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This is not going to be an exhaustive review of all of the literature on the 
subject of multiple star dynamics, although I will call your attention to the very 
recent review by Valtonen & Mikkola (1991) entitled "The Few-Body Problem in 
Astrophysics". After all, from a dynamical point of view a multiple-star system 
is the physical realization of the n-body problem of celestial mechanics, and an 
enormous literature exists for that subject. Rather, this will be some personal 
thoughts on aspects of the few-body problem that are particularly relevant to 
the multiple-star astronomer. 

One should not forget the case of n=2. Although the problem is completely 
solvable and contains no surprises, it is one of our reasons to exist. Especially 
if a binary is on a photographic program, which can yield a parallax, a total 
mass, and a mass-ratio, and if photometry exists, as is usually the case now for 
parallax stars, a real contribution is possible. Do an orbit, which is the dynamical 
problem, and you have two more good points for the empirical mass/luminosity 
relationship, which is not a bad day's work for the astrophysicist. 

Go up only to n=3 and the situation becomes rich, complex, and completely 
unsolvable in the general case. In fact, going to higher n does not qualitatively 
change the picture, and only the triple-star case will be considered for the rest 
of the discussion. This case can be broken into two more specific cases, those 
known as the hierarchical cases, and those known as the trapezium cases. These 
can also be called the analytical and the numerical cases, or the stable and the 
unstable cases. 

For the hierarchical cases, we can make some analytical progress if we use 
what are known as Jacobi coordinates. Here, one set of coordinates is the 
position of the secondary with respect to the primary in the close binary, and 
the other set is the distant tertiary with respect to the center of mass of the 
binary. Fortunately, this is practically what is observed if the close binary is 
unresolved, allowing for the fact that we observed the photocenter, not the 
barycenter, of that unresolved binary. 

The advantage of this formulation is that we have a small parameter, which 
is the ratio of the semimajor axis of the close binary orbit to that of the tertiary-
barycenter orbit. The force function can then be written as the force function 
for the close binary, plus the force function for the tertiary-barycenter, plus an 
infinite power series involving powers of the small parameter and trigonometric 
functions of the mutual orientation angles. The power series starts with the 
second power of that small parameter, and hence only contains small terms. 

There remains the question of whether the power series converges, but if 
it does, this is the theoretical justification for treating hierarchical systems as 
sets of nested binaries. To now form the equations of motion, you take partial 
derivatives of the force function with respect to the appropriate coordinate, 
and in so doing, one power of the small parameter disappears when dealing 
with the close binary, and thus the inner orbit shows an order-of-magnitude 
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greater variation than the outer orbit. The motion in a triple star can thus be 
summarized at the following degrees of approximation: 

Zeroth order — a close binary with a fixed distant companion 
First order — an inner and an outer binary 
Second order — a perturbed inner binary and an outer binary 
Third order — full 3-body system with perturbed inner 

and outer binaries 

The next step is to treat the power series portion of the force function as 
the disturbing function in a variation-of-elements problem. The details of this 
kind of treatment would be more than a review in itself and therefore will not be 
covered here. To summarize the important results, if you use what are known as 
canonical elements and approach this as a problem in Hamiltonian mechanics, 
certain transformations are possible that lead to the result that both semimajor 
axes can be written as constants, plus trigonometric power series in our same 
small parameter. Hence, with no secular variation in the semimajor axes, these 
kinds of triple systems are dynamically stable, again as long as the power series 
converge. Since this is true in both directions in time, this means a system can 
not evolve from an n-body trapezium system to an n-body hierarchical system 
with the same n. 

To second order, as mentioned before, the motion of the tertiary is strictly 
2-body, and a solution for the motion in the binary is possible. A particularly 
interesting result emerges if the plane of the binary orbit is essentially perpen
dicular to the plane of the tertiary. To put it another way, consider the case in 
which the length of the total angular momentum vector of the triple is equal to 
the length of the angular momentum vector of the tertiary-barycenter (which is 
constant to this order), a situation only possible when the mutual inclination is 
slightly greater than a right angle. If the orientations of these two vectors come 
close to coincidence, as they will periodically, the length of the binary angular 
momentum vector can become arbitrarily small. This length contains the peri
astron distance as a factor, and, since the semimajor axis remains constant, the 
eccentricity must become close to unity. 

This, of course, is no mathematical problem, but the physical consequences 
can best be illustrated with a particular case. The system BD+660 42, also 
known as ADS 440, actually is a triple, with the A component having an unseen 

| astrometric companion. If the nodes of the two orbits coincide, the orbits are 
I almost coplanar and there is no problem. If the nodes are opposite, the mutual 
i inclination is 96 degrees, and the periastron distance would have been one solar 
I ' radius just 11,000 years ago. To say the least, this is unlikely, and the opposite-
F nodes case can fairly confidently be ruled out in this case. 
I There is now the practical question of implementing the 3-body theory for 
II those few systems where this is necessary. Both because of the increasing time-
i | span over which these systems have been observed and the increasing accuracy 
l! to which they can be observed, this will become important for many systems 
K soon. No matter what approach you take, these systems will require one more 
If orbital parameter than we are used to, and that is an epoch of osculation. Hence, 
H this is another plea to start the practice of including this parameter in reported 
it: orbits. Again, if this has been approximated by a 2-body differential correction, 
m this epoch is merely the weighted mean epoch. 
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These effects can be included by a theory for the variation of the elements. 
However, the canonical ones mentioned above are hard to use, since they refer 
to the invariable plane, not the plane of the sky. Several authors, many of 
whom are at this meeting, have put forward various formulations that can be 
directly applied to the observed coordinate system. These all have to make some 
approximation, such as taking only the first term in the disturbing function, a 
step which is completely justifiable at today's levels of accuracy. However, if 
you want to be completely rigorous, a numerical approach is the only possibility. 
Efficient numerical integrators are easy to implement these days, and an example 
of our application of this approach to the Zeta Cancri system is present elsewhere 
in these Proceedings. 

