-035-6


Nonstandard Ideals From Nonstandard Dual Pairs for L1(ω) and L1(ω) 865

because all the other terms cancel. Also

(5.10) [AnRan f0 :δn(R)φ0] = −[AnRan f0 :A−1
n Ranρn−1(R)φ0]

= −[ f0 :ρn−1(R)φ0] by (5.3)

= −
[

pn−1(R) f0 :

n−1
∑

k=0

qk(R)φ0

]

by induction hypothesis. Then(5.10) and (5.9) give us

(5.11) [pn(R) f0 :qn(R)φ0] +
[

pn−1(R) f0 :

n−1
∑

k=0

qk(R)φ0

]

= [pn−1(R) f0 :hn(R)a
2

n
−1δn(R)φ0]

= [ f0 : pn−1(L)hn(R)a
2

n
−1δn(R)φ0]

= [ f0 : hn(R)a
2

nρn−1(R)φ0] = [ f0 :ρn(R)φ0]

by (5.5). For (5.1), (5.3) and (5.2) give us pn−1(L)δn(R) = hn(R)ρn−1(R). Hence,

[pn(R) f0 :
∑n

k=0qk(R)φ0] is equal to

(5.12) [pn(R) f0 : qn(R)φ0] +
[

pn−1(R) f0 :

n−1
∑

k=0

qk(R)φ0

]

+
[

AnRan f0 :

n−1
∑

k=0

qk(R)φ0

]

= [ f0 :ρn(R)φ0] +
[

AnRan f0 :

n−1
∑

k=0

qk(R)φ0

]

.

Now, provided

(5.13) Ran f0 ≫
n−1
∑

k=0

qk(R)φ0,

the term [AnRan f0 :
∑n−1

k=0 qk(R)φ0] in (5.12) is zero, which gives us (5.8) and com-

pletes our proof by induction. But for all k < n we have β(qk) < ak+1 − a1/2 ≤
an − a1/2 by the more complicated of our two “rapid increase” conditions. So

β
(

n−1
∑

k=0

qk(R)φ0

)

< an − a1/2 + β(φ0) < an − 2,

because φ0 ≪ a1/2 − 2. Therefore the vector Ran f0 does indeed “lie beyond”
∑n−1

k=0 qk(R)φ0, so (5.13) is established and the Lemma is proved.
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6 The Weight Function

Given an increasing sequence (an) ⊂ N, with a0 = 1, we use it to define a weight
function (and also to define the other sequence (An)). We give the simplest defini-
tion which will work; if one wants examples with compact multiplication, something

slightly more complicated is needed, which we discuss in Section 11.

Definition 6.1 Given the underlying sequence (an), define An = an+2 (n ≥ 0), and

let ω : R
+ → R

+ be the greatest submultiplicative weight such that ω(t) ≤ 1 for all t ,
and

(6.1) ω(an) ≤ (2nAn)−1

for all n ≥ 0.

Note that one can write down an explicit formula for ω:

(6.2) ω(t) = min{1} ∪
{

m
∏

i=1

(2ni Ani
)−1 :

m
∑

i=1

ani
≤ t

}

.

Then ω is continuous on R
+ \ N0, and right continuous everywhere.

Lemma 6.2 Let

(6.3) µk = max{(2iAi)
1/ai : 0 ≤ i ≤ k} = max{(2iai+2)1/ai : 0 ≤ i ≤ k}.

Suppose the rapid increase condition µn+1 > 2µ2
n holds for n ∈ N0. Then

(6.4) ω(t + an) = (2nAn)−1ω(t) = ω(an)ω(t)

for every t < an+1 − an, and ω is a radical weight.

Proof For (6.4) note that ω(t + an) ≤ (2nAn)−1ω(t) follows from submultiplicativ-
ity; if strict inequality were to hold, pick the minimal sequence (ni)

m

i=1 to use in (6.2)

and give ω(t + an). Then
∑m

i=1ani
≤ t + an yet

(6.5)

m
∏

i=1

(2ni Ani
)−1 < (2nAn)−1ω(t).

No ni can exceed n because t + an < an+1 by hypothesis. If, say, nm = n, we can
use the sequence (ni)

m−1
i=1 to estimate ω(t) ≤ ∏m−1

i=1 (2ni Ani
)−1; yet that, together with

(6.5), will give us the contradiction ω(t) < ω(t). So in fact no ni can exceed n − 1.

