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Abstract

We generalize the Z/p metabelian birational p-adic section conjecture for curves, as
introduced and proved in Pop [On the birational p-adic section conjecture, Compos.
Math. 146 (2010), 621–637], to all complete smooth varieties, provided p > 2. The
condition p > 2 seems to be of technical nature only, and might be removable.

1. Introduction

The (birational) (p-adic) section conjecture (SC) originates from Grothendieck [Gro83, Gro84]
(see [SL98]), and weaker/conditional forms of the SC are a part of the local theory in anabelian
geometry, see e.g. Faltings [Fal98] and Szamuely [Sza04]. In spite of serious efforts to tackle the
SC, only the full Galois birational p-adic SC is completely resolved, see Koenigsmann [Koe05]
for the case of curves and Stix [Sti13] for higher dimensional varieties. On the other hand, a
much stronger form of the birational p-adic SC for curves, to be precise, the Z/p metabelian
birational p-adic SC for curves, was proved in Pop [Pop10]. The aim of this note is to prove a
similarly strong result for the higher dimensional varieties, at least in the case p > 2.

For the reader’s sake and to make the presentation self contained (to some extent), we begin
by recalling a few notations and well-known facts; see e.g. the Introduction in [Pop10]. First, for
an arbitrary (perfect) base field k and complete smooth geometrically integral k-varieties X, let
K = k(X) be the function field of X. Let K̃|K be some Galois extension, k̃ ⊆ K̃ be the relative
algebraic closure of k in K̃, and consider the resulting canonical exact sequence of Galois groups:

1 → Gal(K̃|Kk̃) −→ Gal(K̃|K)
p̃K−→ Gal(k̃|k) → 1.

Let X̃ → X be the normalization of X in the field extension K ↪→ K̃. For x ∈ X and x̃ ∈ X̃
above x, let Tx ⊆ Zx be the inertia/decomposition groups of x̃|x and Gx := Aut(κ(x̃)|κ(x)) be
the residual automorphism group. By decomposition theory, one has a canonical exact sequence

1 → Tx → Zx → Gx → 1. (∗)

Next suppose that x is k-rational, i.e., κ(x) = k. Since k̃ ⊂ κ(x̃), the projection Zx
p̃K−→ Gal(k̃|k)

gives rise to a canonical surjective homomorphism Gx → Gal(k̃|k), which in general is not
injective. On the other hand, if k̃ ↪→ κ(x̃) is purely inseparable, then Gx → Gal(k̃|k) is an iso-
morphism. Hence, if the sequence (∗) splits, then p̃K has sections s̃x : Gal(k̃|k) → Zx ⊂Gal(K̃|K),
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which we call sections above x. And, notice that the conjugacy classes of sections s̃x above x build

a ‘bouquet’, which is in a canonical bijection with the (non-commutative) continuous cohomology

pointed set H1
cont(Gal(k̃|k), Tx) defined via the split exact sequence (∗).

Parallel to the case of points x ∈ X, one has a similar situation for k-valuations v of K

as follows. For any prolongation ṽ of v to K̃, we denote by Tv ⊆ Zv the inertia/decomposition

groups of ṽ|v and by Gv = Zv/Tv the residual automorphism group. As above, if κ(v) = k and

k̃ ↪→ κ(ṽ) is purely inseparable, one has: first, the canonical homomorphism Gv → Gal(k̃|k)

is an isomorphism. Second, if the exact sequence 1 → Tv → Zv → Gv → 1 splits, then the

projection p̃K : Gal(K̃|K) → Gal(k̃|k) has a section s̃v : Gal(k̃|k) → Zv ⊆ Gal(K̃|K), which

we call a section above v. And, the conjugacy classes of sections s̃v above v build a ‘bouquet’,

which is in a canonical bijection with the (non-commutative) continuous cohomology pointed set

H1
cont(Gal(k̃|k), Tv) defined via the canonical split exact sequence above.