By contrast to what been discussed so far, the only way to study trapezium-
type systems is by numerical simulation. That is, you carry out numerical 
integrations of various specific 3-body systems and try to establish the patterns. 
Nothing can ever be mathematically proven this way, but a lot can still be 
learned. This is more like an experimental science, and these are often referred 
to as numerical experiments. Usually each component is referred to the center 
of mass of the system and is carried as part of the integration. This does not 
take account of the conservation of linear momentum, but it is very easy to 
implement, and it is easy to generalize to larger systems. 

This is the version of the three-body problem of celestial mechanics that 
has been studied so long and so hard by very many people over very many 
years. Usually it is mathematical properties that are being sought, the favorite 
being periodic orbits. Also there are things like capture cross-section, break
up mechanism, asymptotic behavior, and the like. However, there are a few 
questions of specific interest to the double-star community. Particularly active 
in exploring these question has been the group at St. Petersburg, and of their 
many papers I will only mention the a good review paper by Anasova (1986). 

An obvious first question to ask is what does it take to make a stable triple. 
What are the key factors necessary to make the series referred to earlier actually 
converge and produce constant semimajor axes? Stability here means just that, 
that there are no large variations in the axes or eccentricities, without being too 
specific about what is meant by large. This is often referred to as orbital stability, 
in contrast to some more specific stabilities employed by the mathematicians. 

I discussed this at some length at the Oaxtepec meeting (see Franz & Pismis, 
1977), so I won't go into a lot of detail. It turns out that the key quantity is 
the ratio of the semimajor axis of the close binary to the periastron distance of 
the tertiary. This makes sense, since, for the high-frequency binary, you would 
expect sort of an averaging, whereas the tertiary exerts most of its influence 
when it is close to the binary. This ratio does not depend on orientation, apart 
from not needing to be quite as small for retrograde orbits as for direct ones, 
with the separation between the two cases being the perpendicular instability 
discussed earlier. For the equal mass case, this ratio is around 1/3 and it needs 
to be smaller logarithmically with the mass of the tertiary. Ironically, this is 
just the ratio used by many people to classify observed systems, based purely 
on convenience and what seemed reasonable. 

Perhaps related to the question of stability is the question of just what 
goes on when an unstable triple breaks up, an issue of particular interest to the 
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St. Petersburg group. Extensive simulations have revealed the not unsurprising 
result that a true triple close approach is required. That is, all three stars 
must more or less simultaneously come very close together to permit enough 
interaction for one star to acquire enough energy to escape, leaving behind a 
more tightly bound binary. 

Then there are the statistics of what is left behind after the unstable triple 
dissolves. The old classical result states that the probability of escape goes as 
the inverse third power of the mass. This would imply that single stars would 
tend to be less massive and therefore of later spectral types than components 
of binaries, which is clearly not the case. However, more recent work, again 
primarily at St. Petersburg shows this to not always be the case, and in certain 
classes of problems the escape probability is independent of mass. 

The probability of a given eccentricity in the remaining binary goes linearly 
with the eccentricity all the way to unity, superficially counter to the observed 
situation. However, the observed eccentricity distribution is obviously plagued 
with observational selection, in that high eccentricity binaries have a much higher 
probability of being in a slow part of their orbit and thus not having enough 
motion for a decent orbit solution. Simulations have shown that this effect 
can completely account for the differences between observed and theoretical 
eccentricity distributions. 

One particular reason for studying systems with more than three compo
nents is to look at the distribution of the number of components in the resulting 
stable systems. This requires running an enormous number of experiments to 
get reliable results, an effort yet to be undertaken. However, preliminary results 
are encouraging, in that the number of stable triples is on the order of 20 per
cent of the number of binaries, and stable quadruples do result from the decay 
of unstable quintuples, consistent with what we observe. 

Abt brought up an interesting question in the scientific session of Commis
sion 26 in Buenos Aires, and that is the maximum age that can be expected 
in trapezium systems. This question has already been addressed in some detail 
by the cometary dynamics people for our solar system. Since relative motion 
is determined by the sum of masses, not the product, the problem of a comet 
going around the Sun is the same as the problem of the dynamics of a binary 
star. The significant perturbation for the very wide component that has almost 
escaped is not the multiple nature of what is left behind, but the general tidal 
potential of the galaxy. More specifically, it is, by more than an order of mag
nitude, the tidal potential perpendicular to the galactic disk, not the central 
radial tidal potential. The maximum size of the Oort cloud or a stable multiple 
system is just over one light-year, and the associated periods would be a few 
tens of millions of years. Thus, any trapezium system would have to dissolve in 
such periods, a result in complete agreement with the observational result from 
a detailed analysis of the few systems discussed by Abt. 

While largely an area of interest to the mathematicians of celestial mechan
ics, the results of the n-body problem can be applied to our understanding of 
multiple stars. The meeting in Oaxtepec in 1975 (Franz & Pismis 1977) revealed 
this in a major way, and several groups are now active in this area. We can look 
forward to many useful and interesting results. 
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3 . D I S C U S S I O N 

A R M S T R O N G : Why don't trapezium systems evolve to hierarchical sys
tems? I can understand the reverse. 

H A R R I N G T O N : Because of the dynamical reversibility of triple systems, 
the result of constant semi-major axis extends infinitely back into the past as 
well as forward into the future. 
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