Therefore ω(t + an) = ωn−1(t + an) where

(6.6) ωr(t) = min{1} ∪
{

m
∏

i=1

(2ni Ani
)−1 : ni ≤ r,

m
∑

i=1

ani
≤ t

}

.
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But the weightωn−1 plainly satisfies ωn−1(s) ≥ µ−s

n−1 whereµk is as above. Let t +an =

ran + t0 with r > 0, 0 ≤ t0 < an. Certainly,

(6.7) ω(t + an) ≤ (2nAn)−r ≤ (2nAn)−(t+an)/2an
= µ−(t+an)/2

n ,

provided the sequence µn is increasing. If we even have µn > µ2
n−1, then it is im-

possible for ω(t + an) to equal ωn−1(t + an) for any t ≥ 0, because (6.7) gives us
a strictly smaller estimate than µ−(t+an)

n−1 . This contradiction proves that (6.4) does

indeed hold. Now the condition µn > 2µn−1 also gives us µk → ∞, or simply
(2kAk)1/ak

= ω(ak)−1/ak → ∞; so ω is indeed a radical weight.

We conclude this section by stating our main theorem:

Theorem 6.3 Let ω be the radical weight of Definition 6.1. Provided the underlying

sequence (an)∞n=0 increases sufficiently rapidly, the Banach algebras l1(ω) and L1(R
+, ω)

both have weak-∗ closed nonstandard ideals. In addition, L1(R
+, ω) has weak-∗ closed

nonstandard ideals I with α(I) = 0.

7 Proof of Theorem 6.3: Ideals with α(I) > 0.

In this section we prove all of Theorem 6.3 except the part about achieving ideals

with α(I) = 0. Thus we reproduce the main results of both [6, 2] in a rather shorter
way. So let ω be the weight of Definition 6.1, and let us establish some “rapid in-
crease” conditions on the underlying sequence (an) which ensure that the conditions
of Lemma 5.2 are satisfied by any nonzero f0 and φ0 with f0 ≪ φ0 ≪ 5 (say). This

will give us nonstandard dual pairs, and hence nonstandard ideals, in both l1(ω) and
L1(R

+, ω); though in the L1(R
+, ω) case, plainly one will have α(I) ≥ 1, so α(I) = 0

cannot be achieved by this method. We will assume the (an) at least increase fast
enough that the conclusions of Lemma 6.2 hold.

In that case, An = 2−nω(an)−1, so ‖AnRan f0‖ ≤ 2−n‖ f0‖ for any f0 ∈ A (for
‖Ran‖A ≤ ω(an)); so it is obvious at least that the sum (5.6) converges. The “rapid
increase” conditions of Lemma 5.2 can also be assumed, and we also have f0 ≪
φ0 ≪ a1/2 − 2 whenever f0 ≪ φ0 ≪ 5 provided (say) a1 > 15. So our one and
only problem is to show that the sum (5.7) converges in A

∗. This is the heart of the
matter, and this we now proceed to do. We do most of the combinatorics in the next

three lemmas; then we complete the proof at the end of this section.

Lemma 7.1 Provided the sequence (an) increases sufficiently rapidly, the following is

true. For all n ∈ N, 0 ≤ k < a2
n and φ0 ∈ A

∗ with φ0 ≪ 5, we have

(7.1) ‖hn(R)kδn(R)φ0‖A∗ ≤ 2n(k+1)‖pn−1(L)k‖A∗ · ‖ρn−1(R)φ0‖A∗ .

(Here the norm ‖pn−1(L)k‖A∗ denotes its norm as a multiplier on A
∗.) Furthermore,

(7.2) ‖ρn(R)φ0‖A∗ ≤ 2na
2

n‖pn−1(L)a
2

n‖A∗ · ‖ρn−1(R)φ0‖A∗ .
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Proof Let n ∈ N. The degree β(hn) < an, hence by (5.5) β(ρn) < a3
n + β(ρn−1) and

given ak > 2ak−1 for all k that tells us β(ρn) < 2a3
n + β(ρ0) = 1 + 2a3

n. Now with

φ0 ≪ 5 and k < a2
n, we find

(7.3) hn(R)kδn(R)φ0 = pn−1(L)k(−A−1
n Ran )k+1ρn−1(R)φ0

= pn−1(L)k(−A−1
n Ran )k+1γ

where the vector γ = ρn−1(R)φ0 ≪ 5 + 1 + 2a3
n−1 = 6 + 2a3

n−1. Assume as a

condition of rapid increase that a3
n + 6 + 2a3

n−1 < an+1 for all n > 0. By (6.4)
we will have ω(t + (k + 1)an) = ω(an)t+1ω(t) for all t in the support of γ. Hence,
‖R(k+1)anγ‖A∗ = ω(an)−k−1‖γ‖A∗ . Substituting ω(an) = 2−n/An we obtain

