W. Eames

Let ψ be the outer measure generated by a gauge g and a sequential covering class C of closed sets of a metric space X, and let D be the resulting strong upper density function. That is, for each $A \subseteq X$ and each $x \in X$:

$$\psi(\mathbf{A}) = \lim_{\epsilon \to 0^+} \inf_{\alpha} \sum_{\alpha} g(\mathbf{I})$$

the infimum being taken over all countable subcollections $\{I_{\alpha}\}$ of C such that $A \subseteq \bigcup_{\alpha} I_{\alpha}$ and, for all I_{α} in the subcollection, $d(I_{\alpha}) < \varepsilon$ where $d(I_{\alpha})$ is the diameter of I_{α} . The strong upper density of A at x is

$$D(A, x) = \lim_{s \to 0^+} \sup \frac{\psi(A \cap I)}{g(I)}$$

the supremum being taken over all $I \in \mathbb{C}$ such that $d(I) < \varepsilon$ and $x \in I$. We assume that g(I) = 0 if and only if I is empty.

It has been shown that if $\psi(A)$ is finite, then $D(A, x) \ge 1$ for ψ -almost-all $x \in A$. [1, Theorem 6; 2, Theorem 3.2].

It is the purpose of this note to show that the condition that $\psi(A)$ be finite can be omitted from the above statement.

Let A be a subset of X and let

.

$$B = A \cap \{x : D(A, x) < 1\}$$
.

Let $E\subseteq B$. Then $D(E\,,x)<1$ for all $x\in E\,,$ so $\psi(E)$ is either 0 or is infinite, by the known result. For each $x\in B\,,$ the ratio

$$\frac{\psi(A \cap I)}{g(I)}$$

509

is eventually less than 1, so $\psi(B \cap I)$ - since it is either 0 or infinite - is eventually 0. Thus, for each $x \in B$ there is a number $\epsilon(x) > 0$ with the property that, if $x \in I \in C$ and $d(I) < \epsilon(x)$, then $\psi(B \cap I) = 0$. Let

$$C_n = B \cap \{x : \varepsilon(x) < 1/n\}$$

and let $\{I_{\alpha}\}$ be a countable subcollection of C which covers $C_n^{},$ each $I_{\alpha}^{}$ being of diameter less than 1/n. Then

$$\psi(C_n) \leq \sum_{\alpha} \psi(C_n \cap I_{\alpha}) = 0$$
.

Since B is the union of the C_n , it follows that $\psi(B) = 0$, which concludes the proof.

REFERENCES

- W. Eames, A local property of measurable sets. Canad. J. Math. 12 (1960) 632-640.
- G. Freilich, Gauges and their densities. Trans. Amer. Math. Soc. 122 (1966) 153-162.

Lakehead University Port Arthur