
JFP 21 (2): 209–213, 2011. c© Cambridge University Press 2010

doi:10.1017/S0956796810000080 First published online 8 April 2010

209

Short note: Strict unwraps make
worker/wrapper fusion totally correct

PETER GAMMIE

School of Computer Science, The Australian National University, Canberra ACT 0200

(e-mail: Peter.Gammie@anu.edu.au)

Abstract

The worker/wrapper transformation is a general way of changing the type of a recursive

definition, usually applied with an eye to increasing algorithmic efficiency. This note identifies

an infelicity in the program transformations presented by Gill & Hutton (The worker/wrapper

transformation, J. Funct. Program., vol. 19, 2009, pp. 227–251) and proposes a new totally

correct worker/wrapper fusion rule.

1 Introduction

The worker/wrapper transformation has been formalised by Gill & Hutton (2009)

as a technique for changing ‘a computation of one type into a worker of a different

type, together with a wrapper that acts as an impedance matcher between the

original and new computations’. Their transformation and associated fusion rule

are reproduced in Figure 1, and the reader is referred to the original paper for

motivation and background.

At issue is the soundness of applying the fusion rule, which is the only essential

use made by Gill and Hutton of the fold/unfold program transformation framework

due to Burstall & Darlington (1977); the other transformations are directly justified

by a standard fixed-point semantics. This note shows that applying the fusion rule

requires extra conditions to be totally correct and proposes one such sufficient

condition.

A fully formal account can be found in the Archive of Formal Proofs (Gammie

2009). This was developed in the Isabelle/HOLCF system of Müller et al. (1999)

and more recently Huffman (2009).

2 A non-strict unwrap may go awry

We begin by examining how Gill and Hutton apply their worker/wrapper fusion

rule in the context of the fold/unfold framework.

The key step of those left implicit in the original paper is the use of the fold

rule to justify replacing the worker with the fused version. Schematically, the

fold/unfold framework maintains a history of all definitions that have appeared

during transformation, and the fold rule treats this as a set of rewrite rules oriented

https://doi.org/10.1017/S0956796810000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000080


210 P. Gammie

Fig. 1. The worker/wrapper transformation and fusion rule of Gill & Hutton (2009).

right-to-left. (The unfold rule treats the current working set of definitions as rewrite

rules oriented left-to-right.) Hence as each definition f = body yields a rule of the

form body =⇒ f , one can always derive f = f . Clearly this has dire implications

for the preservation of termination behaviour.

Tullsen (2002) in his §3.1.2 observes that the semantic essence of the fold rule is

Park induction, viz that f x = x implies only the partially correct fix f � x , and

not the totally correct fix f = x . We use this characterisation to show that if unwrap

is non-strict (i.e. unwrap ⊥ �= ⊥) then there are programs where worker/wrapper

fusion as used by Gill and Hutton need only be partially correct.

Consider the scenario described in Figure 1. After applying the worker/wrapper

transformation, we attempt to apply fusion by finding a residual expression body ′

such that the body of the worker, i.e. the expression unwrap ◦ body ◦ wrap, can be

rewritten as body ′ ◦ unwrap ◦ wrap. Intuitively this is the semantic form of workers

where all self-calls are fusible. Our goal is to justify redefining work to fix body ′, i.e.

to establish:

fix (unwrap ◦ body ◦ wrap) = fix body ′

We can show partial correctness by elaborating the proof by Gill and Hutton in

their §3:

work

= { apply work , apply computation: fix f = f (fix f ), unapply work }
(unwrap ◦ body ◦ wrap) work

= { apply assumption: unwrap ◦ body ◦ wrap = body ′ ◦ unwrap ◦ wrap }
(body ′ ◦ unwrap ◦ wrap) work

= { apply work , apply computation, unapply work }
(body ′ ◦ unwrap ◦ wrap) ((unwrap ◦ body ◦ wrap) work )

= { definition of ◦ }
(body ′ ◦ unwrap ◦ wrap ◦ unwrap ◦ body ◦ wrap) work

= { worker/wrapper assumption: wrap ◦ unwrap = idA }
(body ′ ◦ unwrap ◦ body ◦ wrap) work

= { apply ◦ and work , apply computation, unapply work }
body ′ work

Hence fix body ′ � work by Park induction.

https://doi.org/10.1017/S0956796810000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000080


Strict unwraps make worker/wrapper fusion totally correct 211

However it is not always the case that work � fix body ′: if unwrap is not strict,

we can construct a body ′ such that fix body ′ is less defined than work . Consider, for

example, the following two simple types:

data A = A

data B = B A

That is, A is a type with a single non-bottom element, and B is the non-strict lifting

of A. Defining the functions wrap and unwrap for these types is straightforward:

wrap :: B → A

wrap (B a) = a

unwrap :: A → B

unwrap a = B a

as is verifying the equation wrap ◦ unwrap = idA. The computation comp = fix body

we transform can be any where body uses the recursion parameter non-strictly, such

as

body :: A → A

body r = A

The example hinges on a definition that uses the recursion parameter strictly:

body ′ :: B → B

body ′ (B a) = B A

Note that unwrap ◦ body ◦ wrap = body ′ ◦ unwrap ◦ wrap due to the lifting in

unwrap. However, fusing unwrap ◦ wrap as we did above yields:

fix (unwrap ◦ body ◦ wrap) = B A �� ⊥ = fix body ′

This trick can be performed whenever A has at least one element and unwrap is not

strict, which implies that we cannot expect to find an equational fusion rule without

imposing extra conditions. The next section demonstrates that a strict unwrap is

sufficient.

