QUASI-UNIFORM SPACES AND TOPOLOGICAL HOMEOMORPHISM GROUPS⁽¹⁾

BY

MASSOOD SEYEDIN

Let X be a topological space and G a subgroup of the homeomorphism group H(X) with the topology of point-wise convergence. It is well-known that if X is uniformizable and G is equicontinuous with respect to a compatible uniformity then G is a topological group. In this paper we show that essentially this same result applies when X is only an R_0 -space (and hence in particular if X is T_1 or regular). A corresponding result for regular spaces has been proved [2].

A quasi-uniformity on a set X is a filter \mathcal{U} on $X \times X$ such that

(i) $\Delta \subset U$ for each $U \in \mathscr{U}$

(ii) For each $U \in \mathscr{U}$ there is $V \in \mathscr{U}$ such that $V \circ V \subset U$.

A topological space X is R_0 (also called *essentially* T_1) provided that for $x, y \in X$ either $\{\bar{x}\} = \{\bar{y}\}$ or $\{\bar{x}\} \cap \{\bar{y}\} = \phi$ [1]. A quasi-uniformity \mathscr{U} on a set X is *locally* symmetric provided that for each $x \in X$ and each $U \in \mathscr{U}$ there is a symmetric entourage $V \in \mathscr{U}$ such that $V(x) \subset U(x)$ [3]. It is known that a topological space is R_0 if it is either regular or T_1 and that a topological space admits a compatible locally symmetric quasi-uniformity if and only if it is an R_0 space [3, Theorem 3.6].

DEFINITION. Let F be a collection of maps from a topological space X to a quasi-uniform space (Y, \mathscr{V}) . The quasi-uniformity of point-wise convergence, \mathscr{V} , on F has a subbase all sets of the form $W(x, V) = \{(f, g) \in F \times F : (f(x), g(x)) \in V\}$ where $x \in X$ and $V \in \mathscr{V}$. The collection F is quasi-equicontinuous if for every $x \in X$ and $V \in \mathscr{V}$ there is a neighborhood N of x so that for each $f \in F$, $f(N) \subset V(f(x))$.

THEOREM 1. Let (X, τ) be an R_0 topological space, let μ be a compatible locally symmetric quasi-uniformity on X and let G be a quasi-equicontinuous group of homeomorphisms of X onto X. Let $\Psi: G \rightarrow G$ be defined by $\Psi(g) = g^{-1}$. Then $\Psi: G \rightarrow G$ is a continuous function with respect to the topology of point-wise convergence.

Proof. For each $x \in X$ let P_x be the xth projection map and define $\phi_x: G^-X$ by $\phi_x(g) = g^{-1}(x)$. It is clear that for each $x \in X$, $\phi_x = P_x \circ \Psi$. Thus in order to show that Ψ is continuous it suffices to show that for each $x \in X$, ϕ_x is continuous. Let $f \in G$,

⁽¹⁾ This paper is based upon the author's dissertation at Virginia Polytechnic Institute and State University, Blacksburg, Virginia, under the direction of P. Fletcher. The author wishes to thank the referee for his valuable suggestions.

M. SEYEDIN

let $x \in X$ and let $V \in \mathcal{U}$. There is a symmetric $U \in \mathcal{U}$ such that $U(f^{-1}(x)) \subseteq V(f^{-1}(x))$. Since G is a quasi-equicontinuous collection, there exists $A \in \mathcal{U}$ such that for $g \in G$ $g(A(x)) \subseteq U(g(x))$. Thus for $g \in G$, $(g^{-1}(y), g^{-1}(x)) \in U$ whenever $(x, y) \in A$. Suppose that $g \in W(f^{-1}(x), A)(f)$. Then $(f(f^{-1}(x), g(f^{-1}(x)) \in A \text{ so that } (g^{-1}(x), f^{-1}(x)) \in U$. Since U is symmetric $g^{-1}(x) \in U(f^{-1}(x)) \subseteq V(f^{-1}(x))$. Hence ϕ_x is continuous.

THEOREM 2. Let (X, τ) be a topological space, let μ be a compatible quasiuniformity on X, and let G be a group of homeomorphisms of X onto X which is quasi-equicontinuous with respect to \mathcal{U} . Then G is a topological semigroup under the topology of point-wise convergence.

Proof. Throughout the proof, if $p \in X$ and $U \in \tau$, then S(p, U) denotes $\{g \in G: g(p) \in U\}$. Let $g_1, g_2 \in G$ and let $x \in X$ and $B \in \tau$ such that S(x, B) is a neighborhood of $g_1 \circ g_2$. Then $g_1 \circ g_2(x) \in B$. Let $y=g_1 \circ g_2(x)$ and let $U \in \mathcal{U}$ such that $U(y) \subset B$. Then S(x, U(y)) is a neighborhood of $g_1 \circ g_2$ which is contained in S(x, B). Let $V \in \mathcal{U}$ such that $V \circ V \subset U$. Since G is quasi-equicontinuous with respect to \mathcal{U} , there exists $Z \in \mathcal{U}$ such that for each $g \in G$, $g(Z(g_2(x))) \subset V(g(g_2(x)))$. If $g \in G$ and $z \in Z(g_2(x))$, then $(g(g_2(x)), g(z)) \in V$. Let $C=S(g_2(x), V(y))$ and let $D=S(x, Z(g_2(x)))$. Then C and D are neighborhoods of g_1 and g_2 respectively. Let $g \in C$ and let $h \in D$. Then $(y, g(g_2(x))) \in V$ and $(g_2(x), h(x)) \in Z$. Since $(g_2(x), h(x)) \in Z$, $(g(g_2(x)), g(h(x))) \in V$. Since $(y, g(g_2(x)))$ and $(g(g_2(x)), g(h(x))) \in V$. It follows that $g \circ h(x) \in U(y) \subset B$.

THEOREM 3. Let (X, τ) be an R_0 space, let μ be a compatible locally symmetric quasi-uniformity and let G be a group of homeomorphisms of X onto X such that G is quasi-equicontinuous with respect to \mathcal{U} . Then G is a topological group under the topology of point-wise convergence.

In the case that (X, τ) is a regular space (and hence R_0), Theorem 3 may be obtained as a consequence of [2, Theorem 6].

References

1. A. S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math Monthly, 68 (1961), 886–893.

2. R. V. Fuller, Semiuniform spaces and topological homeomorphism groups, Proc. Amer. Math. Soc., 26 (1970), 365-368.

3. M. G. Murdeshwar and S. A. Naimpally, *Quasi-uniform topological spaces*, Noordhoff (1966).

THE NATIONAL UNIVERSITY OF IRAN, EVEEN, TEHRAN, IRAN