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ABSTRACT. The hydromagnetic dynamo Z-model represents a non-
linear dynamic system. Its steady-state solution is derived by step-by-step 
integration of parabolic partial differential equations of the second order 
with the use of the finite difference method. Until now, two methods 
have been used: the semi-implicit method in which the θ-diffusion was 
carried out implicitly while the r-diffusion explicitly, and the implicit 
method in which the complete diffusion was carried out implicitly. In the 
present contribution, a combined semi-implicit method is suggested 
which reflects not only the singularity at the coordinate system origin but 
also the decreasing mesh size near the core-mantle boundary. This 
procedure preserves the advantage of semi-implicit methods and, 
simultaneously, increases the stability in the most critical boundary layer. 

1. Problem fonnulation 
In model Z, the magnetic field, B, and flux velocity, v, are axisymmetric, 
and are split into meridional and zonal parts: 

Β = Β ρ + Β 1 φ , ν = vp + ν 1 φ , 

Bp = 5 - ^ x 1 , , γρ =s~1Vxxl(p, 
where Β, y/, ν and χ are functions of the time t and space coordinates s, ζ 
in the cylindrical coordinates (s,(p,z), or r, θ in the spherical coordinates 
(r,6,(p). The stream function of the meridional flow is given by 

X = sjz
0vsdzt vs=s~1Bpy{sB)f 

while the zonal shear consists of magnetic, geostrophic and thermal parts 
ν / s = B2 / s2 + CD + f , 
where ω is given by 

d(s2x)/ds = £s3œ{s)/(2^T1)f τ = QBBsdz, zx = ^ ( l - s 2 ) , 

and buoyancy f is prescribed. The induction equations are non-linear and 
read: 
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3ψ/dt = - V . ( ψνρ ) + Δ_ ψ+saß, 

<9B/<9t = - V . ( ß v J + AsB + sBp.Vf + 

+5_ 1β(3Βρ. VB - s~\BsJB) + sJ3sdû) / ds, 

where 

= y / s ) , ASB = V 2 B - B / s 2 . 
In the viscous case and under consideration of the usual symmetry with 
respect to the equatorial plane, the boundary conditions are 

Β = 0, ψ = 0 at 5 = 0, Β = 0, dy/dn = 0 at ζ = 0, (1.4) 

Β = 0, 3v|//ôr = δψη/ότ - χΒΓ at r=l, (1.5) 
where ψπ* is a stream function of the source free outer potential field. 

2. Numerical methods 
The main aim of the numerical process is to find steady state solutions of 
the model equations. In contrast to the kinematic case, the hydromagnetic 
models do not lead to the eigenvalue problem. The steady state solution is 
usually sought by integrating the equations step by step in time by means 
of the finite difference approximation of the differential operators. 
Although some terms of the equations are expressed in the cylindrical 
coordinates, the application of a spherical grid is justified by the benefit 
which follows from a simple formulation of boundary conditions. 
Moreover, the spherical network enables us to increase the density of grid 
points in r near the core-mantle boundary and thus reflect the fact that the 
solutions change more rapidly near the boundary. In our numerical 
method a network G = {(η,θβ, Qf=(j-U2)he, i=l, ... , I, j= 1, ... , J] with 
increased density of points η as r -> 1 is used. 
It is well-known that explicit numerical schemes are stable only under a 
severe limitation on the time step length, τ. Usually, x<Ch2, where h is 
the smallest mesh size and constant C depends on the form of operators. 
As the mesh size contracts in the origin of the spherical grid, a pure 
explicit scheme is out of question. At the same time, a pure implicit 
scheme is impossible because of the intricacy of the problem. It means 
that some intermediate treatment is necessary. 
As higher derivatives are more sensitive with respect to the stability, the 
diffusion terms Δ.ψ and Δ5Β deserve more attention. Braginsky (1978) 
made use of the fact that the distance between mesh points is shrinking 
only in the θ direction. He proposed an algorithm in which the Θ-
diffusion was carried out implicitly but the r-diffusion explicitly. The 
merit of this method is similar to that of ADI (Alternating Direction 

(1.1) 

(1.2) 

