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Understanding and predicting the dynamics of dispersed micro-objects in microfluidics
is crucial in numerous natural, industrial and technological situations. In this paper, we
experimentally characterized the equilibrium velocity V and lateral position ε of various
dispersed micro-objects, such as beads, bubbles and drops, in a cylindrical microchannel
over an unprecedentedly wide range of parameters. By varying the dimensionless object
size (d ∈ [0.1; 1]), the viscosity ratio (λ ∈ [10−2;∞[), the density ratio (ϕ ∈ [10−3; 2]),
the Reynolds number (Re ∈ [10−2; 102]) and the capillary number (Ca ∈ [10−3; 0.3]), we
offer an exhaustive parametric study exploring various dynamics from the non-deformable
viscous regime to the deformable inertial regime, thus enabling us to highlight the sole
and combined roles of inertia and capillary effects on lateral migration. Experiments
are compared and agree well with a steady three-dimensional Navier–Stokes model for
incompressible two-phase fluids, including the effects of inertia and possible interfacial
deformations. This model enables us to propose a correlation for the object velocity V as
functions of d, ε and λ, obtained in the Re = Ca = 0 limit, but valid for a larger range
of values of Re and Ca delimited by the validity of the linear regime. Next, we present
stability maps for the centred position showing that non-deformable objects dominated by
inertial effects are only stable if large enough, typically for d � 0.7, whereas deformable
objects dominated by capillary effects can be stable for much smaller sizes, provided
the viscosity ratio is outside the range 0.7 � λ � 10, in which deformability also plays
a destabilizing effect, as for inertia.
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1. Introduction

Mastering the dynamics of dispersed micro-objects, such as beads, drops or bubbles
transported by an external flow, is crucial in many situations, including (i) the control and
optimization of two-phase flows through porous materials for the food, pharmaceutical
or cosmetic industries (Muschiolik 2007; Park, Kim & Kim 2021), (ii) the improvement
of heat and mass transfer or the intensification of heterogeneous reactions for energy or
chemical applications (Song, Chen & Ismagilov 2006), (iii) the enhanced recovery of
residual oils in the petroleum industry (Green & Willhite 1998) and (iv) biomedical and
biological applications where these objects represent model systems for cell sorting (Hur
et al. 2011b; Chen et al. 2014).

Nowadays, the emergence of microfluidics that eases manipulation of small objects
with the use of a continuous phase, raises new challenges such as object focusing
and separation. Different strategies have been developed for continuous flow separation
(Pamme 2007). While these techniques appear very different, most of them share the same
fundamental principles: the hydrodynamic forces leading to a migration of the objects
are modulated either by the geometry of the channels through obstacles, constrictions,
expansions or surface textures, or by the external forces acting on the object such as
gravitational, electrical, magnetic, centrifugal, optical or acoustical forces. The sources
of hydrodynamic forces are twofold: inertial and viscous, as compared by the Reynolds
number defined as Re = ρcJdh/μc with dh the hydraulic diameter of the channel, J
the superficial velocity, ρc the density of the continuous phase and μc its dynamic
viscosity. Microfluidics is generally associated with negligible inertia because of the small
characteristic size of the channels. In that case, the hydrodynamic forces are restricted
to viscous forces and the linear Stokes equations are used to model the flow (Happel
& Brenner 2012). Nevertheless, an estimation of the Reynolds number for common
situations, for instance considering water of viscosity μc = 1 mPa s and of density
ρc = 1000 kg m−3 flowing in a channel of diameter dh = 100 μm with a velocity of
10 mm s−1, leads to a value Re ∼ 1. Thus, the inertial forces are not necessarily negligible
and the nonlinear Navier–Stokes equations are often needed to model the flow, especially
when an object is transported by the flow (Di Carlo et al. 2007).

The nonlinear term of the Navier–Stokes equation which is associated with inertia is
of major importance because it breaks the linearity of the Stokes equation and leads
to lateral (i.e. cross-stream) motion of dispersed objects evolving in flows with shear
gradients (Bretherton 1962). Segre & Silberberg (1962) observed for the first time such
inertial migration for small neutrally buoyant rigid spheres transported in an axisymmetric
Poiseuille flow. They noticed that the beads migrate radially to equilibrium positions
located at a distance of approximately 0.3dh from the cylindrical channel centreline when
their diameter dd is small compared with dh. As a consequence, a randomly distributed
suspension of beads focuses onto a narrow equilibrium annulus as it moves downstream
the channel (see figure 1a). These observations, unexplained at that time, have drawn the
interest of the scientific community. They led to a series of experimental studies on inertial
migration in various situations: the case of a non-rotating sphere has been studied by
Oliver (1962), non-neutrally buoyant objects in vertical flow were investigated in various
studies (Repetti & Leonard 1964; Jeffrey & Pearson 1965; Karnis, Goldsmith & Mason
1966; Aoki, Kurosaki & Anzai 1979) and observations of inertial migration have been
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Figure 1. (a) Schematic illustration of the migration of dispersed objects initially randomly distributed across
a microchannel. (b) Wall-induced inertial migration force. Streamlines are shown in the laboratory reference
frame. (c) Shear-gradient-induced inertial migration force. (d) Deformation-induced migration force for the
cases of a drop or a bubble with a viscosity ratio λ < 0.7 or λ > 11.5. Streamlines are shown in the dispersed
object reference frame. Colours in (b–d) show the pressure field differences with a Poiseuille flow: higher in
red, lower in blue.

extended to different flow geometries such as plane Poiseuille flows (Tachibana 1973) or
more recently flows in rectangular cross-section ducts (Di Carlo et al. 2007, 2009; Hur
et al. 2011a; Masaeli et al. 2012).

A comprehensive analysis of inertial migration has been obtained by means of analytical
models based on the technique of matched asymptotic expansion. In the case of small
but finite Reynolds numbers and small bead size compared with the channel diameter,
Cox & Brenner (1968) derived a scaling for the migration force. Afterwards, Ho & Leal
(1974) provided the spatial evolution of the inertial force along the lateral position in
the channel and, by this means, showed that this force changes sign at a distance close
to 0.3dh from the channel centreline. This study highlights that the lateral migration of
beads to an equilibrium position results from the interplay between a wall-induced force
pointing toward the channel centre and a shear-gradient-induced force oriented toward
the channel wall. The wall-induced force develops when a bead is close enough to a
wall and arises from the asymmetries of the streamlines and the velocities on either side
of the bead, causing a pressure imbalance with a higher pressure on the side near the
wall, hence generating a force pointing toward the channel centreline (see figure 1a,b).
On the contrary, the shear-gradient-induced force is due to the curvature of the velocity
profile and can be understood as follows: because of the non-uniform velocity gradient,
the relative velocity of the flow to the bead is higher at the side of larger shear (i.e. close
to the wall in a Poiseuille flow) resulting in a smaller pressure at this side. Therefore, the
bead moves towards the region of large shear gradient where the magnitude of the relative
velocity is the highest (see figure 1a,c). As pointed out by Rivero-Rodríguez & Scheid
(2018a), the equilibrium is reached when the relative velocity of the bead with the mean
flow velocity cancels out, namely at the position

√
2dh/4 from the centreline provided

dd/dh → 0. The seminal study of Ho & Leal (1974) has been extended to the cases of
larger Reynolds number (Schonberg & Hinch 1989; Asmolov 1999) and two-dimensional
Poiseuille flows (Hogg 1994), but remains valid only for small bead Reynolds numbers
(Red = (dd/dh)

2Re), i.e. in the case of small dispersed objects compared with the channel
dimension. According to the investigations of Matas, Morris & Guazzelli (2003) and Di
Carlo et al. (2009), some aspects of inertial migration, such as the impact of the finite size
of the dispersed object on its equilibrium position when dd/dh gets close to unity, cannot
be predicted using these assumptions.
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In parallel, experiments on deformable dispersed objects at vanishing Reynolds number,
using drops transported in a Poiseuille flow, have shown that the coupling between
deformation and the external flow results in a deformation-induced migration force
(Goldsmith & Mason 1962). In this situation, the deformability of the dispersed object
is quantified by the capillary number Ca = μcJ/γ that compares viscous with capillary
forces, with γ the interfacial tension.

Similarly to Ho & Leal (1974), Chan & Leal (1979) used a matched asymptotic
expansion method to derive an analytic expression of this deformation-induced migration
force. Their study reveals that the orientation of the force strongly depends on the viscosity
ratio λ = μd/μc, with μd the viscosity of the dispersed phase. In a cylindrical Poiseuille
flow, the force points toward the wall for 0.7 � λ � 10, while it points toward the channel
centreline for λ � 0.7 and λ � 10 (see figure 1d). However, their theory is accompanied
by inherent limiting hypotheses such as small drop deformations, small drop diameters
compared with the channel dimension and λ < 1/Ca. Moreover, it is also important to note
that the wall effects that push deformed drops toward the channel centreline were neglected
(Kennedy, Pozrikidis & Skalak 1994). Coulliette & Pozrikidis (1998) used numerical
simulations based on boundary integral methods to study the case of deformation-induced
migration of drops in a Stokes flow (i.e. inertialess flow) with a viscosity ratio λ = 1. By
this means, the authors investigated the case of large deformations and studied the impact
of the drop diameter dd on the capillary migration processes. They showed that, in all
cases, after an initial period of rapid deformation, the drops migrate radially toward the
centreline.

The first study dealing with deformable dispersed objects at finite Reynolds number
gathering inertial- and deformation-induced migration forces was led by Mortazavi &
Tryggvason (2000). To investigate the dynamics of drops in Poiseuille flow for few
values of the capillary number, Reynolds number, viscosity ratio and drop diameter, they
used two-dimensional, supplemented with a few three-dimensional, numerical simulations
based on the finite element method coupled with locally adaptive moving mesh. They
have shown that large drops with dd ≈ dh always move toward the channel centreline.
For smaller drops and intermediate Reynolds numbers (i.e. Re = [5–50]), the competition
between inertial- and deformation-induced forces leads to the migration toward an
off-centred equilibrium position. This equilibrium position gets slightly closer to the
wall when increasing the Reynolds number while keeping constant the Weber number
We = Re Ca, which compares inertial with capillary forces. On the contrary, increasing
the drop viscosity or the drop deformation (by increasing the Weber number) has
the opposite effect. They also reported that, for large Reynolds number and/or small
viscosity ratio, the equilibrium position is reached after transient oscillations around
the steady state. Moreover, above a critical Reynolds number and/or below a critical
viscosity ratio, oscillations are not damped anymore and no equilibrium position is
observed.

