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Abstract. Positive tilt maps of the annulus are studied, and a correspondence is
developed between the rotation set of the map and certain of its Morse decomposi-
tions. The main tool used is a characterization of fixed point free lifts of positive
tilt maps. As an application, some alternative hypotheses under which the con-
clusions of the Aubry-Mather theorem hold are given, and it is also shown that the
rotation band of a chain transitive set is always in the rotation set of the map.

0. Introduction
A fundamental idea in Conley's work is the decomposition of a dynamical system
into its chain recurrent and gradient-like parts. The study of the system is thereby
split into two pieces based on the asymptotic behaviour of orbits. In maps of the
annulus, one aspect of this asymptotic behaviour is measured using the rotation
number (or, more generally, the rotation set) of an orbit. It is natural to ask about
the relationship of these two notions. For example, what does the set of rotation
numbers of a map tell one about its dynamics or, more specifically, about its chain
recurrent/gradient-like decomposition? A related question is: given a number in
the rotation set of a map, is there always a nice recurrent set (for example, a minimal
set) with that rotation number? Looking at things from the other direction, what
type of information about the rotation set of a map can one derive from dynamical
hypothesis on the map, for example, from the existence of certain types of invariant
sets?

If the map of the annulus happens to be an area-preserving monotone twist map
(and thus all chain recurrent), the Aubry-Mather theorem provides very clear
answers to certain of these questions. In this case the set of rotation numbers is
precisely that expected (i.e. all the numbers between the rotation numbers of the
map restricted to the boundary circles), and for each number in this set the map
has a well understood minimal set with that rotation number. If, on the other hand,
the map is only assumed to be a homeomorphism, Franks [19] provides an answer
to certain of these questions, but the general situation is still unclear. Franks shows
that for each rational in the rotation set the map has a periodic orbit with that
rotation number (this result was also obtained by Handel [22]). In addition, the
existence of certain chain transitive sets and certain types of orbits implies the
existence of a collection of periodic orbits whose rotation numbers are dense in an
interval.
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34 P. L. Boyland

In this paper we focus on a case that lies between these two extremes, closer to
the former but using techniques closer to those of the latter. We study positive tilt
maps of the annulus (a generalization of monotone twist studied in [21], [24] and
[29]), but without any assumption of preserving area. In this case the set of rotation
numbers of the map /, denoted p{f), is closed and there is a nice correspondence
between p(f) and Conley's decomposition. Very roughly, the connected components
of p(f) correspond to the chain recurrent part and the open intervals (or 'gaps') in
the complement correspond to pieces of the gradient-like part.

To give a somewhat more precise description of our results, let us assume that
p(/) has finitely many components and thus there are a finite number of complemen-
tary gaps. To each component c of p(f) there corresponds an invariant set A(c)
defined as the set of points whose forward and backward rotation sets lie in c.
To each gap / there corresponds a homotopically non-trivial circle F(/) with
/(F(/)) n F( J) = 0 . Moreover, this correspondence is monotone in the sense that if
c lies between two gaps J, and J2, then A(c) is in the annulus bounded by F(/,)
and r(J2). The existence of the F(J) allows one to think of the positive tilt map as
being built up by gluing together finitely many twist maps, each with a connected
rotation set. In addition, since for each F(J), /(F(/)) n F(J) = 0 , under iteration
each F(/) must go above or below itself, and this creates an annular gap across
which orbits can only transit in one direction. This allows us to assign an orientation
to the gaps of p(f) which, in turn, induces a partial order on the components of
p(f) and thus on the collection of the A(c). This collection with the induced order
is a Morse decomposition.

We note that Le Calvez [27] and Casdagli [13] have studied dissipative twist
maps and there is some overlap between their techniques and ours. The common
heritage of many of these ideas is Birkhoff ([6], [8], cf. [14]). Bernstein [5] studies
twist maps with the graph intersection property. We also note that Chenciner in his
ongoing study of degenerate Hopf bifurcations has employed many of these same
ideas (see [33] for an exposition) and that twist maps such as we study sometimes
occur as the time T map of periodically forced oscillations (for example, see [25]).

We now outline the paper. In § 1 we state some results of Franks from [19]. A
main ingredient in Franks' paper is an implication he draws from Brouwer's
characterization of fixed point free orientation-preserving homeomorphisms of the
plane, namely, that such maps cannot have chain recurrent points. If/ is a homeo-
morphism of the annulus with the appropriate properties, by applying this result,
he obtains fixed points of various lifts of powers of/ and thus periodic orbits with
various rotation numbers for /

We adopt this point of view in § 2 where we characterize fixed point free lifts of
positive tilt maps. Just as above, this allows us, under the appropriate hypothesis
on/, to prove the existence of periodic orbits with various rotation numbers. Because
we are working with positive tilt maps, a result of Hall ([20], [21]) allows us to then
infer the existence of periodic orbits which are nicely ordered around the annulus
under iteration. Then, by taking Hausdorff limits as in Katok ([26], cf. [18] and
[3]), one obtains nice minimal sets with irrational rotation numbers.
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In addition to being useful in proving the existence of periodic orbits, the
characterization of fixed point free lifts of positive tilt maps is also useful in that
it shows that such a map always has an attractor-repeller pair (in the sense of
Conley) which is closely related to the asymptotic behaviour of orbits as measured
by the rotation number. This is the main tool used to develop the correspondence
of p(/) to Morse decompositions which is given in § 3.

Section 4 contains some applications of the previous results. The first is a number
of alternative hypotheses under which the conclusions of the Aubry- Mather theorem
hold. The second application involves the notion of the rotation band of an invariant
set that was studied in two previous papers ([12], [11]). There we showed that an
area-preserving monotone twist map never has invariant circles whose rotation
numbers lie in the interior of the rotation band of an invariant set with a dense
orbit. Here we show that for a (not necessarily area-preserving) positive tilt map,
for each number in the rotation band of a chain transitive set, one always has an
Aubry-Mather minimal set with that rotation number. Thus, for example, the
existence of a 'badly ordered' periodic orbit in a twist map implies the existence of
an interval of rotation numbers for the map (as well as positive entropy; see [10]).
This last result was one of the main motivations for this paper. If one could show
that the badly ordered periodic orbits in the standard circle map family continue
up a dimension into orbits for the dissipative standard family in the annulus, then
this result could be utilized to construct the bifurcation diagram of the annulus
family using the diagram of the circle family given in [9].

1. Some results of Franks
We begin with some basic definitions. Let S1 = R/Z, A = S1 x [0,1], A = R x [0,1],
T:A->A be the deck transformation T(z) = z + (l,0), and TT,:A->R and TT2:A"->

[0,1] be the projections onto the first and second components respectively. The
inner and outer boundaries of A are d, = S1 x {0} and d2 = S1 x {1}. We will use the
same notation for the lower and upper boundaries of A and so 3, = R x {0} and
32 = Rx{l}. Given a set Z s A, we let Z denote its lift to A and conversely, if Z c A,
its projection to A is denoted Z.

If/: A -* A is a homeomorphism isotopic to the identity and z e A, then the rotation
set of z, p(z,f) is the closed interval

, A fr • f"•(*•"(*)-Ti(*)) ,. 7r,(F"(z-)-7T,(z-))1p(z,f)= hminf , hmsup ,
L n-»oo W n-*oc M J

where F: A -> A is the lift of / satisfying F(0,0)£[0,1)x {0}. The backwards rotation
set ofz is defined as p*(z,f) = -p(z,f~}). Given an invariant set Z s A, the rotation
set of Z is p(Z) = \J{p(z,f): zeZ} and the rotation set off is p{f) = p{A). If
G:A-*A is a homeomorphism satisfying G(z + (l,0)) = G(z) + (l,0), we define
p(z, G) using the liminf and limsup as above.

Given a set X in a topological space M, the notations Cl (X), Int (X), Fr (X)
and X' denote the closure, interior, frontier and complement of X respectively. If
/ : M-» M is a homeomorphism, then the a- and w-limit sets of X under/ are the
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largest invariant sets of/contained in Cl flj" o-T 'W) and Cl (\J7-of(X)) respec-
tively and are denoted a{X,f) and a>(X,f) (we will often omit the dependence on
/ ) . The a- and w-limit sets are always closed in M. Finally, if X c R , then (X)
denotes the convex hull of X in R, and if p, qeR, q-X-p = {qx-p: xeX}.

Our first lemma gives some elementary properties of these notions. The proof of
(a) is similar to several in [2], while that of (b) follows the proof of corollary 2.5
in [19] rather closely.

LEMMA 1.1. Letf: A-*A be a homeomorphism isotopic to the identity.
(a) IfF is a lift off and zeA, then p(z, T~"Fq) = q • p(z, F) -p.
(b) For all xeA, p(x) <= <p(w(x))>.

Proof. Since it is obvious that p(z, T~PF) = p(z, F)-p, we only show p(z,Fq) =
qp{z, F). Let {nj be a sequence with

and choose r{ with 0 < r( < q and nt = qmt + r, for some m, € N. Using the compactness
of A and the continuity of/, there is a constant K so that \vi(Fr>(y)) - TTX{y)\ < K
for all ye A and all r,. This implies that

and so
n, m,q

hminf > - ( liminf
n-»oo M ^ \ n-.oo M

The reverse inequality is obvious and so q • inf (p(z)) = inf (p{z, Fq)). The proof for
the supremum is similar, which proves (a).