(7.4) ‖(−A−1
n Ran )k+1γ‖A∗ = 2n(k+1)‖γ‖A∗

and substituting this in (7.3) we obtain (7.1). For the other inequality we note
ρn(R)φ0 = pn−1(L)a

2

n (−A−1
n Ran )a

2

nγ, and the identity (7.4), with k = a2
n − 1, gives us

(7.2) as required.

Lemma 7.2 Provided the sequence (an) increases sufficiently rapidly, the following is

true. For all n ∈ N we have

(7.5) ‖pn−1(L)‖A∗ ≤ 2.

Furthermore for n > 1 we have

(7.6) ‖pn−1(L)an‖A∗ ≤ 1/
√

An.

Proof For the first inequality, we have

‖pn−1(L)‖A∗ = ‖pn−1(R)‖A ≤
n−1
∑

k=0

Akω(ak) ≤
n−1
∑

k=0

2−k < 2.

For the second inequality note that since L|pn−1(L), Lan |pn−1(L)an . Since ω(an) <
A−1

n , we have ‖pn−1(L)an‖A∗ = ‖pn−1(R)an‖A ≤ A−1
n · |pn−1|an , where |p| denotes

the sum of the absolute values of the coefficients of p. But |pn−1| depends on ele-
ments of our underlying sequence only up to An−1 = an+1, so we are perfectly en-
titled to assume A−1

n
· |pn−1|an < 1/

√
An, for all n, as a condition of rapid increase,

which of course gives us (7.6).

Lemma 7.3 Provided the sequence (an) increases sufficiently rapidly, the following is

true. For all n ∈ N we have

(7.7) ‖ρn(R)φ0‖A∗ ≤ A−an/3
n · ‖ρ0(R)φ0‖A∗

and for n > 1 we have

(7.8) ‖qn(R)φ0‖A∗ ≤ 2−n‖ρ0(R)φ0‖A∗ .
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Proof By (7.2) and (7.6) we have ‖ρn(R)φ0‖A∗ ≤ A
−an/2
n · 2na

2

n‖ρn−1(R)φ0‖A∗ . As-

sume as a condition of rapid increase that A
−an/2
n · 2na

2

n < A
−an/3
n for all n ∈ N.

This gives (7.7) immediately when n = 1; for larger values we get ‖ρn(R)φ0‖A∗ ≤
‖ρn−1(R)φ0‖A∗ ·

∏n

k=1A
−ak/2

k
which implies (7.7). Likewise if k < a2

n and n > 1,
the previous lemma gives ‖pn−1(L)k‖A∗ ≤ 2k. By (7.1) and (7.7) this gives

‖hn(R)kδn(R)φ0‖ ≤ 2n(k+1)+k‖ρn−1(R) φ0‖A∗ ≤ 2nk+n+k A
−an−1/2

n−1 ‖ρ0(R)φ0‖A∗ . But

since An−1 = an+1 we can assume as a condition of rapid increase that

(7.9) 2na
2

n
+n+a

2

n < A
an−1/4

n−1

for every n > 0 (note this is the place where we really use the fact that An = an+2

rather than the more natural an+1). Then

‖hn(R)kδn(R)φ0‖A∗ ≤ A
−an−1/4

n−1 ‖ρ0(R)φ0‖A∗ .

Summing from k = 0 to a2
n − 1 we find using (5.4) that ‖qn(R)φ0‖A∗ ≤ a2

n ·
A
−an−1/4

n−1 ‖ρ0(R)φ0‖A∗ ≤ A
2−an−1/4

n−1 ‖ρ0(R)φ0‖A∗ . We may assume that A
2−an−1/4

n−1 <
2−n for all n. This establishes (7.8) and proves the lemma.