Later, Chen et al. (2014) carried out three-dimensional (3-D) transient simulations and
experiments with deformable drops in rectangular cross-section channels of a width larger
than the height. In this channel geometry, they have shown that drops migrate to the
centreline in the height direction and to two equilibrium positions in the width direction.
Moreover, in agreement with the study of Mortazavi & Tryggvason (2000), the authors
reported that, increasing the drop deformation by increasing the Weber number, displaces
the equilibrium positions closer to the channel centreline.

More recently, also using numerical simulations based on the finite element method,
Rivero-Rodríguez & Scheid (2018a) solved the full steady Navier–Stokes equations to
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provide a detailed study on the dynamics of dispersed objects depending on the inertial
and capillary migration forces for the case of bubbles. The authors realized a systematic
exploration of the influence of the bubble size, Reynolds and capillary numbers on the
velocity and the lateral position for these objects, and this for two boundary conditions at
the bubbles’ interface: stress free and no slip, in order to consider the effect of the interface
rigidity in two extreme cases, namely for a perfectly clean and deformable bubble, and for
a rigid bubble when involving surfactants or dust, for instance (equivalently to the rigid
bead case), respectively.

Although these works give insights into the dynamics of dispersed objects transported
by an external flow in a microchannel subject to inertial and/or capillary forces, they
focused on specific dispersed objects, some limiting cases or a few sets of parameters.
In the present study, we aim to offer a general vision of this problem by performing, both
experimentally and numerically, a systematic study of the influence of all parameters of
the problem (Reynolds and capillary numbers, dispersed object diameter, density ratio and
viscosity ratio) on the equilibrium velocity and position of the dispersed objects, and this
over a wide range of parameters. With this intention, we explore the dynamics of various
dispersed objects, such as beads, bubbles and drops, in various regimes, which enables us
to highlight the sole and combined roles of inertia and capillary effects on lateral migration
and its impact on the object velocity.

The structure of the article is as follows. We first present, in § 2, the experimental
set-up and methods we used to characterize the equilibrium velocity and lateral position of
these various dispersed objects (beads, drops and bubbles) in a cylindrical microchannel.
In § 3, we describe a steady 3-D Navier–Stokes model for incompressible two-phase
fluids including both the effects of inertia and potential interfacial deformations of the
dispersed objects. Two reduced versions of the model are then proposed to specifically
and easily compute the equilibrium velocity of the dispersed objects or the stability of
their equilibrium centred positions. In § 4, we first compare the experimental results
with the numerically determined ones and then use the numerical models to extend our
understanding of the dynamics of dispersed objects over a larger range of parameters.
Moreover, we propose a useful correlation for the equilibrium velocity of the dispersed
objects as functions of its diameter, position and viscosity ratio, and we discuss the
influence of the Reynolds number, capillary number, viscosity ratio and density ratio on
the stability of their equilibrium centred positions. Finally, conclusions are presented in
§ 5.

2. Experimental set-up and methods

The experiments consist of characterizing the stationary dynamics of a dispersed
micro-object, such as a bead, a bubble or a drop, transported by an external flow within a
cylindrical microchannel. A schematic of the experimental set-up is provided in figure 2.

2.1. Experimental apparatus and image analysis
Two-phase flows are generated and flow within a horizontal glass microcapillary (Postnova
Analytics). The flow rate of the continuous liquid phase is imposed using a high precision
syringe pump (Nemesys, Cetoni), and a flow meter (Coriolis M12, Bronkhorst) is used in
series to verify that it reaches its setpoint. The flow rate of the dispersed phase is controlled
using either a pressure controller (MFCS-EX, Fluigent) for experiments involving bubbles,
or a second syringe pump (Nemesys, Cetoni) coupled with a flow meter (Flow unit,
Fluigent) when drops are investigated. Note that microcapillaries of different inner
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Figure 2. (a) Schematic illustration of the experimental set-up involving an inverted microscope flipped at
90◦ to observe the dynamics of dispersed objects transported by an external flow within a microcapillary.
(b–c) Cross-section of the microcapillary. If migration occurs, while a neutrally buoyant object would migrate
toward an annulus of equilibrium, a density mismatch between the two phases results in a migration occurring
exclusively along the gravitational axis. The latter scheme corresponds to the case where the object is denser
than the continuous phase. (d) Typical experimental images showing a drop of FC-770 transported from left
to right in water at different times (dh = 153 ± 3 μm, Re = 87, Ca = 1.3 × 10−3, see table 1 for additional
information). A downward migration is observed here due to inertial effects. (e–g) Distributions of the drop
radius, eccentricity and velocity resulting from the image analysis of the experiment presented in (d), in which
the vertical dotted lines correspond to the averaged values.

diameters dh have been used depending on the type of dispersed micro-object involved
in the experiments: dh = 52 ± 1 μm or 59 ± 1 μm with beads and dh = 153 ± 3 μm or
188 ± 1 μm with drops and bubbles. These values have been measured using an optical
profilometer (Keyence VK-X200 series).

The dynamics of the micro-objects is observed using an inverted microscope (Nikon
Eclipse-Ti) equipped with a 10X TU Plan Fluor objective and images are recorded with a
high-speed camera (IDT Y3 Motionpro) at a rate of 3030 frames s−1. To ensure a precise
observation of the dispersed micro-objects, we first limit image deformations caused by
optical refraction effects by placing the microcapillary within a glass tank filled with light
mineral oil (Sigma Aldrich), whose refractive index (noil = 1.467) is very close to that of
glass (nglass = 1.470). Second, we take advantage of gravity by turning the microscope by
90◦ to force the dispersed micro-objects, whose density slightly mismatches the density of
the continuous phase, to always stay in the visualization plane parallel to the gravitational
axis and passing through the channel centre. This trick makes the equilibrium position
unique, as illustrated in figures 2(b) and 2(c). The dynamics of the transported dispersed
objects is recorded at a distance of few tens of centimetres from the capillary inlet in order
to ensure a quasi-steady regime to be achieved. A typical experimental visualization is
shown in figure 2(d). Note that this image actually corresponds to the superposition of raw
images recorded at six consecutive times and hence shows the same moving object (a drop
here) at six different positions in the field of view of the camera.

Then, a classical image processing, based on binarization and standard Hough’s
transform (using ImageJ (Schneider, Rasband & Eliceiri 2012) and Matlab routines), is
performed to fit the dispersed object shape over time and extract its radius dd/2, as well
as its equilibrium velocity V and eccentricity εd (i.e. the transverse distance of the object
centre from the microchannel centreline). Note that, since in a recorded movie we are
able to follow the dynamics of numerous dispersed objects and because experiments are
repeated several times, a statistical measurement of these quantities is obtained, from
which we derive their mean values (see figure 2e–g). Typical standard deviation on the
eccentricity distribution corresponds to the size of one pixel (1.085 μm) and thus on the
resolution of our images. The radius distribution is even narrower, the standard deviation
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corresponding to half a pixel, highlighting the high monodispersity of the dispersed objects
generated. The standard deviation on the velocity distribution corresponds to variations of
the distance travelled by the object between two consecutive images and is of the order of
one to two pixels divided by the time interval between consecutive frames (0.7 mm s−1).

2.2. Continuous and dispersed phases
In order to vary the viscosity ratio of the dispersed phase to the continuous phase
λ = μd/μc, we consider different micro-objects for the dispersed phase, such as beads
(λ→ ∞), bubbles (λ→ 0) and drops (intermediate λ), and various liquids for the
continuous phase.

As non-deformable objects, we used rigid, monodispersed and spherical polystyrene
beads (Microbeads AS) suspended in a solution of water containing 7 % of NaOH salt in
order to almost match the density of the continuous phase with that of the polystyrene
beads. To additionally vary the size of this dispersed object, we experimented with beads
of various diameters from dd = 10 to 50 μm.

As deformable objects, we considered bubbles and drops generated using the
Raydrop device (Secoya Technologies), a drop generator based on a non-embedded
co-flow-focusing technology, ensuring the generation of drops or bubbles at high
frequency with a very good reproducibility (Dewandre et al. 2020). The versatility of this
tool enables the use of different couples of fluids and an excellent control of the drops
or bubbles sizes. Note that, to vary the size of these dispersed objects, we use different
strategies depending on their nature. For drops, we impose a constant flow rate for the
dispersed phase and vary the one of the continuous phase, while, for bubbles, we use a
constant flow rate for the continuous phase and we vary the inlet pressure of the dispersed
phase.

Table 1 summarizes all beads and fluids employed for the continuous and dispersed
phases together with the corresponding ratios of viscosities λ and densities ϕ = ρd/ρc,
and the ranges of dimensionless diameters d = dd/dh, Reynolds number Re and capillary
number Ca encountered in our experiments. For convenience, our results are sometimes
represented as functions of the Laplace number La = Re/Ca, that relates the inertial
and capillary forces to the viscous forces, and of the Weber number We = Re Ca, which
describes the competition between inertial forces and capillary forces.

3. Modelling

The experimental study is complemented by numerical simulations that model the
dynamics of dispersed micro-objects (i.e. beads, bubbles or drops) transported by
an external flow in a cylindrical channel for Reynolds number ranging from low to
intermediate values. More specifically, we model the dynamics of a steady train of equally
spaced dispersed objects in a cylindrical microchannel. Thus, the present modelling can
actually be considered as a generalization of the one presented in Rivero-Rodríguez &
Scheid (2018a), dedicated to the bubbles and beads cases (i.e. in the limit cases λ→ 0
and λ→ ∞, respectively), to drops (i.e. for all λ) by considering the internal flow within
the dispersed objects.

As previously mentioned, different equilibrium positions are possible depending on the
size of the dispersed object and on the balance of the involved forces such as viscous,
inertial, capillary and body ones, as due to gravity or magnetic fields.