Assume (b) is false, and so inf(p(x))<inf(p(w(x))) or sup(p(x))>
sup (p(io(x))). We assume the former; the proof assuming the latter is similar. Pick
a p/q with inf (p(x))<p/q<inf (p(w(x))) and let G=T~pFq. Using (a) and the
fact that w(x,f) £ <o(x,f), we have inf p(x, G) < 0 < inf p(w(x, g), G). Since (o(x, g)
is compact, we may find an N with vx(G

N(z))-vl(z)>2 for all ze w(x, g). Since
g'(x) converges to the compact set a)(x, g), for n sufficiently large,
7r,(G/v(G'tN+'1(x))) - TT1(G'CN+"(X)) > 1 for all k e N. Using this inequality for it = 0,
l,...,k and adding, we get

ir}(G
kN(G"(x)))- n,(

and so p(g"(x),GN)s[l ,oo) and so p(x, G) = p(g"(x), GN)/N^ [1/N,»), a
contradiction. •

The following example shows that the convex hull is needed in (b) of this lemma,
i.e. p(x)cp(co(x)) is false in general. We give an example in the two shift. It can
be transferred to the annulus via a semiconjugacy as in [25]. The asymptotic average
of the number of ones in a sequence gives the rotation number of the corresponding
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point in the annulus. Let s be a sequence consisting of alternating blocks of all ones
or all zeros with the blocks increasing in length. By adjusting the length of the
blocks, we can make the rotation number of the sequence equal to any number in
[0,1]. However, a>(x) is precisely sequences of the following four types: infinitely
many zeros followed by infinitely many ones, infinitely many ones followed by
infinitely many zeros, all ones, or all zeros. Thus p(a)(s)) = {0,1}.

Our next theorem is a consequence of results of Franks [19]. Given our definition
of p(f), it is not clear that r e p(/) implies the existence of a point z whose rotation
number equals r in the 'traditional sense', i.e. p(z) = r and not just re p(z). Franks
shows that this actually is the case if/ is a homeomorphism and r = p/q, a rational.
In fact, one may choose z to be a periodic orbit with least period q. (Note: here and
throughout this paper, if we write p/q we are assuming (p, q) = 1.) Such an orbit
is called a p/q-periodic orbit and is clearly the simplest type of orbit with rotation
number p/q. The analogous result for the case when r is irrational is known when
/ is positive tilt (see theorem 2.2) and appears to be unknown when / is a homeo-
morphism.

The second part of theorem 1.2 concerns the rotation sets of chain transitive sets.
The finite sequence x = x0, x , , . . . , xn = y is called an e- chain from x to y if for all
1, d(f(Xj), x,+1) < e. A point x is chain recurrent if for all e > 0 there exists an e-chain
from x to x. A set Z is chain transitive if for all e > 0 and all x, y, eZ there exists
an e-chain from x to y. The a- and w-limit sets of a point are examples of chain
transitive sets. Theorem 1.2(b) says that each rational p/q in the convex hull of
p{Z) is in the rotation set and so / has a p/g-periodic orbit by 1.2(a). Note that
even though Z is chain transitive, p(z) could be properly contained in (p(z)) and
so, in particular, the p/q-periodic orbit may not be in Z. A generalization of this
result to positive tilt maps is given in theorem 4.1(b).

THEOREM 1.2 (Franks). Letf.A-* A be a homeomorphism isotopic to the identity.
(a) For all p/qe p(f), f has a p/q-periodic orbit.
(b) If Z is a compact chain transitive set, then (p (Z))nQc p(f).

2. Fixed point free lifts of positive tilt maps
For the balance of the paper we will be focusing on positive tilt maps of the annulus,
which we define shortly. The image of a smooth embedding y :[0,1]-* A is called
a boundary-connecting arc if -y(0)e<9,, y(l)ea2 and -y(0, l ) c Int (A). Since y is
smooth, we may define a continuous 6(t) which measures the angle between y'(t)
and the vertical and satisfies -TT-< 0(0) < IT. If 0<O, then y is called a positively
tilted boundary-connecting arc (see figure 1). An arc of the form rx[0,1] for some
r e R is called a vertical arc. Given a z e A, the vertical arc containing z will be
denoted Iz. We let I* = {pe Iz: ir2(p)> TT-2(Z)} and 7J = {pe Jr: v2{p)<ir2(z)}. If 7
is a vertical arc and J a boundary-connecting arc with J n J ^ 0 , we let top (I nJ)
and b o t ( / n J ) denote the highest and lowest points on InJ respectively (see
figure I).

If F-.A^A is a diffeomorphism that satisfies F(z + (1,0)) = F(z) + (1,0), and if
for all z € A, F(IZ) is a positively tilted arc, we call F a positive tilt map. If/: A-» A
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FIGURE 1

is the projection of a positive tilt map F, then / is also termed a positive tilt map.
The set of all such / with the C1 -topology will be denoted PT. Note that PT is an
open subset of Dirt, (A). If a positive tilt map F has the property that for all x,
zeA, F(Iz)nIx contains at most one point, then F is called monotone twist. Note
that if F is monotone twist, Fq may not be monotone twist, but it will be positive
tilt because PT is closed under iteration. One last definition: a point z which satisfies
F(z)e 72 is called an up point if TT2(F(Z))> -rr2(z) and a down point if tr2(F(z))<

The next lemma gives some elementary properties of positive tilt maps that
essentially go back to Birkhoff ([6], [7] and [8]). For an exposition of Birkhoff's
work see [24, Ch. 1].

LEMMA 2.1. (a) If y: [0, l]-»/4 is a positively tilted boundary-connecting arc, then
ir,(0 < fiCyCl)) for all te (0,1). In addition, if I is any vertical arc with
and r,=min{r: y(t)el} while t2 = max{t: y(t)e I}, then t op (yn / ) =

y(tx) and bot(yn I) = y(t2).
(b) Let F:A-*A be a positive tilt map.

(i) / / / is a vertical arc with 7 n F ( 7 ) * 0 , then F (bot (F~\l)nl)) =
top (/ n F(I)) and F (top (F"*(/) n /)) = bot (/ n F(/)).
(ii) If z is a down point for F and I is a vertical arc containing z, then
top (F~1(I)n I) is also a down point. If z is an up point, then so is bot

Proof. For (a) see [24, p. 21].
The fact in (b)(i) follows from (a). To prove (b)(ii), note that since z is a down

point, then z € F'\l) n / and F(z) e I n F(I) and so

7r2(top (F"'(/) n /)) > TT2{Z) > TT2(F(Z)) > 7r2(bot (F(7) n 7))

= 7r2(F(top (F-*(7) n 7))) using (b)(i). •

If we let twist (/) = [p(d,), p(d2)], then the first sentence of (a) above implies that
p(f) c twist (/) when / e PT. The next theorem answers the question raised after
lemma 1.1 for positive t i l t / For any rep(f) there always exists a 'nice' minimal
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set Z with p(Z) = r. If r = p/q, then the minimal set is a p/g-periodic orbit as in
theorem 1.2, and if r is irrational, Z is now an invariant circle or a Denjoy minimal
set. In addition, these minimal sets are 'nicely ordered' around the annulus under
iteration.

These results in the context of area-preserving monotone twist maps were first
obtained by Aubry and Mather. Katok [26] (see also [18]) gives an alternative proof
of the Aubry-Mather theorem using the technique of taking Hausdorif limits of
periodic orbits to obtain 'quasi-periodic' orbits (circles or Denjoy minimal sets).
From our point of view, the advantage of this approach is that it only depends on
the monotone twist (or positive tilt) hypothesis and not on the fact that / is
area-preserving.

We now define the notion of a 'nicely ordered' invariant set for a positive tilt
map. In this we are following Hall [21], who generalizes these notions from their
application to monotone twist maps. Our presentation follows that of Katok [26].

An /-invariant set Z c A is called monotone if
(1) 77, restricted to Z is injective;
(2) F acting on Z is order-preserving in the sense that if z,, z2eZ and ^(z , ) <

ir2(z2), then wI(F(zI))<ir1(F(z2)).
If, in addition,
(3) for each z,, z2eZ, any intersection of /F(ZI) and F(I*2) can be removed by

isotopy rel F(zi), F(z2), d, and d2, then Z is called link-monotone for /
For a monotone twist map (1) and (2) imply (3), but if F is positive tilt, z, and

z2 could wrap all the way around each other under F and still satisfy (2) as in figure
2. This means that we must require (1), (2) and (3) for a positive tilt map in order
to insure that the collection of such sets will be closed under Hausdorff limits.

An invariant set that is both link-monotone and minimal will be called an
Aubry-Mather set. If Z is monotone, then the action of/ on Z can be extended to
a circle homeomorphism. This implies that if Z is monotone, p(Z) = p*(Z) and is
a single number. It also implies that if Z is Aubry-Mather, then p(Z) = p/q implies

FIGURE 2

https://doi.org/10.1017/S0143385700009329 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009329


40 P. L. Boyland

that Z is a p/ q-periodic orbit (sometimes called a Birkhoff periodic orbit), and if
p(Z)g Q, then Z is a circle or a Denjoy minimal set. If Z is link-monotone, then
Cl (Z) is also, so whenever/has a link-monotone set with a given rotation number,
it also has an Aubry-Mather one. We shall also need the following property of
link-monotone sets whose proof is similar to that given in [26] for the monotone
twist case. If F is positive tilt, then there exists a Lipschitz constant c so that for
any link-monotone set Z for/, we may find a Lipschitz 4>: R-» [0,1] with Lipschitz
constant c so that Z c graph (<f>).

If fePT, define pmon(/) = {p(Z): Z is link-monotone for/). The next theorem
states that this comprises all of p(/), i.e. any rep(f) is represented by an Aubry-
Mather set with rotation number r. Note that this result is basically just a combination
of results from [19], [21] and [26], and the basic ideas have been utilized in [27],
[13] and elsewhere.