Proof that (5.7) converges when φ0 ≪ 5: We can assume Lemmas 7.1–7.3. Equation

(7.8) plainly implies that the sum (5.7) converges. Thus all conditions of lemma 5.2
are satisfied, for any f ≪ φ ≪ 5, provided the underlying sequence (an) increases
sufficiently rapidly. Thus l1(ω) and L1(R

+, ω) both contain weak-∗ closed nonstan-
dard ideals I (with α(I) = 1 + α( f ) > 0).

8 Nonstandard Ideals I ⊂ L1(R
+, ω) with α(I) = 0.

We now restrict to the continuous case A = L1(R
+, ω), and seek ideals I withα(I)=0.

We can use the same weight function ω, but we need a different choice of nonstan-
dard dual pair ( f , φ). Note that in the proof of Lemma 7.2 it was important that
L|pn(L) for all n, but this fact leads to an ideal with α(I) ≥ 1. To get ideals with
α(I) < 1 we need to use generalised “polynomials” pn(L) involving fractional pow-

ers L1/2, L1/4 and so on and if we finally want α(I) = 0, the minimum degree α(pn)
needs to tend to zero. This leads to the following alternative to Definition 5.1.

Definition 8.1 Let (an)∞n=0 and (An)∞n=0 be strictly increasing sequences of positive

integers with a0 = 1. Let us define compactly supported functions gn (n ≥ 0) by

(8.1) gn(x) =

{

1 if x < 2−n,

0 otherwise.

Note that gn−1 = (1+R2−n

)gn for all n > 0. Define q ′

0(R) = R2, ρ ′0(R) = (A0 +A−1
0 )R

and for n ∈ N0 define

(8.2) p ′

n(R) =

n
∑

k=0

(AkRak + A−1
k

R2−k

) ·
n

∏

l=k+1

(1 + R2−l

).
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Note that α(p ′

n) = 2−n, β(p ′

n) = an, and

(8.3) p ′

n(R)gn = p ′

n−1(R)gn−1 + (AnRan + A−1
n R2−n

)gn =

n
∑

k=0

(AkRak + A−1
k

R2−k

)gk.

Then recursively define generalised polynomials ρ ′n(R), q ′

n(R), h ′

n(R), δ ′n(R) (n ∈ N)
as follows.

(8.4) h ′

n(R) = −A−1
n

(

(p ′

n−1(L)(1 + L2−n

) + A−1
n L2−n)

Ran ,

(this is a generalised polynomial withα(h ′

n) = an−β(p ′

n−1)−2n
= an−an−1−2−n ≥

1/2)

(8.5) δ ′n(R) = −A−1
n

(

(1 + L2−n

)ρ ′n−1(R) + A−1
n L2−n

n−1
∑

k=0

q ′

k(R)
)

Ran ,

(a generalised polynomial with α(δ ′n) ≥ an − 2−n)

(8.6) q ′

n(R) =

a
2

n
−1

∑

k=0

h ′

n(R)kδ ′n(R),

(again, α(q ′

n) ≥ an − 2−n) and

(8.7) ρ ′n(R) = h ′

n(R)a
2

n

(

(1 + L2−n

)ρ ′n−1(R) + A−1
n L2−n

n−1
∑

k=0

q ′

k(R)
)

(a generalised polynomial with α(ρ ′n) ≥ a2
n/2 − 2−n + min(α(ρ ′n−1), an)).

The reader will observe that these definitions are quite close to Definition 5.1 but not
quite the same; the nature of the nonstandard dual pair is slightly different, as this

alternative to Lemma 5.2 shows:

Lemma 8.2 With the notation of Definition 8.1, let us assume the an increase suffi-

ciently rapidly that an+1 > 2an for all n ≥ 0. Noting that the degree β(q ′

n) is bounded

by a function of a0, a1, . . . an, let us assume, as a further condition of rapid increase, that

β(q ′

n) < an+1 − a1/2 for all n ∈ N0.

Suppose that the weight ω has been chosen in such as way that the sums

(8.8) g =

∞
∑

n=0

(AnRan + A−1
n R2−n

)gn = lim
n→∞

p ′

n(R)gn

and

(8.9) φ ′
=

∞
∑

n=0

q ′

n(R)g0

are norm convergent in A and A
∗, respectively. Then (g, φ ′) is a nonstandard dual pair

with α(g) = 0.
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Proof In parts we give just a sketch proof, since the proof is very similar to that of
Lemma 5.2.