(1.3a,b) 
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Implicit) methods: on each r-layer a linear tridiagonal system of algebraic 
equations is obtained, which can be solved by a direct method with 
negligible time demands (the number of operations is linearly 
proportional to the number of equations). In (Braginsky and Roberts, 
1987) the total diffusion was carried out implicitly. It has improved the 
stability, but on each time step a large sparse system of algebraic 
equations must be solved by an iterative (over-relaxation) method and the 
time demands are higher. 
We have realized that the stability is deteriorated not only by the Θ-
diffusion near the origin of coordinates but also by the r-diffusion near 
the core-mantle boundary. Therefore, a new algorithm was suggested in 
which the original semiimplicit method was applied only in the inner 
core, while in the outer core the r-diffusion was carried out implicitly and 
the θ-diffusion explicitly. The algorithm, which will be referred to as a 
combined method, is obvious. The only part, which needs an explanation 
is the way how the smooth fit of the poloidal field onto a source-free 
potential field (1.5) can be included directly into the implicit scheme. 
Let us express the diffusion term (1.3a) in the form 

3 2 ψ . sin θ 9 ( 1 3ψλ 
Δ _ ν = Δ,Ψ+ΔβΨ· Α , ψ ^ , - J 

and discretize it by 

Ψί+i.j - ¥,j Ψ,·.,· - Ψ,-ιj ̂
 

ί+1 h, 

= a, Ψί-i.j - fo + bt ) ψ,, + bt y/i+iJ, 

1 ( sin0, ι \ sin0f / 0 
- « -ψ'·' ] - ^ ; { ψ > · > - ι j = 

= c,yylV-i - (c,,· + 4., ) ¥,j + 4vy,.,+1 

If we denote the time step by superscript k, we get equations 

^ 1 " ¥ ' J = ( Α , ψ ) 1 + ( Α θ ψ ) γ -<V.(yvJ>L + s a B u · » -D t 
for l<i<i0, l<j<J and 
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ψ > ΐ = ( Α Γ ψ ) · ? + ( Δ θ ψ ) 1 -<V.(yvJ>M +saBk
u, (2.2) 

Τ 
for i0<i<I-l, l<j</. 
Both the parts lead to systems of linear equations with three diagonal 
matrices. The outer part (2.2) can be expressed in the form 

-τα,ψΐΐ +(1+ + )ψ^1 - xbrftl = f,j(Bk,ψ>). 
Applying Gauss elimination, we get J systems of equations with upper 
bidiagonal matrices 

Q Ψυ - Bi ψ / + υ = F;j, i0<i<I-L (2.3) 

Particularly, for i=I-1 we get 

CM V/MJ - ψ/,, = FMJ, j=l,...,/. (2.4) 

As was shown in (Hejda, 1983) and (Cupal and Hejda, 1989), the 
boundary condition (1.5) can be expressed in the form 

Ly/Mj+ Σ MkJ y>u = gj> j=l-J· (2·5) 

Combining (2.4) and (2.5), we get a linear system of J equations 

S(CMM^ + L BIAôkJ)^Iyk = CiaGJ - L Fmj. 

After the solution on the boundary, has been obtained, the back 
substitutions (2.3) for i=I-1, i-2,..,,i0+l can be carried out. 

3. Results of tests 

In order to test the efficiency of the combined method, we have compared 
it with the "standard" semiimplicit method. The instability was manifest 
by an unbounded growth of the solution (overflow) which usually 
occurred during a dozen time steps. The integration of the equations was 
then carried out with a reduced length of the time step and the procedure 
was repeated until a stable solution was found. These values are shown in 
Table 1. Two cases were investigated: Free decay solutions, i.e. solutions 
of the equations 

δψ/dt = Δ.ψ, dB/dt = ASB, 
and solution of the full problem (started from a partly stabilized steady 
state). 
The smallest mesh size involved in explicit calculations is in the 
combined method about four times larger than that in the standard 
method. If we suppose that the time step changes with the square of mesh 
size, we get to the ratio τ combined ft standard «10-20. This corresponds well 
with the free decay solutions. As the stability of the full problem 
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solutions by the standard method is the same as that of the free decay 
solutions, we can deduce that the implicit treatment of the r-diffusion is 
the main cause of instabilities. After this source of instabilities has been 
removed, the instabilities due to the explicit processing of all the 
remaining terms become transparent and that is why the stability of the 
combined method is much worse in the full problem solutions. 
We can conclude that the new method increases the stability of the 
numerical process without increasing the number of operations per one 
time step. Further improvement of the stability would require a more 
detailed analysis of the role of the other terms. 

Table 1. The longest time steps which ensure stable solutions of 
"standard" and combined semiimplicit methods. 

Grid size Free decay solutions Full problem 
Standard Combined Standard Combined 

16 0.0002 0.002 0.0001 0.0002 
32 0.00002 0.0005 0.00002 0.0001 
64 0.000005 0.0001 0.000005 0.00002 
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