THEOREM 2.2. IffePT, then p(f) = pmon(f) and is a closed set. In particular, if
p/qep(f), then f has a Birkhoff p / q-periodic orbit and for each irrational a ep(f),
fhas an Aubry-Mather Denjoy minimal set or an invariant circle with rotation number
a.

Proof. The proof rests on two observations. The first is that {(/ pmon(f)):fe PT} is
closed in PTxR. In [26] Katok shows that for fixed/e PT, pmon(f) is closed. Our
proof of the first observation follows his closely. We indicate the minor alterations
needed when one allows the function to vary.

Let fk -»/0 in PT and suppose rk e pmon(fk) and rk-* r0. For each k choose 2fc a
link-monotone set for fk with p(Zk) = rk. As noted above, for each k we may find
a ck > 0 which is a Lipschitz constant for link-monotone sets of fk. By virtue of the
C1-convergence fk -*f0, the ck may be chosen so that lim sup {ck} will be finite and
any c0 larger than it will be a Lipschitz constant for link-monotone sets for/0. This
insures that any So which is a limit point of {£*} in the Hausdorff topology is a
link-monotone set for/0 with p(10) = r0. Such a 20 must exist because the set of
closed subsets of A with the Hausdorff topology is compact.

The second observation is that for fe PT, p/qe p(f) implies that p/qe pmon(f).
This is a straightforward consequence of Franks' theorem (theorem 1.2), which
shows that p/qep(f) implies that / has a p/q-periodic orbit, and a theorem of
Hall [21] which says that any time a positive tilt map has a pi q-periodic orbit it
has a link-monotone pi q-periodic orbit.

Now by the first observation, pmon(f) is a closed set. In the light of the second
observation, to show that pmon(f) — p(f), we need only show that if aep(f) and
a £ Cl (p(/) n Q), then a e pmon{f). To prove this, choose an x e A with a e p(x,f).
Now by lemma l.l(b) we have a e p(x) c (p(w(x))). Since <o(x) is chain transitive,
Franks' theorem and our assumptions on a imply that p((o(x)) = a. To show then
that a e pmon(/), we use the C-closing lemma to perturb / to fk, where fk has a
Pfc/q^-periodic orbit with pk/qk -* a. We then use our two observations to conclude
that a epmon(/). We postpone the details till after theorem 4.1, as we need a result
proved there independently of this result. D
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We remark that since for an Aubry-Mather set X, p(1) = p*(1) and is a single
number, theorem 2.2 implies that p(/) = p*(f). The next theorem gives our charac-
terization of fixed point free positive tilt maps. Before stating it, we give an example
that will help clarify its contents. We shall need the example later, so we state it in
a somewhat more general form than is necessary now.

Example2.1. DefineS, T:[a, fo]xR->[a, b] xR via S(x,y) = (x + y,y) and T(x,y) =
(r,<f>(y)), where <f>:[a, b]^[a, b] is a diffeomorphism with <fr(a) = a and <f>(b) = b.
If G = 5° T, then G is a monotone twist map.

Now let [a, b] = [-l, 1] and choose <j>x and <f>2 as above but with </>,(*) > x and
4>2(x) <x for x 6 (a, b), and for i = 1, 2 let T,(JC, y) = (x, <£,();)) and G, = S° 7;. Both
G, and G2 will be fixed point free monotone twist maps whose orbits will move
along the lines shown in figures 3(a) and (b) respectively. Note that this is essentially
the same example given in [19] as a fixed point free homeomorphism of A

(b)

FIGURE 3

In a certain sense Gx and G2 are the only examples of fixed point free positive
tilt maps. More precisely, the features they share with any other fixed point free
positive tilt map are as follows. (1) There are three categories of orbits: those that
always move left, those that always move right and those that change direction.
Moreover, those that change direction only do so once and all these orbits do so
in the same way (left to right or right to left). (2) The orbits that always go left or
always go right are the limit sets of those that change direction. (3) There is a
homotopically non-trivial curve that 'separates' orbits going left from those going
right. What distinguishes G, from G2 is whether the orbits which change direction
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are going upward or downward. This motivates the following definition. A positive
tilt F is called an up map if it has an up point and a down map if it has a down point.

Our theorem will be stated in terms of sets defined as follows. Given F, define
A = (A,,A2):>4-»R2via A,(£) = ir,(F(z))-i7j(z) for i = l or 2. Let

L(F) = {f:A,(f)<0}, V(F) = {£: A,(£) =

and V°(F) = {z: o(£)sL(F)},

where o(£) = {..., F~'(£), f, F(£),...} is the orbit of £ under F. We will often delete
the dependence of these sets on F. We use the same notation for the projection of
these sets into A

For our examples Gt and G2 above, J?°° = d2, L°° = d, and V is the horizontal line
y = 4>Jl(Q). The difference between these simple examples and a more general fixed
point free positive tilt map lies primarily in the complication of the dynamics with
L°° and R°°.

We shall also need some notions from Conley ([16] and [17]). Conley worked
with flows; we adapt the notions to homeomorphisms and leave the adaptation of
any required proofs to the reader. If/:M-> M is a homeomorphism, then X s M
is an attractor (or attracting set) if for some neighbourhood N of X, X = <o(N).
Note that this definition contains no requirement of indecomposibility or transitivity
in X. The set X is called a repeller if it is an attractor for/"1. If X is an attractor,
one can show that X* = {ze M:<a(z)nX = 0} is a repeller which is called the
complementary repeller to X, and (X,X*) are called an attractor-repeller pair. The
set C(X, X*) is defined to be M -{Xv X*} and consists of the connecting orbits
of the attractor-repeller pair. This name is appropriate since C(X, X*) =
{zeM:a(z)^X* and io(z)cX}. If N is a set with /(Cl (N) ) s Int (N), then
nt-ofiN) is an attractor.

Our last remark before the theorem is a straightforward consequence of well
known plane topology (e.g. the Riemann mapping theorem). If U c A is a connected
open set such that U n d,, = 0 for i = 1, 2, and each simple closed curve F s U that
is null homotopic in A is contractible within U, and U contains a simple closed
curve that is homotopically non-trivial in A, then U is homeomorphic to an open
annulus.

The main part of the theorem (part (b)) is stated for a fixed point free down map.
There is, of course, an analogous result for up maps. We also note that part (a) is
essentially the fixed point theorem used by Hall in [20], [21] and [12].

THEOREM 2.3. Let F: A-> A be a positive tilt map with Oe twist (F).
(a) If F is an up map and a down map, then F has at least two fixed points. If F

is neither an up map nor a down map, then F has a fixed point.
(b) If F is a fixed point free down map, then L°° and R°° are an attractor-repeller

pair for f. In addition, V° and J?°° are each connected and C(R°°, L°°) is homeomorphic
to an open annulus and is homotopically non-trivial in A. Given z e C(R°°, L°°), there
exists akeZ withf(z) e Rfor i<k,fk(z)eLv Vandf(z) e Lfor i> k. In particular,
C(RX, L°°) = {z 6 A: p(z) c (0, p(a2)] and p*(z) <= [p(<9,), 0)}.

https://doi.org/10.1017/S0143385700009329 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009329


Rotation sets in twist maps 43

Proof. We prove the second statement of (a) first. Since 0e twist (F), A^d,) < 0 and
Ai(d2)s0, and since A(A) is connected, it must intersect the >>-axis. However, since
F is neither up nor down, this intersection must be at the origin and any z e A~'(0,0)
is a fixed point.

As noted above the theorem, the first sentence of (a) is essentially the fixed point
theorem used by Hall. We include a sketch of its proof for the sake of complete-
ness. By lemma 2.1(b)(ii), we may find an up point u and a down point d with
d = top(F'\ld)nId) and u = bot (F~'(/U)n/U). Translating these by an integer
if necessary, we may assume that iri(F~l(Id ndi))< irx{u) and 7r,(d)<
Trt{F~1(Iund2)). These choices of u and d along with lemma 2.1 ensure that the
situation depicted in figure 4 is accurate. In particular, the box depicted in figure
4(a) actually has an embedded circle for a boundary and its image looks like figure
4(b). In particular, for z an element of the dotted portion of the boundary, A,(z) < 0,
and for z in the solid portion, A,(z) > 0. Now since A^u) = A,(cf) = 0, A2(w) < 0 and

FIGURE 4
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A2(d)>0, the index of F computed around this box is - 1 , so / has at least two
fixed points.

Now we assume that F is a fixed point free down map. First we show that for
z e C(R°°, L°°) there exists a k e Z as in the theorem. If this were not the case, then
for some z, z e Vu L and F{z) e Vu R. Let / = IFU) and F(z) = (x,, >>,). If z€ V,
then F(z) e I n F(7) and so j>, < 7r2(top (/ n F(I))). If z e L, then z is in the com-
ponent of A-1 that contains positive infinity and so F(z) is in the component of
A - F(I) that contains positive infinity. Now if yx > 7T2(top (/ n F{I))), this would
be impossible so ^ s t o p ( JnF( / ) ) . Similar arguments show that F(x)eV*u R
implies that hot (F~l(I) n I) s, yu Thus by lemma 2.1(b)(i), F has an up point, so
using (a) we have a contradiction.

By what we proved in the previous paragraph, / ( V u t ) c L Since V u L 3 Cl (L)
and L is open, [J7=of'(L) is an attracting set which is easily seen to be equal to
L°°. The equality R°° = {z: o(z) n Cl (L) = 0} makes it clear that Rx is the com-
plementary repeller.