Note that the sum (8.8) is a sum of positive functions γn = (AnRan + A−1
n R2−n

)gn

with α(γn) = 2−n. Therefore, g is nonzero with α(g) = 0. And as before φ ′ is
nonzero with α(φ ′) = 2 + α(g0) = 2. We claim that for all n ≥ 0,

(8.10)
[

p ′

n(R)gn :

n
∑

k=0

q ′

k(R)g0] = [gn :ρ ′n(R)g0

]

.

This proves the lemma because α(ρ ′n) ≥ a3
n/2 for similar reasons as before, and then

we have α([p ′

n(R)gn :
∑n

k=0q ′

k
(R)g0]) → ∞, so [g :φ ′] = 0 provided the sums (8.8)

and (8.9) converge.

As before, one proves (8.10) by induction. When handling the geometric pro-
gression q ′

n, one notes that for any compactly supported ψ ∈ A
∗ and any k ≥ 0

one has [p ′

n−1(R)gn−1 + A−1
n R2−n

gn :h ′

n(R)kψ] = −[AnRan gn : h ′

n(R)k+1ψ]. Hence,
most of the terms in the geometric progression [p ′

n(R)gn : q ′

n(R)g0] cancel, leaving
[p ′

n(R)gn : q ′

n(R)g0] equal to

(8.11) [AnRan gn :δ ′n(R)g0] +
[

p ′

n−1(R)gn−1 + A−1
n R2−n

gn :h ′

n(R)a
2

n
−1δ ′n(R)g0

]

.

The first term in (8.11) above is precisely −[p ′

n(R)gn :
∑n−1

k=0 q ′

k
(R) g0] because δ ′n is

chosen in such a way as to give

[AnRan gn :δ ′n(R)g0] = −
[

gn :
(

(1 + L2−n

)ρ ′n−1(R) + A−1
n L2−n

n−1
∑

k=0

q ′

k(R)
)

g0

]

= −[gn−1 :ρ ′n−1(R)g0] −
[

A−1
n R2−n

gn :

n−1
∑

k=0

q ′

k(R)g0

]

= −
[

p ′

n−1(R)gn−1 + A−1
n

R2−n

gn :

n−1
∑

k=0

q ′

k
(R)g0

]

by induction hypothesis. The difference between this and −[p ′

n(R)gn :
∑n−1

k=0 q ′

k
(R)g0]

consists of the term [AnRan gn :
∑n−1

k=0 q ′

k
(R)g0], which is zero because

∑n−1

k=0 q ′

k
(R)g0 ≪

an as before. Hence the interaction [p ′

n(R)gn :
∑n

k=0q ′

k
(R)g0] consists of the single

term

[p ′

n−1(R)gn−1 + A−1
n R2−n

gn :h ′

n(R)a
2

n
−1δ ′n(R)g0]

= [gn : (p ′

n−1(L)(1 + L2−n

) + A−1
n L2−n

)h ′

n(R)a
2

n
−1δ ′n(R)g0]

=

[

gn :h ′

n(R)a
2

n

(

(1 + L2−n

)ρ ′n−1(R) + A−1
n L2−n

n−1
∑

k=0

q ′

k(R)
)

g0

]

= [gn :ρ ′n(R)g0],

and this completes the proof by induction.
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9 Continuing the Proof of Theorem 6.3

Once again, the weight function ω as in Definition 6.1 can be used to satisfy the
conditions of Lemma 8.2, just as it satisfied the conditions of Lemma 5.2 before.
In this section, then, ω is the specific weight of Definition 6.1, obtained from some

underlying sequence (an). We may assume the rapid increase conditions on (an)
which are required by Lemma 8.2, and also those required by Lemma 6.2.

Lemma 9.1 Provided the sequence (an) increases sufficiently rapidly, the following is

true. For all n ∈ N and 0 ≤ k < a2
n

one has

(9.1) ‖h ′

n(R)kδ ′n(R)g0‖A∗ ≤ ‖
(

p ′

n−1(L)(1 + L2−n

) + A−1
n L2−n) k‖A∗ · 2n(k+1)‖γ‖A∗ ,

where

(9.2) γ =

(

(1 + L2−n

)ρ ′n−1(R) + A−1
n L2−n

n−1
∑

k=0

q ′

k(R)
)

g0.