To model this situation, we consider a volume V containing one dispersed object of
volume Vd and of equivalent diameter dd = (6Vd/π)1/3, delimited by the walls of the
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Inputs: ρc, ρd , μc, μd, γ, J, dh, dd, εd

Outputs: V,  f, �p, pc, pd, vc, vd

Figure 3. Sketch of the modelled segment of a train of equally spaced dispersed objects in a circular
microchannel and definition of the coordinate systems and geometrical parameters.

channel, ΣW , two cross-sections of the channel, Σin and Σout, and the dispersed object
surface, Σd, as schematized in figure 3. The continuous phase has a density ρc and a
viscosity μc, whereas the dispersed phase has a density ρd and a viscosity μd. It is assumed
that the system is isothermal and the evolution of the dispersed object can be considered
as quasi-steady in the absence of either vortex shedding or turbulence.

We include interfacial tension γ and a uniform body force f exerted on the continuous
phase in the transverse direction. Gravity is neglected since the radial component
of this force is negligible in the experiments as the Froude number that compares
the gravitational with the inertial forces, Fr =

√
J2ρc/(|ρc − ρd|gdh), where g in the

gravitational acceleration, is always large (Fr 	 1) due to the small channel size and the
large flow velocities. In the azimuthal direction there is no component of either inertial-
or deformation-induced migration, hence dispersed objects are in equilibrium where the
contribution of gravity vanishes, namely in the radial direction that aligns with gravity,
leading to one stable equilibrium position.

The two phases flow inside a cylindrical channel of diameter dh with a mean velocity
J, producing a pressure drop due to the Poiseuille flow modified by the presence of a
dispersed object, �p, along a segment of length L. The dispersed object travels with a
velocity V at a transverse equilibrium position ε measured from the centre of the channel
which coincides with a specific force balance acting on the surface of the dispersed
object in the transverse direction. Periodic boundary conditions are considered without
loss of generality between the Σin and Σout cross-sections such as L becomes the spatial
periodicity of a train of dispersed object, yet taken large enough to avoid interactions
between consecutive objects. An upstream velocity V is imposed at the wall of the channel
such that the frame of reference is moving with the dispersed object, whose velocity is
determined by balancing the forces acting on the dispersed object surface in the streamwise
direction. We make use of either Cartesian or cylindrical coordinates depending on the
needs. Note that, although in the present study we consider only small dispersed objects
with dd/dh < 1, there is no size limitation in the described model.

In what follows, we first present a general model, based on a steady three-dimensional
isothermal two-phase flow modelling including the effect of inertia and the deformability
of the interphase, and composed by (3.2)–(3.6). Then, the general model is conveniently
simplified yielding to two reduced and independent models, enabling us to specifically
compute: (i) the velocity of the dispersed object in the inertialess and non-deformable
limit and (ii) the stability of the centred position using a linear perturbation and expansion
in its lateral position around the axisymmetric solution. These two reduced models offer
the advantages of a gain both in physical understanding and in computation time, the latter
enabling us to provide an exhaustive parametric analysis.
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It is worth mentioning that the equations of the models are presented in dimensionless
form. To do so, the characteristic length, velocity and pressure are taken as the diameter of
the channel dh, the superficial velocity J and the viscous stress μcJ/dh. The dimensionless
numbers of the problem are

Ca = μcJ
γ

, Re = ρcJdh

μc
, λ = μd

μc
, ϕ = ρd

ρc
, d = dd

dh
, ε = εd

dh
. (3.1a–f )

In addition, the Laplace number La = Re/Ca and the Weber number We = Re Ca will also
be used for representing the results.

3.1. Equations of the general model
The flow of both phases in the modelled segment of the channel can be analysed by solving,
in the reference frame attached to the dispersed object, the steady and dimensionless
Navier–Stokes equations for incompressible fluids

∇ · vi = 0, ϕiRe (vi · ∇) vi = ∇ · T i, in Vi, (3.2a,b)

with T i = −∇pi + λi[∇vi + (∇vi)
T], pi and vi = (ui, vi, wi) being the dimensionless

stress tensor, reduced pressure and velocity vector, respectively. The subscript i may refer
to continuous c or dispersed d phases with λc = 1, λd = λ, ϕc = 1 and ϕd = ϕ. For the
sake of compactness, the subscript i will be omitted when referring to any of both phases
and made explicit when referring to only one of them.

Since the difference between the variables in both phases appears in the equations at the
level of the interface, we introduce the double brackets operator defined as [[�]] = �c − �d.
The impermeability condition, continuity of velocity and stress jump together with the
Young–Laplace equation write

vc · n = 0, [[v]] = 0, [[T ]] · n = DsCa−1 + f · (x − ε)n, at Σd, (3.3a–c)

where x is the position vector, n is the outer normal to the continuous domain, f is the
body force and Ds� = ∇ · Is� is the intrinsic surface derivative previously introduced in
Rivero-Rodríguez & Scheid (2018a), with Is = I − nn the surface identity tensor, which is
independent of the orientation of n.

It is worth relating the body force and the migration force, defined as the hydrodynamic
force exerted on the dispersed phase by the continuous phase, − ∫

Σd
T c · n dΣ . To do

so, (3.3c) is integrated among Σd, leading to − ∫
Σd

T c · n dΣ = f Vd, where it has been
taken into account that (i) the surface tension does not contribute in the force balance,∫
Σd

DsCa−1 dΣ = 0, and (ii) that the dispersed phase is in equilibrium, i.e. the total force
exerted on the dispersed phase by the continuous phase vanishes,

∫
Σd

T d · (−n) dΣ = 0,
as it can be inferred by integrating (3.2) for i = d over Vd. For this reason, f is referred
hereafter as either external body force or migration force (per unit volume), indistinctly.

The velocity field and the reduced pressure gradient are periodic along a distance L,
producing a pressure drop �p

v (x) = v (x + Lez) , ∂zv (x) = ∂zv (x + Lez) , p (x) = p (x + Lez) + �p, (3.4a–c)

which must be imposed at any position in Σout. In the reference frame attached to the
dispersed object moving at the equilibrium velocity V , the velocity of the liquid at the wall
writes

vc = −Vez at ΣW . (3.5)

Both domains have impermeable boundaries, as shown in (3.3a,b) and (3.5), thus
requiring us to impose a pressure reference at one point for each phase. One pressure
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Beads, bubbles and drops in microchannels

represents the absolute pressure reference which is set to 0, i.e. pc = 0, at one point
arbitrarily chosen in x ∈ Vc, whereas the other one remains to be determined, i.e.
pd = pref , at one point arbitrarily chosen in x ∈ Vd. Note that pref is an integration constant
that is determined below by a volume integral constraint.

Finally, the volume of the drop, centroid position, average flow rate through any
cross-section Σcross and null drag exerted on the object are also imposed∫

Vd

dV = Vd,

∫
Vd

xdV = Vdε,

∫
Σcross

(vc · ez + V − 1) dΣ = 0, f · ez = 0,

(3.6a–d)

which determine the values of the variables pref , f , �p and V , respectively.
Respecting the symmetry, the Cartesian coordinate system can be oriented with the

vector ex aligned with the lateral eccentricity ε and f . Therefore, these vectors can be
written as ε = εex and f = f ex, where (3.6d) has already been considered.

From the solution of the general model, composed of the system of (3.2)–(3.6), it can be
observed that migration forces are induced when either inertia, quantified by the Reynolds
number Re, or deformability of the interphase induced by the viscous forces, quantified by
the capillary number Ca, are taken into account. Asymptotic expansion of this system of
equations in terms of Re and Ca leads to the following expansion of V and f :

V (λ, d, ε, Re, Ca) = V0 (λ, d, ε) + O(Re2, Re Ca, Ca2), (3.7a)

f (λ, d, ε, Re, Ca) = f1,Re (λ, d, ε) Re + f1,Ca(λ, d, ε)Ca + O(Re3, Re2 Ca, Re Ca2, Ca3),
(3.7b)

where vanishing terms have been removed, according to the results in Rivero-Rodríguez
& Scheid (2018a), based on the reversibility of the flow. It is observed that for sufficiently
small values of Re and Ca, the velocity of the dispersed object is independent of these
numbers, whereas the migration force is proportional to these numbers, vanishing only
when both numbers vanish, Re = Ca = 0, for any arbitrary lateral position of the dispersed
object.

Then, several regimes can be classified with respect to the dimensionless numbers as
sketched in figure 4. For Re = Ca = 0, the system is in the inertialess and non-deformable
limit. For non-zero but small values, the migration force is proportional to Re and/or Ca,
and we refer to as the linear regime. For sufficiently large values, nonlinearities arise.
Analogous regimes can be considered for La = 0 or La → ∞, which represent inertialess
or non-deformable systems, respectively, and the nonlinearity of the regime is gauged by
Ca or Re.

Solving the general model to derive the equilibrium velocity and lateral position of
dispersed objects is time and resource consuming because of the numbers of parameters
(d, λ, Ca, Re and ϕ) and the tri-dimensionality of the problem. Therefore, in the following,
the general model is not used as is, but rather aptly developed and reduced in two different
limits, namely, the inertialess and non-deformable limit, mainly used for predicting the
equilibrium velocity of the dispersed objects, and the limit case of axisymmetric solutions,
to address the question of the stability of their centred position.