3 A termination-preserving fusion rule

We now show that a termination-preserving worker/wrapper fusion rule can be

obtained by requiring unwrap to be strict. Note that wrap must always be strict due

to the assumption that wrap ◦ unwrap = idA. Generalising from the starting point

of the previous section, we expect that the following equation has been established:

unwrap ◦ body ◦ wrap = λr . body ′ r ((unwrap ◦ wrap) r)

The two parameters of body ′ model unfusible and fusible self-calls respectively. We

show

fix (unwrap ◦ body ◦ wrap) = fix (λr . body ′ r r).

https://doi.org/10.1017/S0956796810000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000080


212 P. Gammie

Fig. 2. The syntactic worker/wrapper transformation and fusion rule.

which justifies worker/wrapper fusion in the context of the worker.

We proceed by Scott, or fixed-point, induction (see §4.2.4 of Müller et al. 1999): for

admissible predicates P , if P (⊥), and P (x ) implies P (f x ), then P (fix f ). Intuitively

our P must assert that the worker lies within the part of B where unwrap ◦ wrap

acts as the identity, which suggests this predicate:

P (f ′, g ′) ≡ f ′ = g ′ ∧ (unwrap ◦ wrap) f ′ = f ′

Clearly P is admissible and the assumptions about wrap and unwrap imply P (⊥, ⊥).

The inductive case follows by standard equational reasoning.

A syntactically oriented version of this rule is shown in Figure 2; the scoping

of the fusion rule ensures that correctness follows directly from the semantically

oriented original.

Those familiar with the ‘bananas’ work of Meijer et al. (1991) will not be surprised

that adding a strictness assumption justifies an equational fusion rule.

4 Concluding remarks

Gill and Hutton provide two examples of fusion: accumulator introduction in their

§4, and the transformation in their §7 of an interpreter for a language with exceptions

into one employing continuations. Both involve strict unwraps and are indeed totally

correct.

The example in their §5 demonstrates the unboxing of numerical computations

using a different worker/wrapper rule and does not require fusion. In their §6 a

non-strict unwrap is used to memoise functions over the natural numbers using the

rule considered here. It should in fact use the same rule as the unboxing example as

the scheme only correctly memoises strict functions. We can see this by considering a

base case missing from their inductive proof, viz that if f :: Nat → a is not strict –

in fact constant, as Nat is a flat domain – then f ⊥ �= ⊥ = (map f [0..]) !! ⊥,

where xs !! n is the nth element of xs.

Acknowledgments

Much of this work was carried out while I was an Australian Youth Ambassador for

Development in T. P. Hò̂Chı́ Minh, Vie.̂ t Nam, funded by the Australian Government

via AusAID. I thank Kai Engelhardt, Brian Huffman, Clem Baker-Finch, Bernie

https://doi.org/10.1017/S0956796810000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000080


Strict unwraps make worker/wrapper fusion totally correct 213

Pope, Peter Rickwood, Colin Runciman, Josef Svenningsson and the anonymous

reviewers.

References

Burstall, R. M. & Darlington, J. (1977) A transformation system for developing recursive

programs, J. ACM, 24 (1): 44–67.

Gammie, P. (2009) The worker/wrapper transformation. In The Archive of Formal Proofs,

Klein, G., Nipkow, T. & Paulson, L. (eds). Available at: http://afp.sf.net/entries/

WorkerWrapper.shtml. Formal proof development.

Gill, A. & Hutton, G. (2009). The worker/wrapper transformation. J. Funct. Program., 19 (2):

227–251.

Huffman, B. (2009). A purely definitional universal domain. In Berghofer, S., Nipkow, T.,

Urban, C. & Wenzel, M. (eds), TPHOLs. LNCS, vol. 5674, pp. 260–275.

Meijer, E., Fokkinga, M. & Paterson, R. (1991). Functional programming with bananas, lenses,

envelopes and barbed wire. In Proceedings of the Conference on Functional Programming

and Computer Architecture. Cambridge, MA, USA, pp. 124–144.

Müller, O., Nipkow, T., von Oheimb, D. & Slotosch, O. (1999). HOLCF = HOL + LCF.

J. Funct. Program., 9: 191–223.

Tullsen, M. (2002). PATH, A Program Transformation System for Haskell. PhD thesis, New

Haven, CT: Yale University.

https://doi.org/10.1017/S0956796810000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000080

