## ON SINGULAR NORMAL LINEAR INTEGRAL EQUATIONS

## BY

CHARLES G. COSTLEY
In this work we consider the equation
$Q(x)=f(x)+\lambda \int_{0}^{1} K(x, t) Q(t) d t$ where $K(x, y)$ is singular in the sense that it does not properly belong to $L_{2}$ and $f(x)$ is an arbitrary $L_{2}$ function.
A Lebesgue measurable function $K(x, y)$ of two variables, having real values on $[0.1] \times[0.1]$ is called a singular normal kernel of
(i) $\int_{0}^{1}|K(x, y)|^{2} d y<\infty, \quad \int_{0}^{1}|K(x, y)|^{2} d x<\infty$

There exists approximating kernels $K_{m}(x, y)$ satisfying
(ii) $K_{m}(x, y)$ is $L_{2}$ in $(x, y) \quad\left|K_{m}(x, y)\right|<|K(x, y)|$
(iii) $\int_{0}^{1} K_{m}(x, t) K_{m}(y, t) d t=\int_{0}^{1} K_{m}(t, x) K_{m}(t, y) d t$
(iv) $\lim _{m \rightarrow \infty} K_{m}(x, y)=K(x, y)$

It is seen in [1] that the approximating kernel $K_{m}(x, y)$ admits a representation $K_{m}(x, y)=K_{m}^{\prime}(x, y)+i K_{m}^{\prime \prime}(x, y)$ where $K^{\prime}$ and $K^{\prime \prime}$ are symmetric, having one and same system of characteristic functions. The real and imaginary parts of the characteristic numbers of the kernel $K_{m}(x, y)$ are characteristic numbers of $K_{m}^{\prime}$ and $K_{m}^{\prime \prime}$ respectively. The approximating kernels behave like symmetric kernels with the single exception that the characteristic values may be complex valued.

We associate with equation (1) the equation

$$
\begin{equation*}
Q(x)=f(x)+\lambda \int_{0}^{1} K_{m}(x, t) Q(t) d t \tag{2}
\end{equation*}
$$

The Fredholm theory is applicable to (2), thus there exists a unique solution $Q_{m}$ in $L_{2}$ of (2) for every non-characteristic value $\lambda_{m v}$ of $K_{m}$. Consequently the Schmidt representation extended to the solution of (2) yields,

$$
\begin{equation*}
Q_{m}(x)=f(x)+\lambda \sum_{v} \frac{f_{m v}}{\lambda_{m v}-\lambda} \phi_{m v}, \quad f_{m v}=\int_{0}^{1} f(s) \phi_{m v}(s) d s \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} Q_{m}(x) \phi_{m j}(x) d x=\frac{\lambda_{m j}}{\lambda_{m j}-\lambda} \int_{0}^{1} f(x) \phi_{m j}(x) d x \tag{4}
\end{equation*}
$$

Received by the editors December 5, 1969.
or equivalently we may write

$$
\begin{align*}
Q_{m}(x)= & f(x)+\lambda \int_{0}^{1} K_{m}(x, t) f(t) d t \\
& +\lambda^{2} \sum_{v} \frac{1}{\lambda_{m v}-\lambda} \int_{0}^{1} \int_{0}^{1} K_{m}(x, \tau) \phi_{m v}(\tau) f(t) d \tau d t \tag{5}
\end{align*}
$$

As is well known from classical theory, the series in (5) converges uniformly. Multiplying by $\overline{Q_{m}(x)}$ and integrating one gets,

$$
\begin{aligned}
\int_{0}^{1}\left|Q_{m}^{2}(x)\right| d x= & \int_{0}^{1} f(x) \bar{Q}_{m}(x) d x+\lambda \sum_{v} \frac{1}{\lambda_{m v}-\lambda} \\
& \times \int_{0}^{1} Q_{m}(x) \phi_{m v}(x) d x \int_{0}^{1} \phi_{m v}(t) f(t) d t \\
\leq & \left|\int_{0}^{1} f(x) \bar{Q}_{m}(x) d x\right|+\frac{|\lambda|}{\delta}\left\{\sum_{v}\left|\int_{0}^{1} \bar{Q}_{m}(x) \phi_{m v}(x) d x\right|^{2}\right. \\
& \left.\times \sum_{v}\left|\int_{0}^{1} f(x) \phi_{m v}(x) d x\right|^{2}\right\}^{1 / 2}
\end{aligned}
$$

where $\lambda$ is in the compliment $C(\bar{E})$ of the closure $\bar{E}$ of the set of characteristic values $\lambda_{m v}(m, v=1,2, \ldots)$ of $K_{m}$ and $\delta$ the distance (necessarily positive) from $\lambda$ to $\bar{E}$.