Also

(9.3) ‖ρ ′n(R)g0‖A∗ ≤ ‖
(

p ′

n−1(L)(1 + L2−n

) + A−1
n L2−n) a

2

n‖A∗ · 2na
2

n‖γ‖A∗ .

Proof One may calculate (as one did when proving Lemma 7.1)

(9.4) h ′

n(R)kδ ′n(R)g0 =

(

p ′

n−1(L)(1 + L2−n

) + A−1
n L2−n) k

(−A−1
n Ran )k+1γ

and as with (7.1), the result (9.1) follows because the norm of (−A−1
n Ran )k+1γ is

precisely 2n(k+1)‖γ‖A∗ by Lemma 6.2. Similarly one may obtain (9.3).

Lemma 9.2 Provided the sequence (an) increases sufficiently rapidly, the following is

true. Let p ′′

n−1(L) = p ′

n−1(L)(1 + L2−n

) + A−1
n L2−n

. Then for all n ∈ N we have

(9.5) ‖p ′′

n−1(L)‖A∗ ≤ 2n+2;

furthermore, for n > 1 we have

(9.6) ‖p ′ ′

n−1(L)2n
an‖A∗ ≤ 1/

√

An;

and for every k ≥ 2nan we have

(9.7) ‖p ′′

n−1(L)k‖ ≤ A−k/2n+3
an

n .

https://doi.org/10.4153/CJM-2006-035-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-035-6


Nonstandard Ideals From Nonstandard Dual Pairs for L1(ω) and L1(ω) 873

Proof Using the fact that ‖Lt‖A∗ ≤ 1 for all t , and the fact that ‖Lan‖A∗ ≤ ω(an) =

2−nAn, we obtain

(9.8) ‖p ′ ′

n−1(L)‖A∗ = ‖A−1
n L2−n

+

n−1
∑

k=0

(AkLak + A−1
k

L2−k

) ·
n

∏

l=k+1

(1 + L2−l

)‖A∗

≤ A−1
n

+

n−1
∑

k=0

(2−k + A−1
k

) · 2n−k ≤ 2−n +

n−1
∑

k=0

2n−2k+1 < 2n+2,

because A−1
k
< 2−k. For (9.6) we note thatα(p ′ ′

n−1) = 2−n, so Lan divides p ′′

n−1(L)2n
an ,

whence ‖p ′′

n−1(L)2n
an‖A∗ ≤ 2−nA−1

n |p ′′

n−1|2
n
an . Given another rapid increase con-

dition, the A−1
n factor can be assumed to dominate the others, hence we can ob-

tain (9.6). If now k = r · 2nan + l with r ∈ N, 0 ≤ l < 2nan, our two estimates

give ‖p ′′

n−1(L)k‖A∗ ≤ 2(n+2)lA
−r/2
n . Now certainly r > k/2n+1an, so ‖p ′′

n−1(L)k‖ ≤
2(n+2)·2n

an A
−k/2n+2

an

n , and given rapid increase this is at most A
−k/2n+3

an

n for every k ≥
2nan.

Lemma 9.3 Provided the sequence (an) increases sufficiently rapidly, the following is

true. For all n ∈ N we have

(9.9) ‖ρ ′n(R)g0‖A∗ ≤ A−an/2n+4

n

and

(9.10) ‖q ′

n(R)g0‖A∗ ≤
{

4A2
0 · 25a

2

1 if n = 1,

2−n if n > 1.

Proof One may use the fact that ω(t) = A−1
0 for t ∈ [1, 2) to compute

‖ρ ′0(R)g0‖A∗ = A0(A0 + A−1
0 ).

Also ω(t) = A−2
0 for t ∈ [2, 3), hence ‖q ′

0(R)g0‖A∗ = A2
0. Let us prove (9.9) and

(9.10) together, proceeding by induction on n.

