Fourth Meeting, February 14th, 1896.

Dr Peddie, President, in the Chair.

Note on a Certain Harmonical Progression.
 Note on Continued Fractions.
 On Methods of Election.

By Professor Steggall.

A Simple Method of Finding any Number of Square Numbers whose Sum is a Square.

By Artemas Martin, LL.D.
I.--Take the well-known identity

$$
\begin{equation*}
(w+z)^{2}=w^{2}+2 w z+z^{2}=(w-z)^{2}+4 w z \tag{1}
\end{equation*}
$$

Now if we can transform $4 w z$ into a square we shall have two square numbers whose sum is a square. This will be effected by taking $w=p^{2}, z=q^{2}$, for then $4 w z=4 p^{2} q^{2}=(2 p q)^{2}$ and we have

$$
\begin{equation*}
\left(p^{2}+q^{2}\right)^{2}=\left(p^{2}-q^{2}\right)^{2}+(2 p q)^{2} \tag{2}
\end{equation*}
$$

See Mathematical Magazine, Vol. II., No. 5, p. 69.
In (2) the values of p and q may be chosen at pleasure, but to have numbers that are prime to each other p and q must also be prime to each other and one odd and the other even.

Examples.-1. Take $p=2, q=1$; then we find

$$
3^{2}+4^{2}=5^{2} .
$$

2. Take $p=3, q=2$; then we shall have

$$
5^{2}+12^{2}=13^{2}
$$

3. Take $p=4, q=1$; then we get

$$
8^{2}+15^{2}=17^{2}
$$

And so on, ad lib.
II.-We can obtain from (1) any number of squares whose sum is a square by simply substituting for w the sum of two, of three, of four, etc., other quantities.

In (1) put $x+y$ for w and we have

$$
\begin{aligned}
(x+y+z)^{2} & =(x+y-z)^{2}+4(x+y) z, \\
& =(x+y-z)^{2}+4 x z+4 y z \\
& =(x+z-y)^{2}+4 x y+4 y z, \\
& =(y+z-x)^{2}+4 x y+4 x z .
\end{aligned}
$$

Assume $x=p^{2}, y=q^{2}, z=r^{2}$, and we have

$$
\begin{align*}
\left(p^{2}+q^{2}+r^{2}\right)^{2} & =\left(p^{2}+q^{2}-r^{2}\right)^{2}+(2 p r)^{2}+(2 q r)^{2}, \\
& =\left(p^{2}+r^{2}-q^{2}\right)^{2}+(2 p q)^{2}+(2 q r)^{2}, \\
& =\left(q^{2}+r^{2}-p^{2}\right)^{2}+(2 p r)^{2}+(2 p q)^{2} . \tag{3}
\end{align*}
$$

three sets of three squares, the sum of each of which is $\left(p^{2}+q^{2}+r^{2}\right)^{2}$, where p, q, r may have any integer values.

See Mathematical Magazine, Vol. II., No. 5, p. 72.

Examples.-1. Take $p=4, q=2, r=1$; then we have

$$
21^{2}=19^{2}+8^{2}+4^{2}=16^{2}+13+4^{2}=16^{2}+11^{2}+8^{2} .
$$

2. Take $p=5, q=3, r=1$, and we get

$$
35^{2}=33^{2}+10^{2}+6^{2}=30^{2}+17^{2}+6^{2}=30^{2}+15^{2}+10^{2} .
$$

3. Take $p=5, q=4, r=2$, and we find

$$
45^{2}=37^{2}+20^{2}+16^{2}=41^{2}+16^{2}+13^{2}=40^{2}+20^{2}+5^{2} .
$$

And so on, ad lib.

IIT.-In (1) put $v+x+y$ for w, and we have

$$
\begin{aligned}
(v+x+y+z)^{2} & =(v+x+y-z)^{2}+4(v+x+y) z, \\
& =(v+x+y-z)^{2}+4 z v+4 z x+4 z y, \\
& =(v+x+z-y)^{2}+4 y z+4 y x+4 y v, \\
& =(v+y+z-x)^{2}+4 x z+4 x y+4 x v, \\
& =(x+y+z-v)^{2}+4 v x+4 v y+4 v z .
\end{aligned}
$$

Now take $v=p^{2}, x=q^{2}, y=r^{2}, z=s^{2}$, and we have

$$
\begin{align*}
\left(p^{2}+q^{2}+r^{2}+s^{2}\right)^{2} & =\left(p^{2}+q^{2}+r^{2}-s^{2}\right)^{2}+(2 p s)^{2}+(2 q s)^{2}+(2 r s)^{2}, \\
& =\left(p^{2}+q^{2}+s^{2}-r^{2}\right)^{2}+(2 p r)^{2}+(2 q r)^{2}+(2 r s)^{2}, \\
& =\left(p^{2}+r^{2}+s^{2}-q^{2}\right)^{2}+(2 p q)^{2}+(2 q r)^{2}+(2 q s)^{2}, \\
& =\left(q^{2}+r^{2}+s^{2}-p^{2}\right)^{2}+(2 p q)^{2}+(2 p r)^{2}+(2 p s)^{2} . \tag{4}
\end{align*}
$$

four sets of four square numbers, the sum of each set being $\left(p^{2}+q^{2}+r^{2}+s^{2}\right)^{2}$, where p, q, r, s may have any integer values.

Examples.-1. Take $p=\overline{5}, q=3, r=2, s=1$, and we find

$$
\begin{aligned}
39^{2} & =37^{2}+10^{2}+6^{2}+4^{2}=31^{2}+20^{2}+12^{2}+4^{2} \\
& =30^{2}+21^{2}+12^{2}+6^{2}=30^{2}+20^{2}+11^{2}+10^{2}
\end{aligned}
$$

2. Take $p=5, q=4, r=3, s=1$; then we shall have

$$
\begin{aligned}
51^{2} & =49^{2}+10^{2}-8^{2}+6^{2}=33^{2}+30^{2}+24^{2}+6^{2} \\
& =40^{2}+24^{2}+19^{2}+8^{2}=40^{2}+30^{2}+10^{2}+1^{2}
\end{aligned}
$$

3. Take $p=7, q=\overline{5}, r=2, s=1$, and we will get

$$
\begin{aligned}
79^{2} & =77^{2}+14^{2}+10^{2}+4^{2}=71^{2}+28^{2}+20^{2}+4^{2} \\
& =70^{2}+29^{2}+20^{2}+10^{2}=70^{2}+28^{2}+19^{2}+14^{2}
\end{aligned}
$$

And so on, ad lib.
IV.--In the same way we might find formulas for five squares whose sum is a square, six squares whose sum is a square, and so on ; but from what has been done above it is obvious that we may write at once

$$
\begin{align*}
\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\ldots\right. & \left.+a_{n}^{2}\right)^{2}=\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\ldots+a_{n-1}^{2}-a_{n}^{2}\right)^{2}+\left(2 a_{1} a_{n}\right)^{2} \\
& +\left(2 a_{2} a_{n}\right)^{2}+\left(2 a_{i} a_{n}\right)^{2}+\ldots \ldots+\left(2 a_{n-1} a_{n}\right)^{2}- \tag{5}
\end{align*}
$$

one set of n square numbers whose sum is a square; and we can obtain by cyclic permutation $(n-1)$ other sets, the sum of each of which is equal to $\left(a_{1}^{2}+a_{1}^{2}+a_{3}^{2}+\ldots \ldots+a_{n}^{2}\right)^{2}$, where $a_{1}, a_{2}, a_{3} \ldots \ldots a_{n}$ may have any integer values chosen at pleasure.