To derive the topological properties of L°°, /?°° and C(If°, R°°),v/e find an open
annulus U with La° = O°°=0f'(U) and Fr(t/) having some nice properties we will
need later for lemma 3.2. Define b: R-» [0,1] via b(x) = 772(bot ( F ^ / J n 7J). Since
V = {_}xeR F~l(Ix) n Ix, it is clear that graph (b) c V (it is its 'lower edge' in the
sense to be defined shortly). Now let U = {(x, y) e A: y < b(x)}; then U is open and
satisfies the properties given above the theorem, which suffice to show that U -d\
is homeomorphic to an open annulus. Now since F has no up points, lemma 2.1
implies that for all (x, y) e V, n2(F(x, y)) < TT2(F(X, b(x))) < b(x) and so /(V) c U.
We claim that this implies that /(Cl (L))c[/ . Since Fr (L) c y, if this were not the
case we could find a p e L with F(p)e Uc. But for any z e Uc, by the definition of
U, JjC [/c and thus I~£ip)^ Uc. But since F(L)nd2 = 0, there must be some
p'zI+

F{P) with p'e Fr (F(L)) = F(Fr (L)) c f ( V ) c [ / , a contradiction.

We have proved the claim, and since U c L,

and so L°° is connected. Since R°° is the complementary repeller to L°°, /?°° =
Plj°=o/^'(t/c) and so /J°° is also connected since Uc is. In addition we have
(R°°)c = (~)T=oJ~'(U), and since this is an ascending union, (J?oo)c-d, is an open
annulus. A similar argument shows that (Laoy-d2 is an open annulus, and since
a, c L°° and d2 <= R°°, (L°°)c n (Z?00)' = C(L°°, /?°°) is also an open annulus. Finally
for z&C{V°, R°°), the existence of a A: with / ' (z)e L for i> fc and f'(z)eR for
i<fc makes it obvious that Rco = {z: p(z)up*(z)c (0, p(d2)]}, L°° =
{z: p(z) up*(z) c [pO,), 0)} and so

C(/?°°, L°°) = {z: p*(z) s [p(a,), 0) and p(z) £ (0, p(d2)]}. D

We now note some implications of this result for the sake of comparison with
some of the implications Franks draws from Brouwer's characterization of fixed
point free plane homeomorphisms in [19]. If an orientation-preserving homeo-
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morphism of the plane has any form of recurrence (e.g. a periodic point or chain
recurrent point), then it cannot be fixed point free. Franks uses this to show that if
there is a point z with Oe p(z), then F has a fixed point. One implication of theorem
2.3 is that if a positive tilt map F has a point x that goes left, right then left (or
right, left then right), then F has a fixed point. This motion of x may be interpreted
as a very weak form of recurrent behaviour or as a finite version of the asymptotic
statement Oe p(z) used in the homeomorphism case. Franks also shows that if Z is
chain transitive for/ then one has the trichotomy: every point in Z goes asymptoti-
cally to positive infinity, every point of Z goes asymptotically to negative infinity
or else F has a fixed point. For positive tilt F, one has the trichotomy: every point
in Z goes left (under a single iteration), every point in Z goes right or else F has
a fixed point. This follows from theorem 2.3 since a chain transitive Z must be in
either L°° or /?°° as they are an attractor-repeller pair. The general theme in these
comparisons appears to be that statements which must be checked asymptotically
in the homeomorphism case in order to insure the existence of a fixed point need
only be checked for a finite number of iterates in the positive tilt case.

We also compare an implication of our theorem with a result of Casdagli [13].
He shows that if F is monotone twist and we let G = T~pFq, then any point in
F(V(G))n V(G) is a /?/q-periodic orbit fo r / It is in general not true that any
point in G( V(G))n V(G) is a fixed point for G (and thus a p/<jf-periodic orbit for
/ ) , but theorem 2.3 does imply that if G( V( G)) n V( G) ^ 0 , then G has a fixed point.

3. Morse decompositions
In this section we develop the correspondence between Morse decompositions for
a positive tilt/and the components of p(f). We begin with an informal description
of our results which includes a summary of the relevant concepts from Conley ([16],
[17], cf. [31]). Our description of Conley's work is, of necessity, brief and somewhat
skewed towards our applications. We urge the reader to consult the references for
a more balanced and thorough treatment. Also, Conley worked with flows and we
work with diffeomorphisms. With a little care all the notions (that we use) can be
adapted. Since our description here is informal, we do not take the care needed to
distinguish the two types of systems. The necessary concepts will be defined precisely
before theorem 3.3.

Our starting point is Conley's decomposition of a dynamical system (M,f) into
the set of chain recurrent points, R(f), and its complement, the set of gradient-like
points. The chain recurrent set is further divided into its connected components
{R^} for /i in some index set. Since for each zeM, a(z) and a>(z) are chain
transitive, thus a(z)c R^ and w(z)s R^ for some /A, and /j.2- It turns out that z
is chain recurrent if and only if fi{ = fi2, and so the gradient-like points are those
for which /A, T* fi2 (which partially explains their name). Understanding the dynami-
cal system then splits into two tasks: first, to understand the structure and dynamics
within each R^; and second, to understand the connections between the various
/?M. This second task is often accomplished by studying a partial order on {R^}
defined so that R^ > R^2 if there is a chain of orbits going from R^ to J?M2.
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In summary then, one distinguishes two types of orbits depending on their
asymptotic behaviour. The point we are emphasizing here is that the asymptotic
behaviour can be distinguished by the location of the a- and w-limit sets, and so,
for example, /?M = {z: a(z) u <w(z) c J?M}. For maps of the annulus one has another
tool for describing asymptotic behaviour, the forward and backward rotation sets.
In analogy with the above, we distinguish two types of 'p-behaviour' based on the
location of these two sets. If the connected components of p(/) are {cv} for 17 in
some index set, then by the definition of p(/) and the fact that p(/) = p*(/), one
has that for each z, p*(z)^cVl and piz)^^ for some rjl and T/2- We think of 2
as 'p-recurrent' if 77, = TJ2 and 'p-gradient-like' otherwise. The analogue of a com-
ponent of the chain recurrent set is then A(c) = {z: p(z)up*(z)c c}, where c is a
component of p(/). We let Af be the union of the A(c), i.e. Af is the 'p-recurrent'
set. One studies the connections between the A(c) by denning a partial order
A(c,) > A(c2) if there is a point z with p*(z) c cx and p(z) c c2 and then extending
the order to get transitivity. This is possible because of a no-cycle property that
follows from lemma 3.2.

We shall show in theorem 3.3 that if/ is positive tilt, p*(z)c.c if and only if
a(z) c A(c), and p(c)c,c if and only if io(z) c A(c), and so the parallels described
above are more than an analogy. In particular, each chain recurrent point is
p-recurrent (i.e. R(f)^Af), and so p-gradient-like points are always gradient-like.
In fact the decomposition into 'p-recurrent components' with the associated partial
order is an example of a quasi-Morse decomposition (to be defined later).

From Conley's point of view the decomposition of a dynamical system into
components of R(f) (or Af) is in general unsatisfactory because, among other
things, R(f) (or p(/)) may have infinitely many components and so the decomposi-
tion may not be stable under perturbations. Accordingly, one carefully collects
together components of R(f) and their connecting orbits to get a decomposition
with a finite number of components, called a Morse decomposition, which will be
stable. In our case we collect together the A(c) and their 'p-connections' into sets
of the form A(c,, c2) = {z: p(z)up*(z)c(c,uc2)}. This is a good choice, since it
turns out that if {c,, c',,..., ck, c'k) is a collection of components of p(f) with
p(/) c Uf=1 (Cj, c'i) as a disjoint union, then Uf-i A(c,-, cj) will be a Morse decompo-
sition for / From this point of view, then, understanding the twist map consists of
studying the structure and dynamics within the A(c,, c',) and understanding the
connections between the A(c,, c't).

Another notion which is useful in understanding Conley's decompositions is
provided by attractor-repeller pairs. For the purpose of continuing our analogy
between a(z) and p*(z), etc., we may think of an attractor-repeller pair (X, X*)
as a splitting of the space into two disjoint compact invariant sets and their connecting
orbits which may be characterized by

X = {z: a(z) u w(z) c X}, X* = {z: a(z) u w(z) <= X*}

and

C(X, X*) = M-{Xu X*} = {z: a(z) <= X* and w(z) c X}.
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For the p- analogue we split p(f) into two pieces as a disjoint union,

P(f) £ [p(<?i), sup cx~\ u [inf c2, p(d2)],

and define a 'p-attractor-repeller pair' as

Z* = {z: p(z) u p*{z) s [p(3,), sup c,]}, Z = {Z: p(z) u p*(z) s [inf c2, p(d2)]}

and

C(Z, Z*) = {z: p*(z) <= [p(a,), sup c,] and p(r) £ [inf c2, p(32)]}.

We shall show in lemma 3.2 that such Z and Z* actually are an attractor-repeller
pair in the sense of Conley. In fact Z* = Rx( T~pFq) and Z = L°°(T~PF") for a p/q
with sup c2<p/q<inf c, when T~qFq is a down map. (Note that since p/qi. p(f),
T~"F" will be fixed point free.) Finally, in analogy with the fact that R(f) = n
{XuX*: (X,X*) is an attractor-repeller pair}, we have Af= <u{ZuZ*: (Z,Z*)
is a 'p-attractor-repeller pair'}.