Let γ be the vector defined in (9.2). Now γ is a sum of two terms, the first of which
is (1 + L2−n

)ρ ′n−1(R)g0. This first term has A
∗ norm at most 2‖ρ ′n−1(R)g0‖A∗ which

for n = 1 is 2A0(A0 + A−1
0 ) < 3A2

0, and for n > 1 may be assumed (by induction

hypothesis) to be at most 2A
−an−1/2n+3

n−1 . The second term in γ is A−1
n L2−n∑n−1

k=0 q ′

k
(R)g0

which (since ‖L2−n‖A∗ ≤ 1) has norm at most A−1
n

∑n−1

k=0 ‖q ′

k
(R)g0‖. When n = 1,

that is A2
0/A1 < A2

0. So certainly

(9.11) ‖γ‖A∗ ≤
{

4A2
0 if n = 1,

2A
−an−1/2n+3

n−1 + A−1
n

∑n−1

k=0 ‖q ′

k
(R)g0‖A∗ if n > 1.
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Now (9.3) gives us ‖ρ ′n(R)g0‖A∗ ≤ ‖p ′ ′

n−1(L)a
2

n‖·2na
2

n ·‖γ‖A∗ . We know a2
n ≥ 2nan, so

by (9.7) we have ‖p ′ ′

n−1(L)a
2

n‖ ≤ A
−an/2n+3

n . So ‖ρ ′n(R)g0‖A∗ ≤ A
−an/2n+3

n ·2na
2

n · ‖γ‖A∗ .
Substituting our estimate (9.11) we have

(9.12)

‖ρ ′n(R)g0‖A∗ ≤
{

4A2
0A

−a1/16

1 2a
2

1 if n = 1,

(2A
−an−1/2n+3

n−1 + A−1
n

∑n−1

k=0 ‖q ′

k
(R)g0‖A∗)A

−an/2n+3

n 2na
2

n if n > 1.

For n = 1, a rapid increase condition on A1 = a3 ensures that the right-hand side

is at most A
−a1/32

1 as required by (9.9). For n > 1, our induction hypothesis tells us

that the right-hand side is at most

(2A
−an−1/2n+3

n−1 + A−1
n (4A2

0 · 25a
2

1 +

n−1
∑

k=1

2−k)) · A−an/2n+3

n · 2na
2

n .

Once again the dominant factor in this is A
−an/2n+3

n , and we can assume

‖ρ ′n(R)g0‖A∗ ≤ A−an/2n+4

n ,

given a suitable condition of rapid increase. Thus we obtain (9.9). For (9.10), we sum

our estimates (9.1) for k = 0 to a2
n − 1, which, given the definition (8.6) of q ′

n, tells us

(9.13) ‖q ′

n(R)g0‖A∗ ≤
a

2

n
−1

∑

k=0

‖p ′′

n−1(L)k‖A∗ · 2n(k+1)‖γ‖A∗

≤
a

2

n
−1

∑

k=0

2k(n+2)+n(k+1)‖γ‖A∗ ≤ 25na
2

n‖γ‖A∗ .

When n = 1 this gives an estimate of 4A2
0 · 25a

2

1 as required by (9.10). When n > 1 we
use our estimate (9.11) and our induction hypothesis about previous ‖qk(R)g0‖A∗ to

obtain the estimate

(9.14) ‖q ′

n(R)g0‖A∗ ≤ 25na
2

n ·
(

2A
−an−1/2n+3

n−1 + A−1
n

(

4A2
0 · 25a

2

1 +

n−1
∑

k=1

2−k
)

)

,

and a final rapid increase condition tells us the right-hand side is at most 2−n for all n.

(Although note that we again use the fact that An−1 = an+1, so the factor A
−an−1/2n+3

n−1

“kills” factors like 25na
2

n provided we assume rapid increase of the sequence (an).)
Thus Lemma 9.3 is proved.

10 Completing the Proof of Theorem 6.3.

We have proved everything in Theorem 6.3 except the part about nonstandard ideals
with α(I) = 0. But (9.10) implies that the sum (8.9) is norm convergent.
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The sum (8.8) is obviously convergent because ‖AnRan‖A ≤ 2−n, ‖gn‖A ≤ 2−n

and ‖R2−n‖A ≤ 1. The rapid increase conditions of Lemma 8.2 may also be as-
sumed, so for suitably rapid increasing sequences (an), the Lemma applies and tells
us there is a nonstandard dual pair (g, φ ′) on L1(R

+, ω), with g and φ ′ given by (8.8)

and (8.9), respectively. Since α(g) = 0, we have nonstandard ideals I ⊂ L1(R
+, ω)

with α(I) = 0. To see that we can get weak-∗ closed such ideals, note that while
φ ′ itself is not a C0 function because of the norm convergence of (8.9), it is obvious
that h ∗ φ will be C0 if h is a continuous function supported on a compact subset of

[−∞, 0]. Titchmarsh tells us φ ′ 6= 0 provided h is supported on [−α(φ ′), 0], and
finally [g :h ∗ φ ′] = 0 because φ ′ ∗ h =

∫

∞

s=0
(Lsφ ′)h(−s)ds (Lsφ ′ is a bounded con-

tinuous function of s taking values in the Banach algebra A
∗, so the integral makes

sense) and [g :φ ′ ∗ h](t) =

∫

∞

s=0
[g :Lsφ ′](t)h(−s)ds =

∫

∞

s=0
[g :φ ′](t + s)h(s)ds = 0.

