ON SINGULAR NORMAL LINEAR INTEGRAL EQUATIONS

BY CHARLES G. COSTLEY

In this work we consider the equation

(1) $\begin{array}{l} Q(x) = f(x) + \lambda \int_0^1 K(x, t)Q(t) \, dt \text{ where } K(x, y) \text{ is singular in the sense that it} \\ \text{does not properly belong to } L_2 \text{ and } f(x) \text{ is an arbitrary } L_2 \text{ function.} \end{array}$

A Lebesgue measurable function K(x, y) of two variables, having real values on $[0.1] \times [0.1]$ is called a singular normal kernel of

(i) $\int_0^1 |K(x, y)|^2 dy < \infty$, $\int_0^1 |K(x, y)|^2 dx < \infty$

There exists approximating kernels $K_m(x, y)$ satisfying

- (ii) $K_m(x, y)$ is L_2 in (x, y) $|K_m(x, y)| < |K(x, y)|$
- (iii) $\int_0^1 K_m(x, t) K_m(y, t) dt = \int_0^1 K_m(t, x) K_m(t, y) dt$

(iv)
$$\lim_{m \to \infty} K_m(x, y) = K(x, y)$$

It is seen in [1] that the approximating kernel $K_m(x, y)$ admits a representation $K_m(x, y) = K'_m(x, y) + iK''_m(x, y)$ where K' and K" are symmetric, having one and same system of characteristic functions. The real and imaginary parts of the characteristic numbers of the kernel $K_m(x, y)$ are characteristic numbers of K'_m and K''_m respectively. The approximating kernels behave like symmetric kernels with the single exception that the characteristic values may be complex valued.

We associate with equation (1) the equation

(2)
$$Q(x) = f(x) + \lambda \int_0^1 K_m(x, t)Q(t) dt.$$

The Fredholm theory is applicable to (2), thus there exists a unique solution Q_m in L_2 of (2) for every non-characteristic value λ_{mv} of K_m . Consequently the Schmidt representation extended to the solution of (2) yields,

(3)
$$Q_m(x) = f(x) + \lambda \sum_v \frac{f_{mv}}{\lambda_{mv} - \lambda} \phi_{mv}, \qquad f_{mv} = \int_0^1 f(s) \phi_{mv}(s) \, ds$$

and

(4)
$$\int_0^1 Q_m(x) \phi_{mj}(x) dx = \frac{\lambda_{mj}}{\lambda_{mj} - \lambda} \int_0^1 f(x) \phi_{mj}(x) dx$$

Received by the editors December 5, 1969.

3—с.м.в.

199

or equivalently we may write

(5)
$$Q_m(x) = f(x) + \lambda \int_0^1 K_m(x, t) f(t) dt + \lambda^2 \sum_v \frac{1}{\lambda_{mv} - \lambda} \int_0^1 \int_0^1 K_m(x, \tau) \phi_{mv}(\tau) f(t) d\tau dt.$$

As is well known from classical theory, the series in (5) converges uniformly. Multiplying by $\overline{Q_m(x)}$ and integrating one gets,

$$\int_{0}^{1} |Q_{m}^{2}(x)| dx = \int_{0}^{1} f(x)\overline{Q}_{m}(x) dx + \lambda \sum_{v} \frac{1}{\lambda_{mv} - \lambda}$$
(6)
$$\times \int_{0}^{1} Q_{m}(x)\phi_{mv}(x) dx \int_{0}^{1} \phi_{mv}(t)f(t) dt$$

$$\leq \left|\int_{0}^{1} f(x)\overline{Q}_{m}(x) dx\right| + \frac{|\lambda|}{\delta} \left\{\sum_{v} \left|\int_{0}^{1} \overline{Q}_{m}(x)\phi_{mv}(x) dx\right|^{2} + \sum_{v} \left|\int_{0}^{1} f(x)\phi_{mv}(x) dx\right|^{2}\right\}^{1/2}$$

where λ is in the compliment $C(\overline{E})$ of the closure \overline{E} of the set of characteristic values $\lambda_{mv}(m, v=1, 2, ...)$ of K_m and δ the distance (necessarily positive) from λ to \overline{E} .