The first lemma will help in the description of the sets A(cl5 c2). If A s / i is a
closed set, let A+ = {z € A: /^ n A = 0}. Thus A+ is the 'upper edge' of A. One defines
A_ similarly. If d2 £ Ac, a point z e Ac is said to be right accessible in Ac if there is a
positively tilted arc contained in Ac that connects z to d2 (see figure 5). Lemma 3.1

FIGURE 5

collects some results about invariant sets of positive tilt maps that are somewhat
standard. Under suitable hypotheses on A, Birkhoff [8] shows that A+ is negatively
invariant. Le Calvez [27] remarks that this implies the existence of an Aubry-Mather
set 2 inside A+. The last statement of the lemma (similar to lemma 1 in [27]) roughly
says that of all the points in A, those in 2 move to the right most quickly under
iteration.

LEMMA 3.1. //"/e PT and A is a compact connected invariant set with a, c A, d2£ A',
Ac homeomorphic to a half-open annulus and each point of Ac right accessible in Ac,
thenf~\C\ (A+)) g A+ and thus there exists an Aubry-Mather set 1 s A+. In addition,
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if zeA and pel. with TT{(Z)< TT\(P), then iri(F(z))< TTI(F(P)) and so, for all z e A,

Proof. In [8, § 9] Birkhoff sliows under hypothesis similar to those in this lemma
that for monotone twist maps f /~'(A+) c A+. His proof goes through with minor
alterations for positive tilt maps / to show that f~l(Cl (A+)) c A+. This implies that
a(A+)cCl(A+) and so a(A+)=/" ' (o(A+))sA+. Since a(A+) is compact and
completely invariant, we may find a minimal set 2 s a(A+). Now TT, restricted to
2 is injective since 2 c A + . The other properties needed to show 2 is link-monotone
will be verified after we prove the last inequality in the theorem.

Assume this inequality is false. Then for some pel and ze A, TTI(Z)<irl(p) but
7r,(F(z)) > TTi(F(p)). We assume that 7r,(F(z)) > irAF{p)); the case with equality
requires only minor alterations.

A main step in Birkhoff's proof referred to above is that under the hypothesis of
this lemma, if V = {z e Ac: It S Ac}, then F~\ V) s V. Since F(p) c 2 + , then I+

F(p) s
V and so F~l(IF(p))c V. Now F"^/^, , , ) is a negatively tilted arc, so if
7T2(bot (F~l(IFip)) n Iz)) > ir2(z) or if F~1(IFip)) nlz = 0, then using the analogue
of lemma 2.1(a) for negatively tilted arcs, z is topologically to the left of F~'(/F(p))
and so F(z) is topologically to the left of IF(P), a contradiction. On the other hand,
if 77-2(bot(F"1(/F(p))n/J)<7T2(z), then since TT,(Z)< 7T,(/>), w2(bot (F~\lF(l>))n
7z))<7r2(z) but F~1(/p( p ))c V, a contradiction, since zeA. This proves the
inequality.

By what we have just proven it is clear that 2 has property (2) in the definition
of link-monotone. The fact that 2 has property (3) follows from property (2) and
the fact that /(X) c A+. •

There are some variants of this theorem we wish to note for future use. First, if
each point of Ac is left accessible in Ac, then the same conclusions hold, except in
this case /(Cl (A+))c A+. Second, if s 2gA and d,cAc, call a point zeAc left
accessible if there is a positively tilted arc in Ac connecting z to a,. In this case one
gets an Aubry-Mather set 2 s A_, and if zeA and pel, TJ-,(Z)> irx{p) implies
TT,(F(Z))> 7r,(F(p)) and so p(z)<=, [p(2), p(32)]. The same is true if we assume
that each point in Ac is right accessible in Ac.

We also note that if F is a fixed point free positive tilt map, then LX{F) and
/?°°(F) will satisfy the hypothesis of this theorem or one of the variants just
mentioned. For example, if F is a fixed point free down map and U is as in the
proof of theorem 2.3, then we show there that (R°°(F))C = \JT=o F"'( U). It is clear
from the definition of U that zeU implies IZQ U, and since for all J">0, F~'(/7)
is a negatively tilted arc (since F"1 is a 'negative tilt map'), one has that each point
in {R°°y is right accessible in (/?°°)c. The other necessary hypotheses also follow
from theorem 2.3.

For the next lemma we need to take another idea from Conley [17, II § 5.B]. We
again leave it to the reader to make the appropriate alterations of his proof to make
it suitable for the homeomorphism case. If M is a compact metric space and
/:M-»Af a homeomorphism with an attractor-repeller pair (X, X*), then there
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always exists a continuous i/>: M -* [0,1] (called a Liapounovfunction) with i/r~*(0) =
X, i/f-1(l) = X* andforxeC(X,X*), i/K/(x)) < i/K*).

We also need a fact about attractor-repeller pairs that is slightly different for
homeomorphisms than for flows. If / : M-» M is a homeomorphism and (X, X*) is
an attractor-repeller pair for/* for some q>0, then (X nf(X)n- • • nf~l(X),
X* u/(X*) u • • • u/*"'(**)) are an attractor-repeller pair for/ (note that (X, X*)
may not be).

Since p(f) is a closed subset of twist (/), its complement in twist (/) is a countable
union of open intervals called complementary gaps of p(/) and denoted {J,}. Now
if piq is contained in some /,, then by theorem 1.2(a), T~pFq is fixed point free so
by theorem 2.3 it is either up or down. Part of the content of the next lemma is that
if we choose another rational, say r/s, contained in Jt, then T~rFs will have the
same orientation as T~pFq. This allows us to unambiguously label each complemen-
tary gap of p(/) as either an up gap or a down gap.

For each rational p/q in twist (/), define R™(p/q) = R°°(T-"Fq) and U°{p/q) =
L°°{T'pFq). Finally, if F, and F2 are disjoint, homotopically non-trivial circles in
the annulus, let /4(F,, F2) denote the annulus bounded by these two circles.

LEMMA 3.2. Letf: A-* A be a positive tilt map and J be a complementary gap ofp(f).
Fix a p/qeJ and let R°°(J) = R°°(p/q) and L°°{J) = Lx{p/q) and assume that T~pFq

is a down map, then for all r/s e /, T~sFr is a down map and /?°°(r/s) = R°°(J) and
L°°(r/s) = L°°(/). In addition, L°°(J) andR°°(J) are an attractor-repeller pair for f and

L°°(J) = {z: p(z) u p*{z) c tpO,), inf/]}

= {z: 7r,(Fs(x)) - 7r,(x) < r for all x e o(z) and r/s > inf J}
and

RX(J) = {z: p(z) u P*(z) c [sup /, p(d2)]}

= {z: 7r,(Fs(x)) - TT,(X) > r for all x e o(z) and r/s < sup / } .

Furtherjorze A, a(z) s fl°°(/) ifandonly ifp*(z) s [sup /, p(<92)], andcj(z) s L°°(J)
i/and on/y i/p(z) s [p(a,), inf J] , and 50 C(K°V), L°°(/)) = {z: p(z) <= [p(a,), inf/]
and p*(z)£ [sup J, p(d2)]}- Finally, C(/?°°(/), L°°(/)) is homeomorphic to an open
annulus that is homotopically non-trivial in A and there exists a homotopically non-trivial
embedded circle T(J) c C(i?°°, L°°) such thatf(T{J)) c Int (A(F(J), a,)), a/id 50 V°
is the largest invariant set in A(d^,Y(J)) and R°° is the largest invariant set in
A(W),d2).

Proof. We begin with a few facts that will be used in the sequel, often without
comment. If x e L°°{p/q), then it is clear that p(x, T-"Fq) u p*(x, T-"Fq) c (-00,0),
and if x e Rx(p/q), then p(x, T-pFq) u p*(x, T-pFq) <= (0,00). Since we are assum-
ing that T~"Fq is a fixed point free down map, theorem 2.3 yields that p*(x, T~"Fq) £
(-00,0) implies that xe L°°(p/q). Thus, using lemma 1.1, we have

Lf°(p/q) = {z: p(z,f) u p*(z,f) c [p(a,), p/*)}.
Similarly,

/?°°(p/q) = {z: p(z,f) u p*(z,/) c (p / , , p(a2)]}
and

C(R°°(p/q), V°{p/q)) = {z: p(x,/) £ (p/q, p(a2)] and p*(x,f) c [p(3,),
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Theorem 2.3 implies that L°°{p/q) and R°°(p/q) are an attractor-repeller pair
for f. We now show they are also an attractor-repeller pair for / The first
step is to prove that they are both /-invariant. Say there existed an xe
R°°(p/q)-f(R°°(p/q)), then p(x)z[p(di),p/q), and since /"'(*)*R°°(p/q),
p(J~'(x))c(p/qtp(d2)]t a contradiction, since p(x) = p{f\x)). One obtains a
similar contradiction i( f{Rx{p/q)) - R°°(p/q) ^ 0 , and a similar proof shows that
/(L°°) = L°°. Thus, by our comment above the lemma, R°°(p/q) = R°°(p/q) u • • • u
r'^R^ip/q)) and LQ°(p/q) = Lx>{p/q)n---nfq-\Uc(p/q)) are an attractor-
repeller pair for /

Next we show that for r/seJ, R°°(r/s) = R°°(p/q). Say there existed an
x e r ( r / s ) - r ( ; / ? ) , then p(x)s (r/s, p(d2)] and p(x)<= [p(<9, ),/>/</). Now
p/q<r/s is clearly impossible, and if r/s<p/q, then p(x)s(r/s,p/q) but
(r/s,p/q)np(f) = 0, a contradiction. Now assume there exists an xe
Rcc(p/q)-R'x:'(r/s). Since T~rFs is also a fixed point free map, the argument of
the previous paragraph shows that /?°°(r/s) is an attractor or repeller for/ If it is
an attractor, one uses the argument just given. If it is a repeller, then p*(x)s
(p/q,p(d2)] and p*(x)c[p(a,)5 r/s) and proceed as above. Thus RQO(r/s) =
R°°(p/q) and they are both repellers, and thus their complementary attractors are
equal and so If0(r/s) = L°°(p/q). From this and the facts of the first paragraph of
the proof one gets the characteristics of R°°(J), V°(J) and C(R"°(J), L°°(7)) in
terms of the behaviour of p(x,f) and p*(x,/). Using these characteristics, p*(z)s
[sup J,p(d2)] if and only if ze /?°°(y)u C(R°°(J), L°°(7)), which happens if and
only if a (z )c R°°(J) since L°°(/) and R°°(J) are an attractor-repeller pair.