Finally, if K̃|K contains a separable closure Ks|K of K and hence k̃ contains a corresponding

separable closure ks of k, then κ(s)s ⊆ κ(x̃), κ(ṽ) and Gx and Gv are the absolute Galois groups

of κ(x) and κ(v), respectively. Further, in this situation, 1 → Tv → Zv → Gv → 1 is split; see

e.g. [KPR86]. Thus, if κ(v) = k, sections above v exist. In particular, if x ∈ X(k) is a k-rational

point, then choosing v such that κ(x) = κ(v), it follows that sections above x exist as well,

because every section above v is a section above x as well. We mention though that in general

the bouquet of sections above x is much richer than the one of sections above v. Namely, by

general decomposition theory, one has Tv ⊂ Tx, and H1
cont(Gal(k̃|k), Tv) → H1

cont(Gal(k̃|k), Tx) is

a strict inclusion in general.

Next let p be a fixed prime number. We denote by K ′|K the (maximal) Z/p elementary

abelian extension of K, and by K ′′ the maximal Z/p elementary abelian extension of K ′ (in

some fixed algebraic closure of K). Then K ′′|K is a Galois extension, which we call the Z/p
metabelian extension of K, and its Galois group Gal(K ′′|K) is called the metabelian Galois group
of K. Note that k′ := k ∩ K ′ and k′′ := k ∩ K ′′ are the Z/p elementary abelian extension

and the Z/p metabelian extension, respectively, of k. Finally, consider the canonical surjective

projections:

pr′K : Gal(K ′|K) → Gal(k′|k), pr′′K : Gal(K ′′|K) → Gal(k′′|k).

We will say that a group theoretical (continuous) section s′ : Gal(k′|k) → Gal(K ′|K) of pr′K
is liftable if there exists a section s′′ : Gal(k′′|k) → Gal(K ′′|K) of pr′′K which lifts s′ to Gal(k′′|k).

Note that if p 6= char, and the pth roots of unity µp are contained in k and hence in K, then

by Kummer theory we have K ′ = K[ p
√
K] and K ′′ = K ′[ p

√
K ′] and similarly for k.

Theorem A. In the above notation, let k|Qp be finite with µp ⊂ k. Then the following hold.

(1) Every k-rational point x ∈ X gives rise to a bouquet of conjugacy classes of liftable sections

s′x : Gal(k′|k) → Gal(K ′|K) above x, which is in bijection with H1(Gal(k′|k), Tx).

(2) Let p > 2 and s′ : Gal(k′|k) → Gal(K ′|K) be a liftable section. Then there exists a unique

k-rational point x ∈ X such that s′ equals one of the sections s′x as defined above.

Actually one can reformulate the question addressed by Theorem A in terms of p-adic

valuations, and get the following stronger result; see § 2(C) for notation, definitions, and a few

facts on (formally) p-adic valuations v, e.g., the p-adic rank dv of v and p-adically closed fields,

and Ax and Kochen [AK66] and Prestel and Roquette [PR85], respectively, for proofs.
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Theorem B. Let k be a p-adically closed field with p-adic valuation v of p-adic rank dv, and
suppose that µp ⊂ k. Let K|k be an arbitrary field extension. Then the following hold.

(1) Let w be a p-adic valuation of K of p-adic rank dw = dv. Then w prolongs v to K, and
gives rise to a bouquet of conjugacy classes of liftable sections s′w : Gal(k′|k) → Gal(K ′|K)
above w.

(2) Let p > 2 and s′ : Gal(k′|k) → Gal(K ′|K) be a liftable section. Then there exists a unique
p-adic valuation w of K of p-adic rank dw = dv such that s′ = s′w for some s′w as above.

Remark/Definition. As mentioned in Pop [Pop10], the condition µp ⊂ k is a necessary condition
in the above theorems. Nevertheless, as mentioned in [Pop10], if µp is not contained in the base
field, assertions similar to Theorems A and B above hold in the following form: let l|Qp be some
finite extension and Y → l a complete geometrically integral smooth variety with function field
L = κ(Y ). Let k|l be a finite Galois extension with µp ⊂ k. Setting K := Lk, consider the field
extensions K ′|K ↪→K ′′|K and k′|k ↪→ k′′|k as above. Then k′ = K ′∩ l and k′′ = K ′′∩ l, and K ′|L
and K ′′|L, as well as k′|l and k′′|l, are Galois extensions too, and one gets surjective canonical
projections

pr′L : Gal(K ′|L) → Gal(k′|l), pr′′L : Gal(K ′′|L) → Gal(k′′|l).

In these notations and context we will say that a section s′L : Gal(k′|l) → Gal(K ′|L) of pr′L
is liftable if there exists a section s′′L : Gal(k′′|l) → Gal(K ′′|L) of pr′′L which lifts s′L.