3.2. Inertialess and/or non-deformable limit(s)
The system of equations (3.2)–(3.6) allows two non-exclusive limits, namely, inertialess
for Re = 0 and non-deformable for Ca = 0. The inertialess limit can be obtained by
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Re = 0 Small Re Large ReRe∗

Ca = 0

Small Ca

Large Ca

Ca∗
We∗

Finite La
Inertialess: La = 0

Non-deformable: La → ∞
We = 0

Inertialess and

non-deformable

limit

Pure

nonlinear

capillary

regime

Pure

linear

capillary

regime

Pure

linear

inertial

regime

Pure

nonlinear

inertial

regime

Large We

Nonlinear

inertial-capillary

regime

Small We

Linear

inertial-capillary

regime

Figure 4. The considered flow regimes involving inertial and capillary migrations. The bricks and dots
represent linear and nonlinear regimes, respectively. The Re = Ca = 0 limit is exclusively used in this study
for the computation of the velocity of the dispersed objects.

substituting Re = 0 in the equations, whereas the non-deformable limit requires more
modifications than simply substituting Ca = 0 in the system. In the latter limit, the
variations of the curvature with respect to the non-deformable dispersed object for large
interfacial tensions are inversely proportional to interfacial tension, leading to a finite
pressure ps irrespective of the value of Ca, provided it is sufficiently small. Thus, the
interfacial tension term in (3.3c) is of the form psn leading to

[[T ]] · n = −psn + f · (x − ε)n. (3.8)

Furthermore, since the interphase deformation vanishes for Ca = 0, equations (3.6a,b) no
longer hold, the volume and position of the object being a priori imposed. Instead, it must
be considered that the overall surface pressure forces applied on a closed surface must
vanish, namely ∫

Σd

psn dΣ = 0. (3.9)

This model simplification is analogous to that rigorously developed in Rivero-Rodríguez
& Scheid (2018a) in terms of asymptotic expansion in Ca around Ca = 0.

In the inertialess and non-deformable limit, the general model is simplified by
combining all modifications explained above for the two non-exclusive limits. Thus, this
simplified model reduces to the system of equations (3.2)–(3.3b), (3.8), (3.4a–c)–(3.5),
(3.9), (3.6c,d), in which Re = 0 and Ca = 0. It is worth mentioning that, despite the
absence of migration forces in this inertialess and non-deformable limit, the prediction
from this simplified model for the dispersed object velocity remains valid over a relatively
larger range of values of Re and Ca in the linear regimes, as observed in (3.7a) since the
first-order correction vanishes, and as shown later in § 4.2.2.

3.3. Linear stability of axisymmetric solutions
The equilibrium eccentricity of a dispersed object is analysed here via the determination
of the stability threshold of its centred position (i.e. ε = 0), hence considering a neutrally
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buoyant object (i.e. f = 0). To do this, the general model (3.2)–(3.6) is perturbed up
to first order in eccentricity ε around ε = 0. Thus, f (ε) = f0 + f1ε + O(ε2), matching
the Taylor expansion f (ε) = f |ε=0 + ∂f /∂ε|ε=0 ε + O(ε2), should reveal from the sign
of f1 = ∂f /∂ε|ε=0, the stable or unstable character of the centred position. If f1 < 0,
the body force acts in the opposite direction of the lateral displacement and the centred
position is stable, while if f1 > 0, the centred position is unstable and the body force
leads to the lateral migration of the dispersed object. Compared with the previous
analysis of the position stability based on the prediction of the pitchfork bifurcation when
∂f /∂ε = 0 (see Rivero-Rodríguez & Scheid (2018a) in the case of bubbles and beads), this
alternative method has the advantage of reducing both the dimensionality of the problem
from three-dimensional to axisymmetric two-dimensional and the parametric space, thus
requiring much less computational effort and enabling extended parametric analysis on the
equilibrium eccentricity.

To proceed, we perturb the axisymmetric geometry which undergoes a displacement of
the dispersed object interphase δ = δn. Then, we seek an expansion of the variables in
terms of ε and an analytical θ -dependence in cylindrical coordinates

pi (r, θ, z) = pi0(r, z) + εeiθpi1 (r, z) + O(ε2) in Vi0, (3.10a)

vi (r, θ, z) = vi0 (r, z, θ) + εeiθ vi1(r, z, θ) + O(ε2) in Vi0, (3.10b)

δ (r, θ, z) = εeiθ δ1 (r, z) + O(ε2) at Σd0, (3.10c)

η = η0 + εη1 + O(ε2), (3.10d)

where η is any of the global variables f , V or �p. The subscript 0 refers to the unperturbed
axisymmetric geometry and the subscript 1 refers to the perturbation. Although the vectors
vi0 and vi1 depend on θ , their components in cylindrical coordinates do not

vi0 = ui0ez + vi0er, vi1 = ui1ez + vi1er + wi1eθ , (3.11a,b)

i.e. er and eθ are θ dependent whereas the components of the vectors, ui0, vi0, ui1, vi1 and
wi1, are not. Note that in the sought solution, the θ -dependence is analytical, and hence,
every variable and the geometry exclusively depend on the position in the r − z plane.
Thus, the variables in the volumes Vi0 or the surface Σd0, reduces to the variables in their
intersection with the r − z plane, namely S and Γ , respectively. Conversely, the revolution
around the z-axis of the two-dimensional geometries S and Γ leads to the unperturbed
axisymmetric tri-dimensional geometries.

In axisymmetric geometries, the differential operators appearing in the previous
equations, ∇ and Ds, can be split into the r – z components and the θ component as

∇� = ∇rz � +eθ

r
∂θ�, Ds� = Ds,rz � +eθ

r
· ∂θ Is�, (3.12a,b)

where ∇rz� = Irz · ∇� and Ds,rz� = ∇rz · Is�. Notice that the vector Ds,rz1 = ∇rz · Is
represents the curvature of the planar curve Γ , i.e. the axial curvature of the surface.

Introducing the expansion (3.10) into the governing system of equations (3.2)–(3.6)
leads to the equations governing the zeroth and first order. In doing so, the continuity
equation (3.2a) multiplied by a factor r is recast into

0 = ∇rz · (rv0) , (3.13a)

0 = ∇rz · (rv1) + iw1, (3.13b)
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at S whereas the momentum equation (3.2b) multiplied by a factor r is recast into

rϕ Re v0 · ∇rzv0 = ∇rz · (rT 0) + ez × T 0θ , (3.14a)

rϕ Re (v0 · ∇rzv1 + v1 · ∇rzv0 + w1v0eθ ) = ∇rz · (rT 1) + ez × T 1θ + iT 1θ , (3.14b)

at S where T θ = T · eθ and the stress tensors, T = T 0 + εeiθT 1, are given in Appendix A
by their components (A1)–(A2) in cylindrical coordinates. In the first-order expressions
(3.13b) and (3.14b), the factor eiθ has been cancelled out, as it will be done in further
equations for the first-order terms. To derive (3.13) and (3.14), it is convenient to use the
alternative expressions of the differential operators given in Appendix B by equations (B4).

The boundary conditions (3.3) are for zeroth order

rn · vc0 = 0, (3.15a)

[[v0]] = 0, (3.15b)

rn · [[T 0]] = Ca−1 (
Ds,rzr − er

)
, (3.15c)

and for first order

rn · vc1 = Ds,rz · (rδ1vc0) , (3.16a)

[[v1]] + δ1n · ∇rz[[v0]] = 0, (3.16b)

rn · [[T 1]] = Ds,rz · (rδ1[[T 0]]) + iδ1[[T 0θ ]] + δ1ez × [[T 0θ ]] − rδ1ϕ Re [[v0 · ∇rzv0]]

+ r2f1n + Ca−1Ds,rz · (rΨ 1) + Ca−1∂θψθ1, (3.16c)

at Γ where the last two terms correspond to the perturbation of the interfacial tension
given by (A5), whose details and those of the perturbation of the flux terms are given
in Appendix A. In addition, the first-order uniform body force is written in cylindrical
coordinates as f 1 = f1eiθ (er + ieθ ) = f1(ex + iey), being independent of θ , as well as
fulfilling (3.6d). The appearance of eiθ as a common factor in the first-order terms allows
it to be cancelled out.

The equations (3.6a,b) are written after the expansion (3.10c), using the Reynolds
transport theorem (A8a,b) and carrying out the θ -integrals (A9a–c)

2π

∫
S

r dΣ = Vd, 2π

∫
S

rz dΣ = 0, π

∫
Γ

rδ1 dΓ eiθ (er + ieθ ) = Vε1,

(3.17a–c)

where the vectorial character of (3.17) can be removed by considering that ε1 = eiθ (er +
ieθ ), hence ε1 and f 1 are parallel. These equations determine the volume and the position
in the longitudinal direction for the zeroth order and the position in the transverse direction
for the first order, whereas the other hidden equations related to the missing order are
automatically fulfilled.

The perturbation of (3.6c) vanish and the perturbation �p1 also does. The boundary
conditions at the wall (3.5) write

vc0 = −V0ez, vc1 = 0, (3.18a,b)

for which (3.6c) is automatically fulfilled for the first order.
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Periodicity (3.4a–c) must also be imposed for v and p. Concerning the pressure
references, they should not be imposed for the first order since, in fact, the pressure
vanishes at the axis, ensuring the regularity of pref 1eiθ at r = 0 and serving as a reference
itself

v0(x) = v0(x + Lez), ∂zv0(x) = ∂zv0(x + Lez), p0(x) = p0(x + Lez) + �0p,

(3.19a)

v1(x) = v1(x + Lez), ∂zv1(x) = ∂zv1(x + Lez), p1(x) = p1(x + Lez). (3.19b)

In summary, this reduced model concerning the stability of the centred position of a
dispersed object is composed by the system of (3.13)–(3.19). It is worth specifying that
this model is obtained through a linearization in ε, rather than in Re and Ca, hence the
model is valid for all values of Re and Ca and all flow regimes presented in figure 4.
Consequently, in addition to predict the stability of the centred position of a dispersed
object, this reduced model is also able to evidence when nonlinearities in the sense of flow
regimes arise, as later shown in § 4.2.2.

3.4. Numerical procedure
The three systems of partial differential equations (PDEs) have been solved using the finite
element method with the help of Comsol Multiphysics. Equations have been implemented
in the general weak form PDE and weak form boundary PDE modules, using linear
elements for pressure and quadratic ones for any other variable. Independence of the mesh
has been checked and reduced models have been validated by comparison with the general
model. When the system of equations needs to be solved in a deformable domain, such
as the system in § 3.1 or § 3.3, the arbitrary Lagrangian–Eulerian method implemented
in the Moving Mesh module and the differential boundary arbitrary Lagrangian–Eulerian
method proposed by Rivero-Rodríguez, Pérez-Saborid & Scheid (2021), have been used
to allow mesh deformation, starting from the non-deformable mesh corresponding to a
spherical dispersed object of the same volume. Non-deformable mesh is used otherwise,
such as in the model in § 3.2.