So L1(R
+, ω) has even got weak-∗ closed nonstandard ideals with α(I) = 0. Thus the

theorem is proved.

11 Conclusion

The last argument above is quite general. If (g, φ) is a nonstandard dual pair on

L1(R
+, ω) with α(g) = 0, then so is (g, h ∗ φ) for any nonzero, compactly supported

h ∈ L1(R
−) whose support includes zero. I conjecture that a dual pair (g, h ∗φ) with

h∗φ ∈ C0(R
+, 1/ω) may be found; hence (I conjecture) every algebra L1(R

+, ω) that
has nonstandard ideals has weak-∗ closed nonstandard ideals.

Concerning the issue of compact multiplication, note that the simple Definition
6.1, the “greatest weight function satisfying conditions”, does not give a weight having

compact multiplication. But it can easily be adjusted in such a way that one does have
compact multiplication (i.e., ω(s+t)/ω(s) → 0 as s → ∞ for each t > 0). One simply
defines n(t) = max{1} ∪ {n : t ≥ an} and uses ω ′(t) = n(t)−tω(t) in place of the

weightω. One may check that, mutatis mutandis, the conclusions of Theorem 6.3 still
apply with ω replaced by ω ′. (Specifically, one no longer has ω(t + ran) = ω(an)rω(t)
for t + ran < an+1, but rather the weaker ω ′(t + ran) ≥ n−anω ′(an)rω ′(t). That means
one needs extra factors nan on the right-hand sides of (7.1), (7.2), (9.1) and (9.3) to

make them still true for A = L1(R
+, ω ′). These factors can however be absorbed into

the rapid increase conditions of Lemmas 7.3 and 9.3, leaving those lemmas still valid
in the new situation. The rest of the proof then follows as before, with the same dual
pairs.)

We expect that there are a fair number of weight functions ω such that l1(ω) and
L1(R

+, ω) have nonstandard ideals. The main requirement seems to be a “staircase”

property that there is a sequence an such that ω(an) is very small — much smaller
than ω(t) for t significantly smaller than an — and then ω(ran + t) is “roughly”
ω(an)rω(t) for small r and t . Then ω(an) must be much smaller than an itself, more
so than is required for ω to be a radical weight (remember in the explicit construc-

tion we had ω(an) = 2−n/an+2). Possibly there is a “neat” condition on a weight
which guarantees nonstandard ideals, hopefully not too far from the negation of Do-
mar’s “neat” star-shaped condition that guarantees all ideals are standard. Thus the
structure of L1(R

+, ω) and of l1(ω) is taking shape.

https://doi.org/10.4153/CJM-2006-035-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-035-6


876 C. J. Read

References

[1] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs
New Series 24, Clarendon Press, New York, 2000.

[2] H. G. Dales and J. P. McClure, Nonstandard ideals in radical convolution algebras on a half-line,
Canad. J. Math. 39(1987), no. 2, 309–321.

[3] Y. Domar, Cyclic elements under translation in weighted L1 spaces on R
+, Ark. Mat 19(1981), no. 1,

137–144.
[4] F. Ghahramani and S. Grabiner, Convergence factors and compactness in weighted convolution

algebras, Canad J. Math. 54(2002), no. 2, 303–323.
[5] S. Grabiner and M. P. Thomas, Nonunicellular strictly cyclic quasinilpotent shifts on Banach spaces.

J. Operator Theory 13(1985), 163–170.
[6] M. P. Thomas, A nonstandard ideal of a radical Banach algebra of power series, Acta Math. 152(1984),

no. 3-4, 199–217.

Department of Pure Mathematics

University of Leeds

Leeds LS2 9JT

England

e-mail: read@maths.leeds.ac.uk

https://doi.org/10.4153/CJM-2006-035-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-035-6