As noted after the proof of lemma 3.1, L°°{J) satisfies the hypothesis of that
lemma and so there is an Aubry-Mather set 2+ contained in the upper edge
of V°{J), and for xeL°°(/) and pe1+, iri(x)<iTj(p) implies that
iTi(F(x))<irl(F(p)). Now say there existed an xeL°°(J) and some r/s>miJ
with ir,(Fs(x)) - v}(x) a r. Pick a p € 2+ with v^x) < ir,(p), and by repeated appli-
cation of the inequality above, nx(F

s(p)) - TT,(P) S r. Now if all p e 2+ satisfy this
inequality, then by induction, p(Z+)sr/s. On the other hand, if for some p'e
2+, -rri{Fs(p'))-iTi(p')<r, then since 2+ is Aubry-Mather, p(2.+) = r/s. But since
2+ £ L°°{J), p(L+) c [inf/, p(d2)], contradicting the assumption r/s > inf 7. We have
therefore proven L°°(/)s{z: 7r,(F*(x))-7r,(x)<r for all xe o(z) and r/s >inf J}.
The other inclusion is easy and the proof for i?°°(7) is similar.

Since L°°(J) and /?°°(/) are an attractor-repeller pair for / as noted above the
theorem, we may find a Liapounov function for the pair, if/': A->[0,1]. By making
a small C°-perturbation of ip', supported on ip~'{j, 5), we may obtain another
Liapounov function for the pair ip, with i/> smooth on «A~'(i. s)- Using Sard's theorem,
find a regular value p of $ with p e (§, | ) . Since 3, £ i?°°(J) and d2s L°°(J), 0"'(p)
must contain a homotopically non-trivial embedded circle T s C(/?°°(7), L^CJ)).
Since ip decreases in orbits there, f(T)nT = 0, and since L°° is an attractor,
/(F) c Int (.4(r, d^). The last two statements of the theorem are easy consequences
of the above. •

https://doi.org/10.1017/S0143385700009329 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009329


Rotation sets in twist maps 51

Similar techniques to those in this proof show the following. If f:A-*A is a
homeomorphism that has the circle intersection property (i.e. for each homotopically
non-trivial circle F, /(F) n F ¥• 0 ) , then so does f for all q > 0. Here is a sketch of
the proof. If/9 does not have the circle intersection property for some q, let F be
a circle with f(T) n F = 0 . Then Xj = flE-i / " ( ^ ( r , 3,)) will be an attractor for f
when; is chosen so that/(F) is inside A(T, dj). But then X, u/ (X,) u • • • \JP~\XX)

and X2n/(X2)n • • • nf~1(X2) will be an attractor-repeller (or repeller-attractor)
pair for /, and we use the Liapounov function of this pair as in the proof above to
getaF 'with/(F ' )nF ' = 0 .

Before stating our main theorem, we need to give a precise definition of the notion
of a Morse decomposition discussed in the introduction to this section. Let M be
a compact metric space and g: M -* M be a homeomorphism. A quasi-Morse
decomposition for g is a collection of compact g-invariant sets, N^, for fi in some
index set, which are equipped with a partial order that has the property that for all
xe M either (1) xe N^ for some fi or (2) there exists N^> N^ with a (x )c N^
and <o(x) c N^2. If the index set is finite, then {N^} is called a Morse decomposition.
As noted above, this case is preferable, because as a consequence of the duality
between Morse decompositions and attractor nitrations, a Morse decomposition
will continue to nearby maps.

We shall also need some notions associated with the decomposition of p(f) into
components and complementary gaps. Fix an fe PT. A collection of pairs of com-
ponents of p(/), {(cv,c'v): 7} e B}, will be called a covering family of pairs if for
each r), sup cv <sup c'v and {JvsB {cv u c'v) is a disjoint union that contains p(f).
We define a partial order (called the gap order) on the family as follows. By
construction, u (cv u c'v) is compact so its complement is the union of open intervals
called the complementary gaps of the family; we say that {cVl, c'Vl) >{cV2, c'V2) if for
any gap / complementary to the family, sup c^<inf /< inf cV2 implies that / is an
up gap, and that (c^, c'V])<(c7t2, c'V2) if any such gap is a down gap. More informally,
one pair is bigger than another means that all the gaps between them are oriented
from the larger to the smaller. In the obvious way, this partial order induces one
on {A(cM, c'v): rjeB} also called the gap order. (Recall that A(c,,c2) =
{z: p(z) u p*(z) c <c, u c2)} and A(c) = A(c, c).)

Part (a) of the next theorem says that this family with the gap order is a quasi-Morse
decomposition. The point here is that the data giving the components of p(f) and
the orientation of the complementary gaps suffice to determine a Morse decomposi-
tion. Part (b) of the theorem shows how this decomposition is situated in the annulus.
It could be interpreted as giving a means of constructing a filtration of the annulus
by sub-annuli. Part (c) gives more information about the structure of the (quasi)
Morse sets A(c,, c2), and part (d) gives a few applications of the correlation of the
location of a- and <u-limit sets to the value of p* and p.

THEOREM 3.3. Letfe PT with {c^} and {J,} the connected components and complemen-
tary gaps of p(f) respectively.
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(a) If {(cv, c'v): 17 e B} is a covering family of component pairs, then

{A(C7,,c'v):VeB}

with the gap order is a quasi-Morse decomposition for f. In particular, if the index set
B is finite, it is a Morse decomposition and {A(c): c is a component of p(/)} with
the gap order is a quasi-Morse decomposition.

(b) For each complementary gap 7, there exists a homotopically non-trivial embedded
circle r(/f) with the property that if sup J, <inf J2, then T{JX) £ Int (A(T(J2), d,)) and
(c, u c2) £ (Jl u /2> i/a«d o«/y if A(c,, c2) £ Int (A(r(/,), r(/2))). A/so, 1// is a down
gaA / ( r ( / ) ) £ Int (A(r(J), a,)), a™* ifJ is an up gap, f(T(J)) £ Int (A(T(J), d2)).

(c) Given two components ofp(f), c, and c2, with sup c, ̂ sup c2, f/ien A(c,, c2) =
(r:Vx6o(z), 7r,(Fs(x)-x)<r for all r/s > sup c2 and 7r,(Fs(x)-x)> r for all
r/ s <inf ct}. In addition, the upper and lower edges of A(c,, c2) contain Aubry- Mather
sets 1+ and S_ respectively with p(£+) = sup c2 and p{1J) - inf c,. Further, ifp^ e S_

zeA(C],c2) and TT,(P_)< 7rt(z)<

(d) If A/= u{A(c): c is a component of p(/)}, fnen A/ is compact invariant and
contains the chain recurrent set off. If c is any component of p{f), then p(z)c c if
and only (/" w(z)c A(c), and p*(z)^c if and only 1/a(z)£ A(c). If z is a chain
recurrent point with p(z)c.c, then zeA(c) and p*(z)sc. Finally, if Z is a chain
transitive set with (p*(Z) u p(Z)) ncr*0, then Z £ A(c) and p*(Z) u p(Z) £ c.

Proof. We prove the result of (c) first. Letting

A(di, c2) = {z: p{z) <jp*(z) £ (pOi) u c2)}

and defining A(c2,d2) similarly and using lemma 3.2, we have

A(d,, c2) = n{L°°(7): inf / > sup c2}

= {z: 7T!(Fs(x)) - ir,(x) < r for all x e o(z) and r/s > sup c2}

and

A(c,,a2) = n{U°°(/): sup J<inf c,}

= {z: 7r1(Fs(x))-7r1(x)> r for all xe o(z) and r/s <inf c,}.

Since A(c,, c2) = A(c,, d2) n A(3!, c2), the result of the first sentence of (c) follows
and, in addition, each A(c,, c2) is compact.

As noted after lemma 3.1, for each /, LX(J) satisfies the hypothesis of that lemma.
Now if sup J,<inf J2, then L^C/,)^ L°°(J2) and this implies that A(d,,c2) also
satisfies the hypothesis of lemma 3.1, and so there exists an Aubry-Mather set
S+ £ A+(d!, c2). Using theorem 2.2, there is a (perhaps different) Aubry-Mather set
2' with p(2') = P*(2') = supc2. This implies that 2 ' c A(d,, c2), and so using lemma
3.1 again, p(2')s[p(a,) ,p(2+)] and so p(2+) = p(2') = sup c2.

We now show that £+ £ A+(c,, c2). Since 2+ is Aubry-Mather, p(2+) = p*(2+) =
sup c2 and so 2+£A(c,,c2). Since A(c,, c2)£ A(5,, c2), It is obvious that I+

pn
A(d,,c2) = 0 implies I+

P n A(c,, c2) = 0 and so A+(d,, c2)n A(c,, c2)£ A+(c,, c2),
which implies that X+£ A+(c,, c2). A similar argument yields an Aubry-Mather
2_£ A_(c,, c2) with p(2L) = inf c,.The last sentence of (c) now follows from lemma
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3.1. It is now clear that Af = n{L°°(./) u R°°(J): J is a complementary gap of p(/)},
and since L°°(J) and R°°(J) are always an attractor-repeller pair, we have that Af

is compact and contains the chain recurrent set of/ as needed for (d). In addition,
it implies that if Z is chain transitive and Z n A(c) 5* 0 for some component c, then
Z s A(c), which implies the last statement in (d). The proof of the statement for a
chain recurrent point 2 is similar. Finally, since w(z) is chain transitive for any
point z, by what we have just proved, w(z) c A(c) for some component c, and so
using lemma l.l(b), p(z)s(p(a>(z)))c c, which implies that p(z)^ c if and only if
<o(z)c A(c). The statement involving p*(z) and a(z) has an identical proof.