4. Results and discussion

4.1. Experimental observations and numerical validation

4.1.1. Beads: non-deformable case
Our investigation begins with the analysis of the dynamics of beads. This situation
corresponds to the non-deformable rigid limit of the problem, i.e. when Ca = 0 (or
La → ∞) and λ→ ∞, since no internal flow motion and deformation of the dispersed
object may occur. In this limit, capillary effects are negligible and if a lateral migration is
observed, it results solely from the effect of inertia.

Figure 5(a) reports for beads the equilibrium eccentricity ε as a function of their
diameter d, and figures 5(b) and 5(c) show their equilibrium velocity V as functions
of their diameter d and their equilibrium eccentricity ε, respectively. The experimental
results (blue circles), obtained with the conditions ϕ ≈ 1, Re = 4.1–24 and Ca = 0 (see
table 1 for complementary information), are compared with the numerical predictions of
two different models (black lines) depending on whether the equilibrium lateral position
or the equilibrium velocity is considered.

As visible in figure 5(a), the experimental results for ε vs d agree well with the numerical
ones computed with the general model in the non-deformable limit (i.e. Ca = 0), for
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Figure 5. (a) Equilibrium eccentricity ε vs the diameter d for neutrally buoyant beads (f = 0). The
experimental results (blue circle) are compared with numerical ones (black line) computed with the general
model considering ϕ = 1, Ca = 0, λ→ ∞ and small but finite values of Re. The numerically determined stable
(solid line) and unstable (dashed line) equilibrium positions are shown. In addition, the numerically determined
V computed in the Re = Ca = 0 limit with λ→ ∞, i.e. V0(λ→ ∞, d, ε, ) = V0,∞(d, ε), is provided by the
colour code. Grey area corresponds to unexplored regions. (b–c) Equilibrium velocity V vs d and ε, respectively.
However, the numerical results show V0,∞ using for the equilibrium lateral position, the stable (solid line) and
unstable (dashed line) results numerically determined in (a).

neutral buoyant beads (i.e. f = 0 and λ = 105) and for finite but small values of Re.
Note that these numerical results reproduce exactly those already computed for beads
in Rivero-Rodríguez & Scheid (2018a) who showed the validity of the linear regime up
to a value of Re = 32. It is observed that, for large beads with d larger than a critical
diameter dc = 0.73, it exists only one lateral equilibrium position corresponding to the
centred position ε = 0 (solid line). However, for smaller beads with d < dc, the centred
position loses its stability through a perfect pitchfork bifurcation and two branches of
stability appear, one corresponding to an unstable equilibrium for centred positions ε = 0
(dashed lines), and the other corresponding to a stable equilibrium for off-centred positions
ε /= 0 (solid line). In the latter case, a decrease of d results in an increase of ε due to
inertial migration. Note also that for small beads of d ≈ 0.1, the equilibrium eccentricity
is close to 0.3, recovering both the seminal observation of Segre & Silberberg (1962) and
the analytical result of Ho & Leal (1974).

In figures 5(b) and 5(c), the experimental results concerning V as functions of d
and ε are compared with the numerical ones computed with the reduced model in the
non-deformable and inertialess limit, i.e. V0(λ→ ∞, d, ε) = V0,∞(d, ε), using for the
equilibrium lateral position, the stable (solid line) and unstable (dashed line) results
numerically determined in figure 5(a). It is observed that, for centred beads (ε = 0), V0,∞
monotonically decreases from the maximum value of the Poiseuille flow (V0,∞ = 2) when
d → 0, to the mean flow value (V0,∞ = 1) when d = 1. However, when d < dc, centred
positions become unstable and inertial effects result in stable off-centred positions leading
to non-monotonic variations of V0,∞ as functions of d and ε. As shown in figure 5(a)
with the numerical prediction in the Re = Ca = 0 limit of V0,∞(d, ε) and discussed in
detail later in § 4.2.1, V0,∞ decreases with the increases of d and ε. Thus, the slight
variations of V0,∞ around 1.3 observed in figures 5(b) and 5(c) are direct consequences of
the increase of ε when d decreases due to the inertial migration when d < dc. It is worth
observing that the experimental results agree fairly well with the numerical prediction
of the equilibrium velocity V0,∞ in the large range of the experimentally explored
sizes.
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4.1.2. Drops and bubbles: deformable cases
With bubbles and drops as dispersed objects, both internal flow motion and object
deformation may occur, resulting in the additional influence of two dimensionless numbers
on their dynamics and concomitant lateral migration: the viscosity ratio λ and the capillary
number Ca.

Figure 6 presents for five couples of fluids, corresponding to situations involving either
drops (rows (a–d), intermediate λ) or bubbles (row (e), λ→ 0), the variations of the
equilibrium velocity V (column (i)) and eccentricity ε (columns (ii) and (iii)) as a function
of their diameter d. In addition, the stability of the centred position as a function of d
and We is plotted in column (iv). The values of all dimensionless numbers of the problem
concerning these couples of fluids are provided in table 1.

In columns (i), (ii) and (iii), the experimental results (coloured opened circles)
concerning V and ε are first compared with the numerical ones computed in the Ca =
Re = 0 limit for centred objects ε = 0 (solid lines). Two types of behaviours are observed:
while for the case (d), the comparison is perfect for all the experimentally explored range
of d, for the cases (a), (b), (c) and (e), the comparison remains excellent only for large d
and gets poorer when d decreases. Naturally, the observation done for V in column (i) is
directly linked with the one done for ε in column (ii) in which it is seen that, except the
case (d), for which the drops remain centred whatever d, for each of the cases (a), (b), (c)
and (e), it exists a critical diameter dc above which the drops and bubbles are centred and
below which a decrease of d results in an increase of |ε|. To validate this interpretation
and reveal the influence of ε /= 0 on V , the numerical prediction of V0 (computed in
the Re = Ca = 0 limit) using the experimentally measured eccentricities for the lateral
position, are additionally plotted in column (i) as black points and show a good agreement.
This confirms, as mentioned in § 3.2, that even if derived in the limit Re = Ca = 0, the
prediction of the equilibrium velocity V is actually valid for a larger range of Ca and
Re (see table 1). Note also that, the equilibrium eccentricity can be either positive or
negative depending on the value of the density ratio ϕ compared with 1 (ϕ < 1 or ϕ > 1,
respectively), with the same consequence on V as the velocity profile of a Poiseuille flow
is axisymmetric.

In addition, column (iv) shows numerically determined phase diagrams highlighting the
stable (in blue) or unstable (in orange) nature of the centred position for these drops or
bubbles. The numerical results (background colour) are computed with the linear stability
around the centred position presented in § 3.3. For comparison, the experimental results
have been added, a filled circle being blue when the dispersed object is centred or red
when it is off centred, and a very good agreement with the model is found. The threshold
from stable to unstable centred position – which corresponds to the situation where f1 = 0
– enables us to obtain dc as a function of We. When such a stability threshold exists (i.e.
except in case d), dc is independent of We for small values of We, which is a signature of the
linear regime, while for larger values of We, different behaviours depending on the couple
of fluid considered are observed. In cases (b), (c) and (e), dc monotonically decreases with
increasing We, while in case (a), dc increases first to a maximum before decreasing. For
the present experimental conditions, the thresholds for the stability of the centred positions
are always within or very close to the linear regime. Thus, the numerically determined dc
for vanishing We are good predictions of the experimentally observed thresholds.

The colour code for the numerically determined phase diagrams used in column (iv),
as well as the predictions of dc for vanishing We (dashed line), are reported in columns
(i), (ii) and (iii). It is observed that the predicted phases and threshold between centred
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Figure 6. Equilibrium (i) velocity V and (ii–iii) eccentricity ε as a function of the diameter d of two types
of deformable dispersed objects: drops (a–d) and bubble (e). The experimental results (coloured open circles)
obtained in the conditions summarized in table 1 are compared with numerical ones computed in the Re =
Ca = 0 limit, i.e. V0, for centred objects ε = 0 (solid lines). In column (i), the experimental velocities are also
compared with numerical predictions computed from the same model but considering for ε the experimental
eccentricities from column (ii) (black dots). Column (iii) corresponds to a zoom of column (ii) at the vicinity
of the centred/off-centred threshold, when defined. (iv) Stability maps of the centred position of the dispersed
objects as functions of d and the Weber number We. The maps, in which centred positions appear in blue
when stable and in orange when unstable, compare experimental results (filled circles) and numerical ones
obtained from the linear stability analysis of axisymmetric solution (background colour). The same colour
code is reported in columns (i) to (iii) and the threshold from stable to unstable centred position is determined
from column (iv) for We corresponding to the experiments. The dotted lines show the threshold for We → 0
(i.e. in the linear regime).
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(a) (b) (c)

La = 0.355
La = 11 213

Figure 7. (a,b) Experimental images of an ethanol drop in mineral oil and an air bubble in water of identical
size d = 0.56, respectively. The two situations, corresponding to cases (d,e) in figure 6, are obtained in the
bubble limit since λ ∼ 10−2 for the following values of Laplace and capillary numbers: (a) La = 0.355; Ca =
0.117, (b) La = 11213; Ca = 0.002. Complementary information is reported in table 1. The scale bar is 50 μm.
The red solid lines and the white dashed lines evidence the wall and the centreline of the capillary, respectively.
Numerically determined shapes of the dispersed objects computed for the experimental conditions of (a,b) are
superimposed on these pictures (magenta and black lines, respectively) and compared in (c) to highlight the
influence of the regime on the object shape.

and off-centred positions for these drops and bubbles are in very good agreement with
the experiments. Moreover, as seen in column (iii) when d < dc, the increase of |ε| with
decreasing d is very small at first, before getting larger away from the threshold (typically
when d � dc − 0.1). A consequence of such a behaviour is directly visible on V in column
(i), the experimental data matching on the predictions for the velocity of centred objects
(solid curves) even for d lower than dc before starting to deviate more markedly for
d � dc − 0.1. The reason of that change of trend is that buoyancy makes the bifurcation
imperfect contrarily to what is observed when density match is achieved (see figure 5).
Actually, despite small as compared with other forces, buoyancy is important near the
bifurcation because at the critical point ∂f /∂ε vanishes.