This being said, one has the following extensions of Theorems A and B.

Theorem A0. In the above notation and hypothesis, the following hold.

(1) Every l-rational point y ∈ Y gives rise to a bouquet of conjugacy classes of liftable sections
s′y : Gal(k′|l) → Gal(K ′|L) above y, which is in bijection with H1(Gal(k′|l), Ty).

(2) Let p > 2 and s′L : Gal(k′|l) → Gal(K ′|L) be a liftable section. Then there exists a unique
l-rational point y ∈ Y such that s′L equals one of the sections s′y as defined above.

Theorem B0. Let l be a p-adically closed field with p-adic valuation v and let L|l be an arbitrary
field extension. Then in the above notation the following hold.

(1) Let w be a p-adic valuation of L with dw = dv. Then w prolongs v to L, and gives rise to a
bouquet of conjugacy classes of liftable sections s′w : Gal(k′|l) → Gal(K ′|L) above w.

(2) Let p > 2 and s′L : Gal(k′|l) → Gal(K ′|L) be a liftable section. Then there exists a unique
p-adic valuation w of L such that dw = dv, and s′L equals one of the sections s′w as above.

Remark. As mentioned in Pop [Pop10], the Z/p metabelian form of the birational p-adic SC
for curves implies the corresponding full Galois SC, which was proved in Koenigsmann [Koe05].
The same holds correspondingly for higher dimensional varieties, provided p > 2, thus implying
Stix’s [Sti13] result in this case. Since the proof of the implication under discussion in the
case of general varieties is word-by-word the same as that from [Pop10], we will not reproduce
it here.

An interesting application of the results and techniques developed here is the following fact
concerning the p-adic section conjecture for varieties: let k|Qp be a finite extension and X a
complete smooth k-variety. Then there exists a finite effectively computable family of finite
geometrically Z/p elementary abelian (ramified) covers ϕi : Xi → X, i ∈ I, satisfying:
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(i)
⋃
i ϕi(Xi(k)) = X(k), i.e., every x ∈ X(k) ‘survives’ in at least one of the covers Xi → X;

(ii) a section s : Gk → π1(X, ∗) can be lifted to a section si : Gk → π1(Xi, ∗) for some i ∈ I if
and only if s arises from a k-rational point x ∈ X(k) in the way described above.

The main technical tools for the proof of the above theorems are:
• the techniques developed in Pop [Pop10] (which refine facts/methods initiated in [Pop88]);
• the theory of rigid elements, as developed by several people: Ware [War81], Arason

et al. [AEJ87], Koenigsmann [Koe95], Efrat [Efr99], etc. See Topaz [Top15] as the definitive
reference.

As a final remark, we notice that the condition p > 2 in the results above originates from the
weaker results about recovering valuations from rigid elements in the case p = 2. This technical
condition might be removable, but some new ideas/techniques might be necessary to do so; see
the comment at the beginning of the proof of assertion (2) of Theorem B in § 3.

2. Reviewing a few known facts

For the reader’s sake, in this section we review a few known facts about valuation theory,
decomposition theory, and (formally) p-adic fields, but do not reproduce proofs.

(A) Generalities about valuations and their Hilbert decomposition theory

For an arbitrary field K and an arbitrary valuation v of K, we denote usually by Ov,mv the
valuation ring/ideal of v, by vK = K×/O× the value group of v, and by Kv =: Ov/mv := κ(v)
the residue field of v. Further, U1

v := 1 + mv ⊂ Uv denote the groups of principal v-units and
v-units, respectively. One has the following canonical exact sequences:

1 → mv → Ov → Kv → 0 and 1 → U1
v → O×v → (Kv)× → 1.

The set of ideals of Ov is totally ordered with respect to inclusion. The subrings O1 ⊆ K
with Ov ⊆ O1 are precisely the localizations O1 := (Ov)m1 with m1 ∈ Spec(Ov) and, moreover,
m1 ⊂Ov, and (Ov)m1 is a valuation ring with valuation ideal m1. Further, if v1 is the corresponding
valuation of K, then O0 := Ov/m1 is a valuation ring of Kv1 with valuation ideal m0 := mv/m1,
say of a valuation v0 of Kv1. We say that v1 is a coarsening of v, and denote v1 6 v and v0 := v/v1.