To prove (a), we have already seen that each A(cv, c'v) is compact so we need to
check that the gap order satisfies the appropriate properties. For this, choose a z
in the complement of u A(cv, c'v), then there are 77,5* 172 with p(z) c (cm u c'v) and
P*{z) s ( c ^ u c y . Using lemma 3.2, this implies that every gap between these two
convex hulls must be oriented from {cV2v c'V2) towards (cVluc'v), i.e. A(cn2, c'V2)>
A(cVl,c'm) in the gap order. The previous sentence also implies, using (d), that
w(z) s A(cV2, c'V2) and a(z)c A(c^, c'Vl), finishing the proof of (a).

To prove the results of (b), we take another idea from Conley [16, II§ 6.4] and
construct a Liapounov function, W: A-»[0,1], that distinguishes the various A(c).
For each complementary gap Jt, let if/, be the Liapounov function for the pair,
R^Ui) and L°°(/;), constructed in the proof of lemma 3.2 and let V(x) =
X L̂, 2x3~'iffi(x). By the properties of the «/», and the characterization of A(c) as the
intersections of various L00^) and /?°°(/,) given in the first paragraph of the proof,
¥ is continuous, xeAy implies V(x) = V(f(x)), x£Af implies ¥(/(x)) < V(x) and
¥ separates the various A(c) in the sense that if XEA(C,) and x2eA(.c2), then
^f(x1) = ̂ (x2) if and only if cx = c2. Moreover, ^(A/) is contained in the usual
Cantor middle third set and is compact since Af is compact.

Now let {/,-} be the complementary open gaps of ^(A/) and for each i choose
an open interval JJ with Cl (/J) <=, /,. By making a small C°-perturbation (if necessary)
in a small neighbourhood of ^" ' (u / J ) , we may assume that ^ is smooth on
V\ul'i). Given a complementary gap J of p(f), let c, and c2 be such that
supc, = inf J and supJ = infc2 and find a 7fcC(^(A(c,)), ^(A(c2))>. Now pick a
regular value of ^ , pk e /^, and arguing as in the proof of lemma 3.2, we may find
a homotopically non-trivial embedded circle r ( / ) c * ~ 1 ( A ) n C(/?°°(/), L°°(/)).
The various facts given in (b) are a straightforward consequence of this
construction of T(J), the properties of A(cu c2) given in (c) (and its proof) and
lemma 3.2. •

Our first remark is that the gap order on {A(c)} may not be the finest order that
makes the collection a quasi-Morse decomposition, i.e. it is not always the natural
order. Thus if A(C])>A(c2), there may not be an orbit with a(z)cA(c,) and
<o(z)c. A(c2) even if c, and c2 are adjacent components (by this we mean there is
a gap J with infc, = supJ and supc2 = inf J). We will give an example of this
shortly. If all the A(c) separate, then the gap order will be the natural one.

We next give an example of an / for which sup Jl=p/q = inf J2, where 7, and J2

are complementary gaps of p{f). This example is essentially that of the remarkable
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(a)

(b)

(c)

FIGURE 6

region g in [2] (see also [25] and [13]). In figure 6(a) we show a sink-saddle pair
with rotation number p/q, along with their stable and unstable manifolds. By
sketching vertical lines and their images, one can verify that a fixed point with this
configuration can exist for a monotone twist map. To create a p/q-periodic orbit
with the desired behaviour, translate this construction by all integer multiples of
p/q and let the map permute the sinks and saddles in the appropriate manner. This
configuration implies that J^ and J2 are down gaps, and in figure 6(b) we show
R°°(Ji) and in figure 6(c) we show L°°(/2). Since A(p/g) = .RoV1)nLco(/2), it is
therefore equal to the sink, saddle and the portion of the unstable manifold of the
saddle connecting them. By putting two examples of this type on top of each other
and arranging it so the unstable manifolds of the upper saddle do not intersect the
stable manifolds of the lower, one obtains the example referred to in the last
paragraph.

One may also construct a non-separating A(c) for the case c is an interval by
altering Birkhofi's construction of the attractor that bears his name [8] as follows.
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Let g: A-*A be an area-preserving monotone twist map with no homotopically
non-trivial invariant circles and let o()3) be a non-monotone periodic orbit for g
(such orbits always exist by [12]). Birkhoff showed that maps such as g have the
boundary transit property, i.e. given neighbourhoods I/, and U2 of dt and d2 respec-
tively, there exists z, € £/, and z2 e U2 and nt, n2 e N with /"'(zi) £ l/2 and f2(z2) s
I/,. Now choose smooth functions ax, a2:R->[0,1] so that graph (a,) is close to
d, for i = l,2 and o()3) c A(graph (a,), graph (a2)). Let 0! and (f>2 be vertical pushes
downwards from graph (a,) to d, and from B2 to graph (a2) respectively. If we let
/ = <t>\°g°4>2, then/ will be monotone twist, and if the pushes <£, and <£2 are strong
enough, using the transit orbit,/will have a non-separating A(c) for some component
c. Using the results of § 4 below and the fact that o(/3) is also an orbit of/ we may
find a component c that is a non-trivial interval. An interesting question is whether
a A(w) for an irrational u> can be non-separating (cf. [23]).

There are certain cases when A(c) must separate. For example, if A(c) is an
attractor or repeller or the intersection of attractors or the intersection of repellers
(i.e. a quasi-attractor or quasi-repeller), then it must separate. Note that one can
determine whether this is the case using the gap order. As another example, if c is
a component of p(f) with the property that every neighbourhood of the form
[sup c, e) for e > 0 contains both up and down gaps, then the Aubry-Mather
set I + cA + (c) will be an invariant circle so A(c) will separate. This follows
from [8] and [14] since in this case each point in (A(c))c will be both right and left
accessible.

The example in figure 6 shows that a A(c) may contain gradient-like points. One
may also construct such examples for separating A(c) as follows. We use example
2.1 and let [a, b] = [-l, 1] and T, be as in that example. Fix a p/q and for each
fixed )>£[-!, 1] let a(-,y) be a homeomorphism of R such that a(x+l,y) =
a(x,y)+l, p(a(-,y))=p/q, and if yi<y2, a{x,yl)<a{x,y2) for all xeR. Now
define S': [-1,1] x R-» [-1,1] x R via S'(x, y) = (a{x, y), y) and let F = S'oJ,. This
F will be monotone twist, p(F) = p/q and each point in the interior of the annulus
will be gradient-like for / One can clearly embed this construction in a larger
annulus to get the desired example.

Although each point in A(c) need not be chain recurrent, each A(c) does contain
chain transitive sets because, using theorem 2.2, for each rec one has an Aubry-
Mather minimal set with that rotation number, which of necessity must be contained
in A(c). We also note that although A(c) is defined using the asymptotic behaviour
of orbits, theorem 3.3(b) gives conditions that must be satified by points in A(c)
under a finite number of iterations. This is typical of conclusions resulting from the
positive tilt hypothesis (see the remarks after theorem 2.3).

Finally, we give a modification of example 2.1 that shows that any compact set
with any gap order can occur as a rotation set for a monotone twist / Given a
compact set K and an orientation on its complementary gaps, referring to example
2.1, let [a, b] = [inf K, sup K] and define a smooth <j>: [a, b] -»[a, b] so that <j>{x) > x
if x is in an up gap, <f>(x) < x if x is in a down gap and <j>(x) = x if x e K. Then
G = S°T will be the desired example.
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4. Applications
In this section we give some applications of our previous results. The Aubry- Mather
theorem states that for area-preserving monotone twist/ for each rep(f) one has
an Aubry-Mather set with rotation number r, and p(f) = twist (/). Our first applica-
tion gives some alternative hypotheses under which this is true. The basic idea is
that if / e PT and p{f) 5* twist (/), then p{f) has a complementary gap / and so,
by theorem 3.3,/ has some gradient-like behaviour. Thus if/ is in any sense transitive,
one must have p(/) = twist (/).

Our second application involves a kind of local twist interval associated with an
invariant set called its rotation band. Given an/-invariant set Z, define H_, H+: R -* R
via

H+(x) = sup{TT,(F(Z)): zeZand TT,(Z)<x}

and

H_(x) = inf {TT,(F(Z)): z e Z and ir,(z) > x}.

It is clear that H+ and H_ are non-decreasing and H+(x+1) = //+(*) +1 and so
p(H+) and p(H_) (defined in the usual way) are each a point. We may therefore
define the rotation band of Z as RB(Z) = [p{HJ), p(H+)]. It is clear that in some
sense the rotation band measures the fastest and slowest rates of rotation associated
with Z even though there may not exist any orbit in Z with rotation number p(H-)
or p(H+). In particular, p(Z) may be properly contained in RB(Z). Note that if Z
is link-monotone, RB(Z) = p(Z). The rotation band is related to the speed interval
recently considered in [28] and [4]. It may also be viewed as a generalization of
Birkhoff's definition of an inner and outer rotation number for the BirkhofiE attractor
[8]. As an example, in the twist map induced by the billiard table shown in figure
7 we show a periodic orbit B. It was shown in [12] that RB(f}) = [|,5] and clearly
p(P)=i- This is a general phenomenon. If B is a p/q-periodic orbit that is not
monotone and (p, q) = \, then [pn-J qn-\,pn/qn]^ RB(B), where pn_,/qn_, and
pnlqn are the last two convergents in the continued fraction. This is true primarily
because the rotation band of a periodic orbit depends only on the order structure
of the orbit around the annulus.