Finally, the two types of behaviours observed experimentally can be understood and
interpreted through the analysis of the Laplace number La. Cases (a), (b), (c) and (e)
are all characterized by large values of La (La � 103). In these situations, inertial effects
dominate over capillary ones leading to the destabilization of the centred position when
d < dc because of inertial migration forces pushing the dispersed objects away from the
microchannel centreline, similarly to the bead case studied in § 4.1.1. On the contrary, the
case (d) is characterized by a small value of La since La < 1. In this situation, the capillary
effects dominate over the inertial ones and the deformation-induced migration forces
stabilize the centred position whatever d. Interestingly, while the cases (d,e) correspond
both to the bubble limit (λ
 1), their behaviours are strongly different because of their
respective La, and consequently because of different dominating forces.

Figures 7(a) and 7(b) show experimental pictures of an ethanol drop in mineral oil
and an air bubble in water, of identical size d = 0.56, extracted from the experiments
corresponding to cases (d,e) in figure 6, respectively. While the drop is slightly deformed
in the inertialess limit when La < 1 in (a), the bubble remains spherical in the
non-deformable limit when La 	 1 in (b), although both interfaces are deformable by
nature. This deformation of the dispersed object shape when La < 1 compared with the
axisymmetric case when La 	 1 is evidenced in figure 7(c) via a comparison of the
two numerically determined shapes. One can note that, for La = 0.355, the deformation
remains rather small (because of the low value of the capillary number Ca = 0.117),
but is sufficient to stabilize the centred position of the drop. Besides, a very satisfying
comparison is also shown by the superimposition of these computed object shapes to the
experimental ones in (a,b).
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Figure 8. Equilibrium velocity of a dispersed object V0 as functions of its size d and of the viscosity ratio λ
for (a) a centred object [ε = 0] and (b) an off-centred object near the wall [ε = 0.45(1 − d)], computed in the
Re = Ca = 0 limit.

4.2. Numerical extension of the parametric analysis
Now that the numerically solved model has been validated by comparison with
experiments, we propose in this section to use the model to extend our understanding
about the velocity of a dispersed object, but also the stability of its centred position, over
a larger range of parameters, and beyond the experimentally explored ranges.

4.2.1. Dispersed object velocity
Figure 8 shows the velocity of a dispersed object as a function of its size for various values
of the viscosity ratio λ and at two given positions in the microchannel: centred (ε = 0)
and near the wall (ε = 0.45(1 − d)), computed in the Re = Ca = 0 limit. Note that to
consider a physically sound situation close to the wall, the imposed eccentricity varies
with the object size.

For a centred object (figure 8a), the velocity decreases monotonically with its size, from
the local value of the Poiseuille flow velocity when d → 0, i.e. V0 = 2, to its mean value
V0 = 1 when d = 1. Between these two limit sizes, the velocity is also influenced by λ.
The velocity increases monotonically with decreasing λ, from a minimum value when
λ→ ∞ corresponding to the bead limit, to a maximum value when λ→ 0 corresponding
to the bubble limit. Such a variation of V0 with λ results directly from the effect of the
viscosity of the dispersed object on its internal flow, which ultimately leads to a change at
the interphase from a no-slip situation for the bead limit to a stress-free situation for the
bubble limit.

Similarly to the centred case, the velocity of the off-centred object (figure 8b) increases
monotonically with decreasing λ, from the bead limit value for λ→ ∞ to the bubble limit
value for λ→ 0, and varies from the local value of the Poiseuille flow velocity when d →
0, which corresponds to V0 = 0.38 when ε = 0.45, to its mean value V0 = 1 when d = 1.
However, between these two limit sizes, the variation of the velocity of the off-centred
object is no longer monotonic and evidences a maximum value for a diameter between
0.65 and 0.7 depending on λ.

In the end, it should be remembered that, whatever the given position and size of
the dispersed object, bubbles are transported faster than drops, which are both faster
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than beads. However, for a given object of size d, its velocity depends on the eccentricity
and is maximum for a centred position.

Inspired by the works of Hadamard (1911) and Rybczynski (1911), we propose to
generalize the analytical expression they derived for the stationary velocity of a liquid
sphere moving in another liquid as a function of the viscosity ratio λ. In our confined
situation, we account for both the dependences of the size d and the position ε of
the dispersed object. The general expression for the velocity in the inertialess and
non-deformable limit reads

V0(λ, d, ε) = λ�(d, ε)V0,0(d, ε) + λV0,∞(d, ε)

λ�(d, ε) + λ , (4.1)

where the functions V0,0, V0,∞ and λ� are numerically determined from the computation
of V0(λ, d, ε), in the Re = Ca = 0 limit, as V0,0(d, ε) = V0(λ→ 0, d, ε) (bubble
limit), V0,∞(d, ε) = V0(λ→ ∞, d, ε) (bead limit) and λ� = λ(V0 − V0,∞)/(V0,0 − V0),
respectively. Note that λ� is independent of the viscosity ratio λ and can be determined
for any arbitrary and intermediate value of λ providing the same results. Since the
dependencies of the limit velocities V0,0 and V0,∞ with d and ε can be observed in figure 8
and have been already discussed in depth in Rivero-Rodríguez & Scheid (2018a), we only
provide the results for λ� in Appendix C. Moreover, to enable an easy use of the equation
(4.1) predicting the velocity of a dispersed object in a cylindrical microchannel, we provide
the polynomial fittings of V0,0(d, ε), V0,∞(d, ε) and λ�(d, ε) in Appendix C. Finally, it is
worth noting that in the absence of confinement and shear, i.e. d → 0 and ε = 0, the
original Hadamard–Rybczynski equation is recovered since limd→0 λ�(d, 0) = 2/3.

4.2.2. Stability of the centred position and eccentricity
Figures 9(a) and 9(b) show stability maps for the centred position of dispersed objects as
a function of We, for various values of La and for two given viscosity ratios: λ = 0.3 in (a)
and λ = 3 in (b), computed for a density ratio ϕ = 1 with the stability analysis presented
in § 3.3. The threshold corresponds to the critical diameter dc, above which the centred
position is stable and below which it is unstable, thus resulting in a lateral migration with
ε /= 0. For small values of We, dc is (quasi)-independent of We whatever the values of La
and λ, which is a typical signature of the linear regime (as delimited in figure 4). In the
linear regime, it is observed for the two λ that a decrease of La results in a decrease of dc,
highlighting the stabilizing role of capillarity. Note that for λ = 0.3, no curves appear for
La < 101, the centred position for such a drop being always stable whatever d. For larger
values of We, when nonlinearities arise, the behaviours between the two viscosity ratios are
strongly different (as already evidenced in § 4.1.2). While, for λ = 0.3, dc monotonically
decreases when We increases, for λ = 3 it first increases until it reaches a maximum before
also decreasing. This figure shows that the best strategy for stabilizing dispersed objects at
their centred positions consists in increasing Ca.

In parallel to show that La and λ strikingly affect the critical diameter dc, figures 9(a)
and 9(b) also evidence and enable us to characterize the influence of these two parameters
on the transition between the linear and nonlinear regimes. This transition is represented
by coloured dots in figure 9(c) and corresponds to the transition Weber numbers We∗
above which dc(We, La) differs by more than 1 % from its value in the linear regime (i.e.
for limWe→0 dc(We, La)). Note that We∗ marks the transition between the linear regime
(We � We∗) and the nonlinear regime (We � We∗). Two markedly different behaviours
are observable depending on the value of λ. While We∗ monotonically decreases when
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Figure 9. (a,b) Critical diameter for the stability dc of a dispersed object as functions of the Weber number
We, for several values of the Laplace number La (coloured lines) and two viscosity ratios: (a) λ = 0.3 and (b)
λ = 3, with ϕ = 1. Dots correspond to critical Weber numbers We∗ below which the regime is linear and above
which it is nonlinear in the sense of figure 4. (c,d) Threshold between linear and nonlinear regimes plotted in
the (c) La–We plane and (d) Re–Ca plane. These results are directly extracted from (a,b).

La increases for λ = 0.3, it first increases until a maximum and then decreases for λ = 3.
Note that the curve for λ = 0.3 cannot be plotted below La = 101 since for smaller values
of La, We∗ can not be defined, the centred position being stable for any drop diameter.

In addition, the transition between the linear and nonlinear regimes are plotted in (d) as
functions of Re and Ca. While for λ = 0.3, nonlinearities arise for Re > [5–50] depending
on Ca (with the transition Reynolds number Re∗ decreasing when Ca increases), for
λ = 3, the transitions are stiffer and nonlinearities develop when Re > [40–50] or/and
Ca > [0.3–0.5]. Remarkably, figures 9(c) and 9(d) highlight when nonlinearities become
important as previously inferred in figure 4. Note that, as a complement of figure 9, the
reader can find results concerning these two transitions for the bubble and bead limits
(λ→ 0 and λ→ ∞, respectively) in Rivero-Rodríguez & Scheid (2018a).

In order to provide an exhaustive parametric analysis on the stability of the centred
position of dispersed objects, we now provide numerical results computed in the linear
regime (i.e. for We → 0).

Figure 10(a) shows the stability diagram of the centred position as functions of its size
d and of the Ohnesorge number Oh = La−1/2, for various values of λ and for ϕ = 0
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Figure 10. (a) Stability map for the centred position of a dispersed object as functions of its size d and
of the Ohnesorge number Oh = La−1/2, for several values of λ, for ϕ = 0 and We → 0, i.e. in the linear
regime. The panel presents the influence of λ on the stable–unstable threshold as well as its various limits: (b)
non-deformable limit computed for La = 105, (c) inertialess limit computed for La = 0 and (d) small objects
computed for d = 0.1.

(i.e. neglecting inertia of the internal flow). The influence of these parameters can be more
easily described and grasped by regarding the different limits of this figure. In figure 10(b),
the non-deformable limit obtained for La−1/2 → 0 (equivalent to La → ∞) is shown. In
this limit, the threshold of stability for the centred position exists for all values of λ. It
is observed that dc is constant when λ � 0.04 and then slowly decreases with increasing
values of λ until reaching a second plateau for large λ. In this non-deformable limit, only
large dispersed objects remain centred, since, as soon as d < dc = [0.73–0.85], inertial
forces result in lateral migration leading to off-centred positions.