From Bessel's inequality

(7)
$$\int_{0}^{1} |Q_{m}^{2}(x)| dx \leq \left\{ \int_{0}^{1} |f|^{2} dx \int_{0}^{1} |Q_{m}|^{2} dx \right\}^{1/2} + \frac{|\lambda|}{\delta} \left\{ \int_{0}^{1} |Q_{m}|^{2} dx \int_{0}^{1} |f|^{2} dx \right\}^{1/2}$$

and

(8)
$$\int_0^1 |Q_m^2(x)| \, dx \leq \left\{1 + \frac{|\lambda|}{|\delta|}\right\}^2 \int_0^1 |f^2(x)| \, dx.$$

We now cite the following well known lemmas of F. Riesz [3].

LEMMA 1. If $f_v(x) \in L_2[0, 1]$, v = 1, 2, ..., and if $\int_0^1 |f_v(x)|^2 dx < M$, v = 1, 2, ...,then there exists a subsequence $\{f_{vj}(x)\}$ such that as $j \to \infty$, $f_{vj}(x) \to f(x)$ weakly, i.e. $\lim_j \int_0^x f_{vj}(x) dx = \int_0^x f(x) dx$, 0 < x < 1. Furthermore $\int_0^1 f^2(x) dx < M$. (M is a constant independent of j.)

LEMMA 2 [2, p. 132]. If $\int_0^1 f_v^2(x) \, dx < c$, $f_v \to f(x)$ weakly while $g_n(x) \to g(x)$ and $|g_n(x)| < \gamma(x) \subset L_2$, n = 1, 2, ..., then

$$\lim_{n} \int_{0}^{1} f_{n}(x)g_{n}(x) \, dx = \int_{0}^{1} f(x)g(x) \, dx.$$

LEMMA 3. If a sequence $\{f_v(x)\}$ converges weakly to f(x) and converges in the ordinary sense to F(x) then

$$f(x) = F(x) \quad \text{a.e.}$$

https://doi.org/10.4153/CMB-1970-040-7 Published online by Cambridge University Press

[June

200

From Lemma 2 it follows that for almost all x in [0, 1]

(9)
$$\lim_{v \to \infty} \int_0^1 K_{nv}(x, y) Q_{nv}(y) \, dy = \int_0^1 K(x, y) Q(y) \, dy.$$

With the aid of (2), it follows from Lemma 3 that $\lim_{v} Q_{nv} = Q(x)$ is a solution of (1). We have thus proved the following:

THEOREM. For λ in the compliment $C(\overline{E})$ of the closure \overline{E} of the set of characteristic values λ_{mv} (m, v=1, 2, ...) of the approximating kernels $K_m(x, y)$, the equation $Q(x) = f(x) + \lambda \int_0^1 K(x, y)Q(y) dy$ with singular normal kernel K, and f in L_2 , possesses a solution Q(x) in L_2 .

We now examine the solution Q(x) obtained above. We suppose in what follows that

(10)
$$\int_0^1 |K_m(x,t) - K_m(x',t)|^2 dt < \sigma(|x-x'|)$$

where σ is independent of *m* and approaches zero as $x \rightarrow x'$.

In view of (8).

(11)
$$|Q_{m}(x) - f(x)| \leq |\lambda| \left\{ \int_{0}^{1} |K_{m}^{2}(x, y)| \, dy \int_{0}^{1} |Q^{2}(y)| \, dy \right\}^{1/2}$$
$$\leq C |\lambda| \left\{ 1 + \frac{|\lambda|}{8} \right\}^{2} K(x)$$

where

$$C = \int_0^1 f^2(y) \, dy \quad \text{and} \quad K(x) = \left\{ \int_0^1 K(x, y)^2 \, dy \right\}^{1/2}.$$

Likewise

(12)

$$|Q_{m}(x) - f(x) - (Q_{m}(x') - f(x'))| \leq |\lambda| \left\{ \int_{0}^{1} Q_{m}^{2}(y) \, dy \right\}^{1/2} \left\{ \int_{0}^{1} |K_{m}(x, y) - K_{m}(x', y)|^{2} \, dy \right\}^{1/2} \leq C |\lambda| \left\{ 1 + \frac{|\lambda|}{\delta} \right\}^{2} \left\{ \int_{0}^{1} |K_{m}(x, y) - K_{m}(x', y)|^{2} \, dy \right\}.$$

In view of (10)

(13)
$$|(Q_m(x)-f(x))-(Q_m(x')-f(x'))| \leq C |\lambda| \left\{1+\frac{|\lambda|}{\delta}\right\}^2 \sigma(|x-x'|).$$

1970]

It follows as in [2, pp. 54–55] with the aid of Vitali's theorem that $\lim_{m\to\infty} Q_m(x) = Q(x)$ is analytic in λ for every λ for which Theorem 1 holds.