In corollary 4.1 we show that whenever Z is chain transitive, RB(Z) c p{f). Thus,
for example, any positive tilt map which has a periodic orbit with the same order
structure as B in figure 7 also must have Aubry-Mather sets with rotation number
r for each r contained in [j, \~\. In [11] we give a technique for estimating the rotation
band of 'n-fold' Denjoy minimal sets of the type constructed in [30].

Our third application is closely related to the second and concerns the notion of
linked invariant sets. Iff:A->A is a homeomorphism and Z, and Z2 are disjoint
invariant sets, we say that Z, and Z2 are unlinked if there is a homotopically
non-trivial circle T with Z^A{T,d,) and Z2^A(T,d2) and f(T) = TrelZ,, Z2.
Corollary 4.1 (c) states that if Z, and Z2 are chain transitive and are linked, then
</?B(Z,)u RB(Z2))c p(f). Thus if/ has a 5- and a ^-periodic orbit, and each is
monotone but the two are linked, then (̂ , 5>s p(/).
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FIGURE 7

Before stating our corollary we note that most of the results in (a) are essentially
known. The case when/ is chain transitive follows easily by combining Franks [19],
Katok [26] and Hall [20]. Bernstein [5] shows this result for monotone twist/ with
the graph intersection property (a weaker condition than the circle intersection
property). The case when / is area-preserving follows from Hall [21]. Recall that
the circle intersection property and the boundary transit property are defined after
lemma 3.2 and theorem 3.3 respectively. We include these results to illustrate our
techniques.

COROLLARY 4.1. Letfe PT.

(a) Iff is area-preserving, chain transitive, has the circle intersection property or the
boundary transit property, then p(f) = twist ( / ) .

(b) If Z is a chain transitive set, then RB(Z)^p(f).
(c) If Zx and Z2 are linked chain transitive sets, then

Proof. If p(/) # twist/ then since p(/) c twist (/), there exists a complementary gap
J for p(f). Thus using lemma 3.2, there exists a homotopically non-trivial circle F
with /(F) c int (F, d,), where i = 1 or 2 depending on whether J is a down gap or
up gap respectively. From this it is clear that / cannot have any of the properties
given in (a).
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To prove (b), since Z is chain transitive, then by theorem 3.3, Z s A(c) for some
component c of p(/) . But then RB(Z)<= RB(A(c)) and theorem 3.3(c) makes it
clear that RB(A(c)) = c.

For (c), note that if Z, s A(c,) and Z 2 c A(c2) and c, # c2, then there would be a
gap / between cx and c2, and thus using theorem 3.3, there is a circle F(/) with
/ ( r ( / ) ) = r (J ) is the complement of A(c,) and A(c2), which is impossible since Zt

and Z2 are linked. Thus for some c, Z ,uZ 2 cA(c ) and so (RB(Zi)uRB(Z2))c
RB(A(c)) = c. •

We are now in a position to complete the proof of theorem 2.2. For this we need
to show that corollary 4.1(b) can be derived independently of what we need to still
show, i.e. that if a € p(f) and a & Cl (p(f) n Q), then a € pmon(/). Up to this point
in the proof of theorem 2.2 we have that Cl ( p ( / ) n Q ) c p m o n ( / ) c p ( / ) . Thus if
there is a chain transitive Z with RB(Z) not in p(/) , then there is a rational
p/qeRB(Z)-p(f). Now let G=T~pFq and apply theorem 2.3 to G and as in
lemma 3.3, L°°(G) and /?°°(G) are therefore an attractor-repeller pair for / and so
Z^V°(G) or Zc#°°(G) . Applying lemma 3.1 to these two sets shows that
RB(R°°(G)) c (p/q, p(d2)] and RB(L°°(G)) £ [p(d,), />/«), a contradiction. We now
proceed with the proof of theorem 2.2.

Completion of the proof of theorem 2.2. We recall the situation. Since p(w(x)) = a,
we may choose zoea)(x) with p(zo) = a and z0 is non-wandering. Given this, we
wish to show that a e pmon(/)- Using the C'-closing lemma [32], find diffeomorph-
isms fk with periodic orbits zk with zk -*• z0 and fk -*f in the C1-topology, such that

k,(F*(2b)) - ir,(zb) - ( ^ ( F J U ) ) - 7r,(zJ)| < 1 (*)

Assume zk is p^/g^-periodic. If a e CHipn/qk}), we are done by our two observa-
tions at the beginning of the proof so assume there exists a subsequence pkjqkl -* P
with p < a (the case B > a is similar). For simplicity of exposition, we assume that
Pk/qk ~* P as passing to a subsequence does not alter the proof. By (*), since p(zo) = a>,
we have

with r(k)/k-*0 as fc-»oo. Now for each fc find an integer n(k) so that n(k)qk>k
and let pi = n(k)pk and gi = n(k)qk. Since zfc is pk/^-periodic,

and so if we let z'k = Fk(zk), then

ir,(FJi-*(zi)) - 77,(zt) = p'k - u>k -

We therefore have for large enough k,

nl(F
k
k(zk))-iri(zk)>[a>k]-l

and

where for reR, [r] denotes the integer part of r. Since zk and zi are elements of
the same periodic orbit, using what we showed above independently of the result
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we are proving here, we get

[ak, bk]sp(fk),
where

p'k-\u>k] + \
°k= q'k-k

and

Now for large Jfc, a(k)<b(k) and b(k)-*a and so we may choose rationals
rk 6 [ak, bk] with rk e p(fk) and rk -» a, and since / t -»/ using our two observations,

« 6 Pmon(/)- •

Our last result gives some simple continuity properties of the rotation set as a
function from FT to the closed subsets of R with the Hausdorff topology, denoted
H(R). In [15] Choquet defines upper semicontinuity for these types of maps and
shows they are continuous at generic points in the domain (under suitable hypotheses
which are satisfied here). We prove upper semicontinuity here, and rather than
appeal to this general result we specify (in the proof) a C1-generic subset where p
is continuous.

Note that this upper semicontinuity result is what one expects as a consequence
of the stability of the Morse decompositions given in theorem 3.3(a), although we
do not use this in our proof.

THEOREM 4.2. Iffe PT and t / c R is an open set with p(f) c JJ, then there exists a
S > 0 so that d(f, g)<8 in the C1-topology implies that p(g) c £/. In addition, there
is a generic subset of PT where p: PT-> H(R) is continuous.

Proof. Given /, pick an interval [a, b] so that d(f, g) < 1 in PT implies that p(g) £
[a, b]. This is possible because / restricted to the boundary circles is a circle
homeomorphism which varies continuously with/ [1] and so twist (/) varies con-
tinuously. If the first statement of the theorem is false, we may find an rk in the
compact set [a,b]-U and fk with d(fk,f)<l/k with rkep(fk). Thus there is a
subsequence rk.-* roe[a, b]- U and fk,-*f, and using theorem 2.2 and the first
observation of its proof, one has roe p(/), a contradiction.

all periodic orbits of / are hyperbolic. These two properties together are generic for
diffeomorphisms by Pugh's density theorem [32] and the Kupka-Smale theorem.
Since PT is open in Diff, (A), they are generic in PT as well.

To show that p is continuous at / , given e > 0, we must find a 5 > 0 so that
d(f, g) < 8 in the C'-topology implies that p(/) <= Nt(p(g)) and p(g) <= Nr(p(f)),
where for a set X s R , NF(X) = {y: d(y, x)<e for some xeX}. The second
inclusion follows from what we have just proved. For the first inclusion we shall
need the fact that for generic/ as above, p{f) n Q = p(f). Assume this is false, then
there exists some irrational w€p(f) but « 2 p ( / ) n Q . By theorem 2.2, / has a
Denjoy minimal set or an invariant circle 2 with p(£) = u>. Now we are assuming
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that periodic orbits are dense in the non-wandering set and certainly 2 must contain
a non-wandering point x and so we may find periodic orbits z, -» z. An argument
similar to that given in the continuation of the proof of theorem 2.2 given above
then implies that w e p(/) n Q.

We therefore have that for all e>0, u{Nc(p/q): p/qeQr\p(f)} covers p(/).
Using the compactness of p(/), find a finite set with p(/)c(Jf= l Ne(pi/qi). Now
by theorem 2.2 we may find a p,/qrperiodic orbit z, for i = 1 , . . . , k. In addition,
these are hyperbolic by our assumptions on / and so we may find a S so that
d(f,g)<8 in the C1 -topology implies that z, is a p,/qr periodic orbit for g. Thus
iPi/qi}SP(g) and so p ( / ) sUf -o N.(l»«/*)s N.(p(g)). •

In this proof we have shown that for generic/, p(/) = p ( / ) n Q , which implies
that generically p(/) has a countable number of components. Question: does p(/)
generically have a finite number of components?

We also note that p(/) will not be continuous in generic one-parameter families.
For example, let F^ be fixed point free for /* <0 with p(FM) = {-l,l} say. At /LA = 0
let there be a saddle node bifurcation to create a fixed sink-saddle pair for ft > 0.
Then any family close to F^ will also have the discontinuous transition of rotation
sets from {-1,1} to {-1,0,1} (or something larger).
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