On the contrary, figure 10(c) presents the inertialess limit when La−1/2 → ∞
(equivalent to La → 0). In this limit, capillary forces result in a stabilization of the
centred position for objects of any size when λ � 0.7 and λ � 10, a result explaining
the experimental case (d) in figure 6 where λ = 0.04. However, for intermediate values
of λ, the same forces result in capillary-induced lateral migration and thus lead to
off-centred positions for small drops (d � 0.475). These results agree well with the
analytical investigation of Chan & Leal (1979) that shown that the deformation-induced
migration force is oriented toward the channel centreline when λ � 0.7 or λ � 10 but
toward the channel walls when 0.7 � λ � 10.

Finally, figure 10(d) provides the stability map for small objects of size d = 0.1. As seen
above, the stability of the centred position of small dispersed objects is rarely achieved. It
is confirmed by this figure which evidences that for this object size, the centred position is
always unstable for La−1/2 � 0.19 (equivalently La � 27.7). For smaller values of La, the
capillary effects can lead to a stabilization of the centred position, but only when λ � 0.7
or λ � 10.

In order to provide a complete view of the problem, we end by exploring the influence
of the density ratio ϕ on the stability of the centred position. As ϕ is related to the ratio
of inertia between the inner and the outer flows of the dispersed object, its influence is
negligible in the pure capillary regime and should be maximum in the pure inertial regime.

956 A21-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1053


J. Cappello and others

10–3 10–1 101 103
0.70

0.75

0.80

0.85

0.90

0

0.6

1.2

1.8

2.4

3.0

10–1 100 101 102
0

0.2

0.4

0.6

0.8

1.0

Re

dc

Stable

Stable

Unstable

Unstable

ϕ = 0
ϕ = 1
ϕ = 2

λ

ϕ

(a) (b)

Figure 11. (a,b) Stability threshold of the centred position dc of a dispersed object as functions of (a) the
viscosity ratio λ and (b) the Reynolds number Re, for several values of the density ratio ϕ, for La = 3162
(non-deformable limit) and for, in (a) We → 0 (linear regime) and in (b) λ = 1. Similarly to figure 9(a,b), the
dots correspond to transition Reynolds numbers Re∗ below which the regime is linear and above which it is
nonlinear.

Figure 11(a) provides the stability map concerning the centred position of a dispersed
object as function of λ and d, for various values of ϕ and La ∼ 103, i.e. in the
non-deformable limit. Note that the curve corresponding to ϕ = 0 is actually the one
already shown in figure 10(b). While for large values of λ in the bead limit (typically
when λ � 20), ϕ has no impact on the stability threshold dc, for lower values of λ, ϕ

appears to affect it significantly. For low values of λ in the bubble limit (typically when
λ � 10−3), the inertia of the flow in the dispersed object plays an important stabilizing role
as evidenced by the strong decrease of dc with increasing values of ϕ. On the contrary,
for intermediate values of λ (typically when 10−3 � λ � 20), the stability threshold dc
increases as a function of ϕ and reaches a maximum value for λ ≈ 1, thus showing the
destabilizing character of the inner flow inertia in this range of λ.

Finally, the influence of ϕ on the stability of the centred position of a dispersed
object is extended in figure 11(b) by looking at its impact on the linear to nonlinear
regime transitions. These results are obtained by relaxing the assumption We → 0 and
by considering La ∼ 103 and λ = 1, conditions for which the destabilizing influence of
ϕ is the largest. As expected in this non-deformable limit, for small values of Re, dc is
independent of Re in the pure linear inertial regime. Then, an increase of Re leads first
to small variations of dc when nonlinearities related to inertial effects appear, before dc
suddenly and sharply decreases when these nonlinearities increase. It is observed that the
transition Reynolds number Re∗ above which dc differs by more than 1 % from its value in
the pure linear inertial regime does not depend on ϕ. However, the threshold at which the
sharp decrease in dc occurs is shortened with increasing the relative influence of internal
inertia. Thus, while in the linear regime, the larger ϕ, the larger dc, the situation is reversed
in the strong nonlinear regime.

5. Conclusion

In this article, we propose a general study on the transport of dispersed objects by
an external flow in a cylindrical microchannel. By performing both experiments and
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numerical simulations, we provide a systematic exploration of the influence of all
parameters of the system, namely the Reynolds and capillary numbers (Re and Ca), the
dimensionless dispersed object diameter (d), as well as the viscosity and density ratios (λ
and ϕ), on the object equilibrium velocity and lateral position. As a result, we highlight all
possible object behaviours depending on the problem parameters and the forces involved,
for beads, bubbles or drops, dispersed in flows from low to intermediate values of Re,
within the object size range d < 1.

In particular, by varying the nature of the dispersed and continuous phases, the
object and microchannel sizes, as well as the flow rates for the fluid phases, we have
been able to experimentally characterize the equilibrium velocity and lateral position of
various dispersed objects such as beads, bubbles and drops, over a very wide range of
parameters, i.e. for Re = [10−2; 102], Ca = [10−3; 0.3], d = [0.1; 1], λ = [10−2;∞[ and
ϕ = [10−3; 2]. The experiments were supplemented with numerical simulations solving
by finite element methods the steady 3-D Navier–Stokes equations for incompressible
two-phase fluids including both the effects of inertia and possible interfacial deformations.
In addition, two reduced versions of the model were considered in order to easily and
specifically compute: (i) the object equilibrium velocity (based on the inertialess and
non-deformable limit) and (ii) the stability of its centred position (based on a linear
stability analysis of the axisymmetric solution).

The excellent agreement between the experiments and the numerical simulations
based on the two reduced models show that the longitudinal and transverse dynamics
are decoupled allowing us to compute the velocity of off-centred dispersed objects
independently of the migration forces applied to them. Moreover, the two reduced models
enabled us to rationalize our experimental observations. Although many parameters have
been varied, our experiments can be categorized into two types of behaviours depending
on the value of their Laplace number (La = Re/Ca). For experiments characterized by
small values of La (typically La < 1), i.e. when dominated by capillary effects, and
small values of λ (typically λ � 0.7), the dispersed object remains centred whatever
d, meaning that capillary effects promote the stability of the centred position in these
conditions. For experiments characterized by large values of La (typically La > 103), i.e.
when dominated by inertial effects, only large objects are centred. In these cases, it exists
a critical diameter dc below which the centred position becomes unstable because of the
inertially induced lateral migration leading to off-centred positions. Moreover, it appears
that whatever the value of La, most of the experiments took place in the linear regimes
(We < We∗). Interestingly, in the small non-deformable object limit (i.e. La → ∞ and
d → 0), our results recover both the seminal observation of Segre & Silberberg (1962)
and the analytical results of Ho & Leal (1974) concerning an eccentricity ε ≈ 0.3.

Once validated through such a comparison, the two reduced models allowed us to
provide an exhaustive parametric analysis on two aspects:

(i) The velocity of the dispersed object, which was analysed as functions of d, ε and λ.
This velocity V0 decreases with an increase of λ, indicating that bubbles (λ→ 0) are
faster than drops (intermediate λ), which are themselves faster than beads (λ→ ∞).
Moreover, V0 is also markedly affected by the object eccentricity ε depending on
the potential lateral migration of the dispersed object. Basically, the velocity of
the object is maximal when it is centred in the Poiseuille flow and slows down
with an increase of ε (for a given size d). This could explain why the theoretical
predictions for centred objects generally overestimate the equilibrium object velocity
when lateral migration occurs. Finally, for a given ε, V0 naturally decreases with an
increase of d. Usefully, we propose an expression for the equilibrium velocity of a
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dispersed object V0(d, ε, λ) (see (4.1)), derived in non-deformable and inertialess
limit (i.e. Re = Ca = 0) but actually valid for a larger range of values of Re and Ca
in the linear regimes, as confirmed by the comparison with the experimental results.
Beneficially, an experimental measurement of the dispersed object velocity should
allow the determination of the eccentricity through our numerical results.

(ii) The stability of the centred position, which was analysed as functions of d, λ, ϕ,
Re and Ca (or La and We = Re Ca). In the linear regime (i.e. when the Weber
number We < We∗), the critical diameter dc below which the centred position is
unstable is strongly affected by the values of La and λ. This threshold decreases
with La, from the non-deformable limit (La → ∞) for which dc always exists
whatever the value of λ and decreases from lim dcλ→0 = 0.83 to lim dcλ→∞ = 0.73,
to the inertialess limit (La → 0) for which dc only exits when 0.7 � λ � 10 with
max(dc) � 0.475. Thus, while only large dispersed objects remain centred when
the problem is dominated by inertial effects, small objects can be centred when the
problem is dominated by the capillary effects for values of λ remaining outside the
aforementioned range. This evidences that, while inertial effects tend to destabilize
the centred position of dispersed objects resulting in off-centred positions when
d < dc, capillary effects tend to stabilize the centred position of the dispersed
objects because of capillary-induced migration forces pushing the dispersed objects
inwards, except when 0.7 � λ � 10 for which it is the opposite. These results are in
agreement with the analytical analysis performed by Ho & Leal (1974) and Chan &
Leal (1979).

Concerning the density ratio ϕ – which, in the limit of negligible buoyancy,
simply measures the relative effect of inertia between the flows in the disperse
and in the continuous phases – its effect is negligible in the pure capillary regime
and maximum in the pure inertial regime (i.e. Ca → 0). In this latter regime, the
influence of ϕ is highly dependent on the value of λ: while an increase of ϕ, which
corresponds to an increase of the inertia within the dispersed object, does not affect
the stability of its centred position for large values of λ (i.e. when λ � 20), it leads
to an important stabilization of its centred position through a strong decrease of
dc for small values of λ (i.e. when λ � 10−3) and a moderate destabilization of its
centred position through a relative increase of dc for intermediate values of λ (i.e.
when 10−3 � λ � 20). In the nonlinear regime, the effects of the various parameters
become relatively complex and would need a proper detailed investigation. However,
it could be observed that, while just above the nonlinear transition (Re � Re∗)
the effect of an increase in Re can have opposite effects on dc depending on the
conditions, for larger values of Re, stronger nonlinearities result in a stabilization of
the centred position.