From Bessel's inequality

$$
\begin{equation*}
\int_{0}^{1}\left|Q_{m}^{2}(x)\right| d x \leq\left\{\int_{0}^{1}|f|^{2} d x \int_{0}^{1}\left|Q_{m}\right|^{2} d x\right\}^{1 / 2}+\frac{|\lambda|}{\delta}\left\{\int_{0}^{1}\left|Q_{m}\right|^{2} d x \int_{0}^{1}|f|^{2} d x\right\}^{1 / 2} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1}\left|Q_{m}^{2}(x)\right| d x \leq\left\{1+\frac{|\lambda|}{|\delta|}\right\}^{2} \int_{0}^{1}\left|f^{2}(x)\right| d x \tag{8}
\end{equation*}
$$

We now cite the following well known lemmas of F . Riesz [3].
Lemma 1. If $f_{v}(x) \in L_{2}[0,1], v=1,2, \ldots$, and if $\int_{0}^{1}\left|f_{v}(x)\right|^{2} d x<M, v=1,2, \ldots$, then there exists a subsequence $\left\{f_{v j}(x)\right\}$ such that as $j \rightarrow \infty, f_{v j}(x) \rightarrow f(x)$ weakly, i.e. $\lim _{j} \int_{0}^{x} f_{v j}(x) d x=\int_{0}^{x} f(x) d x, 0<x<1$. Furthermore $\int_{0}^{1} f^{2}(x) d x<M$. ( $M$ is a constant independent of $j$.)

Lemma 2 [2, p. 132]. If $\int_{0}^{1} f_{v}^{2}(x) d x<c, f_{v} \rightarrow f(x)$ weakly while $g_{n}(x) \rightarrow g(x)$ and $\left|g_{n}(x)\right|<\gamma(x) \subset L_{2}, n=1,2, \ldots$, then

$$
\lim _{n} \int_{0}^{1} f_{n}(x) g_{n}(x) d x=\int_{0}^{1} f(x) g(x) d x
$$

Lemma 3. If a sequence $\left\{f_{v}(x)\right\}$ converges weakly to $f(x)$ and converges in the ordinary sense to $F(x)$ then

$$
f(x)=F(x) \quad \text { a.e. }
$$

From (8) and Lemma 1 there exists a subsequence $\left\{Q_{m n}\right\}$ converging weakly to a function $Q(x)$ in $L_{2}$.

From Lemma 2 it follows that for almost all $x$ in $[0,1]$

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \int_{0}^{1} K_{n v}(x, y) Q_{n v}(y) d y=\int_{0}^{1} K(x, y) Q(y) d y . \tag{9}
\end{equation*}
$$

With the aid of (2), it follows from Lemma 3 that $\lim _{v} Q_{n v}=Q(x)$ is a solution of (1).
We have thus proved the following:

Theorem. For $\lambda$ in the compliment $C(\bar{E})$ of the closure $\bar{E}$ of the set of characteristic values $\lambda_{m v}(m, v=1,2, \ldots)$ of the approximating kernels $K_{m}(x, y)$, the equation $Q(x)=f(x)+\lambda \int_{0}^{1} K(x, y) Q(y) d y$ with singular normal kernel $K$, andf in $L_{2}$, possesses a solution $Q(x)$ in $L_{2}$.

We now examine the solution $Q(x)$ obtained above. We suppose in what follows that

$$
\begin{equation*}
\int_{0}^{1}\left|K_{m}(x, t)-K_{m}\left(x^{\prime}, t\right)\right|^{2} d t<\sigma\left(\left|x-x^{\prime}\right|\right) \tag{10}
\end{equation*}
$$

where $\sigma$ is independent of $m$ and approaches zero as $x \rightarrow x^{\prime}$.
In view of (8).

$$
\left|Q_{m}(x)-f(x)\right| \leq|\lambda|\left\{\int_{0}^{1}\left|K_{m}^{2}(x, y)\right| d y \int_{0}^{1}\left|Q^{2}(y)\right| d y\right\}^{1 / 2}
$$

$$
\begin{equation*}
\leq C|\lambda|\left\{1+\frac{|\lambda|}{8}\right\}^{2} K(x) \tag{11}
\end{equation*}
$$

where

$$
C=\int_{0}^{1} f^{2}(y) d y \quad \text { and } \quad K(x)=\left\{\int_{0}^{1} K(x, y)^{2} d y\right\}^{1 / 2}
$$

Likewise

$$
\begin{aligned}
\mid Q_{m}(x)-f(x)- & \left(Q_{m}\left(x^{\prime}\right)-f\left(x^{\prime}\right)\right) \mid \\
& \leq|\lambda|\left\{\int_{0}^{1} Q_{m}^{2}(y) d y\right\}^{1 / 2}\left\{\int_{0}^{1}\left|K_{m}(x, y)-K_{m}\left(x^{\prime}, y\right)\right|^{2} d y\right\}^{1 / 2}
\end{aligned}
$$

$$
\begin{equation*}
\leq C|\lambda|\left\{1+\frac{|\lambda|}{\delta}\right\}^{2}\left\{\int_{0}^{1}\left|K_{m}(x, y)-K_{m}\left(x^{\prime}, y\right)\right|^{2} d y\right\} \tag{12}
\end{equation*}
$$