COROLLARY. Suppose Ω is a region in $C(\overline{E})$ and the homogeneous equation $Q(x) = \lambda \int_0^1 K(x, y)Q(y) dy$ has no nonzero solutions in L_2 for $\lambda = \lambda_1, \lambda_2, \ldots$, the $\lambda_n, n = 1, 2, \ldots$, being distinct points in Ω with a limiting point in Ω , then there exists no solution $Q = Q(x, \lambda)$, distinct from zero and analytic in λ .

Proof. Results directly from the identity theorem of analytic functions.

REMARK. For any multiple connected region in $C(\overline{E})$, the function Q may be multiple valued. As λ describes some closed path in $C(\overline{E})$, Q may change to another function ψ . However any such circuit will leave equation (1) unchanged, so ψ will also be a solution of (1).

It follows [2, p. 56] that there exists a linear operator $T_{x\lambda}$ (dependent on K) and a subsequence $\{m_j\}$ (independent of f) such that with Q_m denoting a solution of (2) for λ in $C(\overline{E})$ we have

(14)
$$\lim_{j} Q_{m_j} = Q = T_{x\lambda}(f) \text{ is a solution of (1).}$$

THEOREM 2. The operator $T_{x\lambda}(f)$ of (14) satisfies

(15)
$$\int_0^1 f_1(x) T_{x\lambda}(f_2) \ dx = \int_0^1 f_2(x) T_{x\lambda}(f_1) \ dx$$

for all f_i in L_2 , $i=1, 2, \ldots$, and λ in $C(\overline{E})$.

Proof. Let $Q_{i,m}(x)$ be a solution of

(16)
$$Q(x) = \lambda \int_0^1 K_m(x, y) Q(y) \, dy + f_i, \quad i = 1, 2, \dots$$

Multiply the equation (16) for $Q_{1,m}$ by $Q_{1,m}$ and integrate. Similarly multiply the equation for $Q_{2,m}$ by $Q_{1,m}$ and integrate. Subtracting the second expression from the first as in [2] we get

(17)
$$\int_0^1 f_1(x) \cdot Q_{2,m}(x) \, dx = \int_0^1 f_2(x) \cdot Q_{1,m}(x) \, dx.$$

Setting $m = m_j$, from (14) and noting

$$\int_0^1 |Q_{i,mj}(x)|^2 dx \le M, \quad i = 1, 2, \dots$$

we may pass to the limit in (17). Our result now follows from (14). This result is similar to that in [2, p. 56].

However, since our kernel is now normal and not necessarily symmetric, the development as in [2, Ch. II and III] relating to kernels of Class 1 (those generating selfadjoint operators) cannot be made without additional assumptions.

https://doi.org/10.4153/CMB-1970-040-7 Published online by Cambridge University Press

202

1970] LINEAR INTEGRAL EQUATIONS

REMARK. A spectral theory paralleling that in [2] or [4]–[5] can be developed for the kernels considered here on the basis of which, properties 1–4 of Theorem 10.4 [4, pp. 406–407] can be demonstrated.

REFERENCES

1. I. A. Goldfain, On a class of linear integral equations, Transl. Amer. Math. Soc. (2) 10 (1958), p. 283.

2. T. Carleman, Sur les équations intégrales singulières à Noyau Riel et symétrique, Uppsala, 1923.

3. M. F. Riesz, Uber Systeme Integrierbarer Funktionen, Math. Ann., 1910.

4. M. H. Stone, *Linear transformation in Hilbert space*, Amer. Math. Soc., Coll. XV, New York, 1932.

5. W. J. Trjitzinsky, Problems in the theory of integral equations, Ann. of Math., 1940.

MCGILL UNIVERSITY, MONTREAL, QUEBEC