This investigation on the impact of the different parameters and on the validity of the
linear regime should be of great help, in various situations, for the determination of the
main forces at play and the resulting equilibrium eccentricity of dispersed objects, as it
proposes the appropriate framework for the derivation of the migration forces.

Moreover, besides its fundamental interest, this study should be of primary interest for
the design and optimization of multiphase microfluidic devices, in particular for those
related to the manipulation and sorting of dispersed micro-objects, which may be beads,
bubbles and drops as here, but also more complex micro-bio-objects such as cells, bacteria,
capsules, vesicles or (visco-)elastic beads. From this study, one could expect that the
centred position of soft beads or capsules would be stabilized by the deformation-induced
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migration force and the larger the deformability the larger the stabilizing effect. However,
for capsules or vesicles, it is difficult to speculate about the role of the viscosity and density
ratios as the no-slip boundary conditions, holding between the membrane and the outer and
inner fluids, are different than the boundary condition at the interface of drops. Thus, the
rationalization of the impact of these parameters on the stability of the centred position of
such deformable complex objects will be the aim of a future work.

Finally, while in the present study we focused exclusively on situations where external
body forces were absent ( f = 0), it would be interesting, as a perspective, to extend the
investigation to situations in which the gravitational force is to be considered (i.e. for
small Froude numbers) in order to analyse its impact on the equilibrium lateral position
of the objects. Indeed, while the equilibrium velocity of a dispersed object derived in the
Re = Ca = 0 limit, but valid also up to moderate values of these quantities, was fully
characterized as a function of the lateral position, the relation between f and ε is missing
and would require a 3-D study with non-zero Reynolds and capillary numbers.
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Appendix A. Intermediate steps

In this appendix, we provide some intermediate results used in § 3.3, such as the
components of the stress tensor, perturbation of the interfacial tension, perturbation of
the flux terms and the equations for the volume and position of the drop.

The viscous stress tensors T 0 and T 1 are given by their components in cylindrical
coordinates as

T 0rr = 2μ∂rv0 − p0, T 0zz = 2μ∂zu0 − p0, T 0rz = T 0zr = μ(∂ru0 + ∂zv0),

T 1rr = 2μ∂rv1 − p1, T 1zz = 2μ∂zu1 − p1, T 1rz = T 1zr = μ(∂ru1 + ∂zv1),

}
(A1)

for the components in the r – z plane and

T 0zθ = T 0θz = 0, T 0rθ = T 0θr = 0, T 0θθ = 2μ
v0

r
− p0,

T 1zθ = T 1θz = μ

(
∂zw1 + i

r
u1

)
, T 1rθ = T 1θr = μ

(
∂rw1 − w1

r
+ i

r
v1

)
,

T 1θθ = 2μ
v1 + iw1

r
− p1,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A2)

for the out-of-plane components.
Concerning the boundary conditions (3.3), it is convenient to write them at the

unperturbed geometry since it is the known one. To do so, the method first proposed by
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Rivero-Rodríguez & Scheid (2018a) is used, which mainly results in two kinds of terms to
be perturbed: (i) the interfacial tension terms and (ii) the mass and momentum flux terms.

We first consider the perturbation of the (i) interfacial tension term in the right-hand
side. For this purpose, we need to perturb Ds · I as

lim
dθ→0

1
dθ

∫
Σd

Ds · I dΣ =
∫

Γ

(Ds · I + Ds · Ψ ) r dΓ, (A3a)

where the mean value theorem has been used and Ψ = (∇s · n)δIs − (∇sn)δ + (∇sδ)n,
as reported in Rivero-Rodríguez & Scheid (2018a,b). By virtue of (B4b), it writes as

rDs · I = Ds,rzr − er, rDs · Ψ = Ds,rz · rΨ + ∂θψθ , (A4a,b)

where ψθ = eθ · Ψ . The terms Ds,rz · rΨ and ∂θψθ are written after the expansion (3.10c)
up to first-order Ψ = εeiθΨ 1 + O(ε2), as

Ds,rz · rΨ 1 = Ds,rzδ1nr + Ds,rz · [(∇s,rzδ1)rn], (A5a)

∂θψθ1 = (−er + ieθ )δ1(∇s,rz · n) + (−n + ieθer · n)
δ1

r
. (A5b)

The first terms represent a change of length, whereas the second ones represent a rotation
of the surface.

To perturb the flux term, integration of (3.2) over the volume generated by the
displacement of an arbitrary subset of revolution of the boundary is carried out.
Conveniently using the Green’s theorem, and substituting the boundary conditions (3.3)
and the perturbation of the interfacial tension term (A3), it writes at the unperturbed
interphase

n · vc − Ds · (δvc) = 0, (A6a)

n · [[T ]] − Ds · (δ[[T ]]) = −δϕRe[[v · ∇v]] + f · xn + Ca−1[Ds · I + Ds · Ψ ], (A6b)

at Γ . Considering the axisymmetry of the unperturbed geometry, it can be rewritten using
(B4) as

rn · vc − Ds,rz · (rδvc) − ∂θ (δvcθ ) = 0, (A7a)

rn · [[T ]] − Ds,rz · (rδ[[T ]]) − ∂θ (δ[[T θ ]])

= −rδϕRe[[v · ∇v]] + rf · xn + Ca−1[Ds,rzr + Ds,rz · (rΨ ) − er + ∂θψθ ], (A7b)

at Γ where T θ = eθ · T .
Finally, the equations (3.6a,b) can be perturbed by using the Reynolds transport theorem

as ∫
Vd0

dV +
∫

Σd0

δ dΣ = Vd,

∫
Vd0

x dV +
∫

Σd0

xδ dΣ = Vdε, (A8a,b)

which can be simplified by carrying out the integrals in θ ,∫ 2π

0
dθ = 2π,

∫ 2π

0
eiθ dθ = 0,

∫ 2π

0
eiθer dθ = π

(
ex + iey

)
, (A9a–c)

leading to (3.17a–c).
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V0,0 j = 0 j = 1 j = 2 j = 3 j = 4
i = 0 2.0180 −0.4310 2.2886 −4.0375 1.1047
i = 2 −2.0370 4.4183 −2.3396 −1.0086 1.0093
i = 4 0.0405 −0.1170 −4.2568 8.5856 −4.2313
V0,∞ j = 0 j = 1 j = 2 j = 3 j = 4
i = 0 1.9764 0.2213 −2.0961 0.9186 −0.0192
i = 2 −2.0424 4.7348 −4.3428 2.8893 −1.2567
i = 4 0.1284 −1.7981 1.6230 1.8201 −1.7819
λ� j = 0 j = 2 j = 4 j = 6 j = 8
i = 0 0.6728 −0.2613 2.8477 −6.1694 6.7940
i = 2 0.0217 −0.4273 1.2292 −0.3968 −0.3587
i = 4 0.1659 4.1323 −15.1319 22.7114 −12.5874
i = 6 −0.1048 −13.5725 49.6521 −73.0672 39.2562
i = 8 0.1995 12.4285 −42.7485 60.2374 −31.7364

Table 2. Coefficients of the polynomial fitting ηij of V0,0, V0,∞ and λ� involved in (C1).

Appendix B. Decomposition of differential operators

Since the finite element method is used to solve the partial differential equations, it
is convenient to write the differential operators in (3.12a,b) in order to lead to partial
differential equations written in conservation form. To do so, it is considered its integral
over a volume generated by the revolution of S and Γ along a differential angle dθ . On the
one hand, applying the mean value theorem leads to

lim
dθ→0

1
dθ

∫
S

∫ θ+dθ

θ

r∇ � dθ dΣ =
∫

S
r∇ � dΣ, (B1a)

lim
dθ→0

1
dθ

∫
Γ

∫ θ+dθ

θ

rDs � dθ dΓ =
∫

Γ

rDs � dΓ. (B1b)

On the other hand, after application of the Green’s theorem it can be written as

lim
dθ→0

1
dθ

∫
S

∫ θ+dθ

θ

r∇ � dθ dΣ =
∫

S
(∇rzr � +∂θeθ �) dΣ, (B2a)

lim
dθ→0

1
dθ

∫
Γ

∫ θ+dθ

θ

rDs � dθ dΓ =
∫

Γ

(
Ds,rzr � +∂θeθ �

)
dΓ, (B2b)

Then, equating the right-hand side of (B1) and (B2) leads to∫
S

r∇ � dΣ =
∫

S
(∇rzr � +∂θeθ �) dΣ, (B3a)∫

Γ

rDs � dΓ =
∫

Γ

(
Ds,rzr � +∂θeθ �

)
dΓ, (B3b)

which for any arbitrary S and Γ reduces to the searched form

r∇� = ∇rzr � +∂θeθ �, (B4a)

rDs� = Ds,rzr � +∂θeθ � . (B4b)
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Figure 12. (a) Value of λ� as functions of d and ε, and (b) values of λ� as a function of d for the two given
eccentricities involved in figure 8: centred (ε = 0) and close to the wall (ε = 0.45(1 − d)). The coefficient λ�
is involved in (4.1) and is here numerically computed in the Re = 0 and Ca = 0 limit.

Appendix C. Fittings

In this appendix, we provide the polynomial fittings, with less than 1% error, of the
quantities η = (V0,0, V0,∞, λ�) in the form

η (ε, d) =
∑
i,j

ηij

(
ε

ε∗

)i

d j (C1)

in which the respective coefficients ηij are provided in table 2 and ε∗ = 0.5(1 − d). Note
that the functions V0,0 and V0,∞ correspond to the bubble and bead limits previously
studied and derived in Rivero-Rodríguez & Scheid (2018a), i.e. for λ→ 0 and λ→ ∞,
respectively. Hence, only the numerically computed function λ� is plotted as functions of
d and ε in figure 12. In the latter, we can in particular observe how λ� increases sightly
with ε and strongly with d.
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