In view of (10)

$$
\begin{equation*}
\left|\left(Q_{m}(x)-f(x)\right)-\left(Q_{m}\left(x^{\prime}\right)-f\left(x^{\prime}\right)\right)\right| \leq C|\lambda|\left\{1+\frac{|\lambda|}{\delta}\right\}^{2} \sigma\left(\left|x-x^{\prime}\right|\right) \tag{13}
\end{equation*}
$$

It follows as in [2, pp. 54-55] with the aid of Vitali's theorem that $\lim _{m \rightarrow \infty} Q_{m}(x)$ $=Q(x)$ is analytic in $\lambda$ for every $\lambda$ for which Theorem 1 holds.
Corollary. Suppose $\Omega$ is a region in $C(\bar{E})$ and the homogeneous equation $Q(x)=\lambda \int_{0}^{1} K(x, y) Q(y) d y$ has no nonzero solutions in $L_{2}$ for $\lambda=\lambda_{1}, \lambda_{2}, \ldots$, the $\lambda_{n}, n=1,2, \ldots$, being distinct points in $\Omega$ with a limiting point in $\Omega$, then there exists no solution $Q=Q(x, \lambda)$, distinct from zero and analytic in $\lambda$.

Proof. Results directly from the identity theorem of analytic functions.
Remark. For any multiple connected region in $C(\bar{E})$, the function $Q$ may be multiple valued. As $\lambda$ describes some closed path in $C(\bar{E}), Q$ may change to another function $\psi$. However any such circuit will leave equation (1) unchanged, so $\psi$ will also be a solution of (1).

It follows [2, p. 56] that there exists a linear operator $T_{x \lambda}$ (dependent on $K$ ) and a subsequence $\left\{m_{j}\right\}$ (independent of $f$ ) such that with $Q_{m}$ denoting a solution of (2) for $\lambda$ in $C(\bar{E})$ we have

$$
\begin{equation*}
\lim _{j} Q_{m_{j}}=Q=T_{x \lambda}(f) \text { is a solution of }(1) \tag{14}
\end{equation*}
$$

Theorem 2. The operator $T_{x \lambda}(f)$ of (14) satisfies

$$
\begin{equation*}
\int_{0}^{1} f_{1}(x) T_{x \lambda}\left(f_{2}\right) d x=\int_{0}^{1} f_{2}(x) T_{x \lambda}\left(f_{1}\right) d x \tag{15}
\end{equation*}
$$

for all $f_{i}$ in $L_{2}, i=1,2, \ldots$, and $\lambda$ in $C(\bar{E})$.
Proof. Let $Q_{i, m}(x)$ be a solution of

$$
\begin{equation*}
Q(x)=\lambda \int_{0}^{1} K_{m}(x, y) Q(y) d y+f_{i}, \quad i=1,2, \ldots \tag{16}
\end{equation*}
$$

Multiply the equation (16) for $Q_{1, m}$ by $Q_{1, m}$ and integrate. Similarly multiply the equation for $Q_{2, m}$ by $Q_{1, m}$ and integrate. Subtracting the second expression from the first as in [2] we get

$$
\begin{equation*}
\int_{0}^{1} f_{1}(x) \cdot Q_{2, m}(x) d x=\int_{0}^{1} f_{2}(x) \cdot Q_{1, m}(x) d x \tag{17}
\end{equation*}
$$

Setting $m=m_{j}$, from (14) and noting

$$
\int_{0}^{1}\left|Q_{i, m j}(x)\right|^{2} d x \leq M, \quad i=1,2, \ldots
$$

we may pass to the limit in (17). Our result now follows from (14). This result is similar to that in [2, p. 56].

However, since our kernel is now normal and not necessarily symmetric, the development as in [2, Ch. II and III] relating to kernels of Class 1 (those generating selfadjoint operators) cannot be made without additional assumptions.

Remark. A spectral theory paralleling that in [2] or [4]-[5] can be developed for the kernels considered here on the basis of which, propertics 1-4 of Theorem 10.4 [4, pp. 406-407] can be demonstrated.

## References

1. I. A. Goldfain, On a class of linear integral equations, Transl. Amer. Math. Soc. (2) 10 (1958), p. 283.
2. T. Carleman, Sur les équations intégrales singulières à Noyau Riel et symétrique, Uppsala, 1923.
3. M. F. Riesz, Uber Systeme Integrierbarer Funktionen, Math. Ann., 1910.
4. M. H. Stone, Linear transformation in Hilbert space, Amer. Math. Soc., Coll. XV, New York, 1932.
5. W. J. Trjitzinsky, Problems in the theory of integral equations, Ann. of Math., 1940.

McGill University,
Montreal, Quebec