Conversely, if v1 is a valuation of K and v0 is a valuation on the residue field Kv1, then the
preimage of the valuation ring Ov0 ⊆ Kv1 under Ov1 → Kv1 is a valuation ring O ⊆ Ov1 having
as valuation ideal the preimage m ⊂ O of mv0 . Hence, if v is the valuation defined by O on K,
then Kv = (Kv1)v0 and one has a canonical exact sequence of totally ordered groups:

0 → v0(Kv1) → vK → v1K → 0.

The relation between coarsening and decomposition theory is as follows. Let K̃|K be a Galois
extension and ṽ|v be a prolongation of v to K̃. Then the coarsenings ṽ1 of ṽ are in a canonical
bijection with the coarsenings v1 of v via Oṽ1 7→ Ov1 := Oṽ1 ∩K; thus, Oṽ1 = Oṽ · Ov1 . Let ṽ1|v1
be given coarsenings of ṽ|v and K̃ṽ1|Kv1 be the corresponding residue field extension. Then
ṽ0 := ṽ/ṽ1 is canonically a prolongation of v0 := v/v1.

Fact 1. Let Tṽ ⊆ Zṽ and Tṽ1 ⊆ Zṽ1 be the corresponding inertia/decomposition groups, and set
Gṽ1 = Aut(K̃ṽ1|Kv1). Then one has a canonical exact sequence 1 → Tṽ1 → Zṽ1 → Gṽ1 → 1, and
the inertia/decomposition groups satisfy:

(a) Zṽ ⊆ Zṽ1 and Tṽ ⊇ Tṽ1 . Further, Tṽ1 is a normal subgroup of Zṽ;

(b) via 1 → Tṽ1 → Zṽ1 → Gṽ1 = Zṽ1/Tṽ1 → 1, one has that Tṽ0 = Tṽ/Tṽ1 and Zṽ0 = Zṽ/Tṽ1 .
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(B) Hilbert decomposition in elementary abelian extensions

Let K be a field of characteristic prime to p containing µn, where n = pe is a power of the
prime number p, and let K̃ = K[ n

√
K] be the maximal Z/n elementary abelian extension of

K. Let v be a valuation of K, ṽ be some prolongation of v to K̃, and Vṽ ⊆ Tṽ ⊆ Zṽ be the
ramification, the inertia, and the decomposition, groups of ṽ|v, respectively. We remark that
because Gal(K̃|K) is commutative, the groups Vṽ, Tṽ, and Zṽ depend on v only. Therefore,
we will simply denote them by Vv, Tv, and Zv. Finally, we denote by KZ ⊆ KT ⊆ KV the
corresponding fixed fields in K̃. One has the following, see e.g. Pop [Pop10, § 2] (where the case
n = p is dealt with; but the proof is similar for general n = pe and we will not reproduce the
details here).

Fact 2. In the above notation, the following hold.

(1) Let Uv := 1 + p2emv. Then n
√
Uv ⊂ KZ , and KZ = K[ n

√
1 + mv], provided char(Kv) 6= p.

In particular, if w1 and w2 are independent valuations of K, then Zw1 ∩ Zw2 = 1.

(2) If p 6= char(Kv), then Vv = 1 and K̃ṽ = K̃v and hence Gv := Zv/Tv = Gal(K̃v|Kv) in this
case. And, if p = char(Kv), then Vv = Tv, and the residue field K̃ṽ contains (Kv)1/n and a
maximal Z/n elementary abelian extension of Kv.

(3) Let L := Kh
v be the Henselization of K with respect to v. Then L̃ = LK̃ is a maximal Z/n

elementary extension of L. Therefore, we have Gal(L̃|L) ∼= Zṽ canonically.

(C) Formally p-adic fields and p-adic valuations

We recall a few basic facts about p-adic valuations and (formally) p-adically closed fields;
see Ax and Kochen [AK66] and Prestel and Roquette [PR85] for more details.

(1) A valuation v of a field k is called (formally) p-adic if its residue field kv is a finite field,
say Fq with q = pfv elements, and the value group vk has a minimal positive element 1v
such that v(p) = ev · 1v for some natural number ev > 0. The number dv := evfv is called
the p-adic rank (or degree) of the p-adic valuation v. Note that a field k carrying a p-adic
valuation v must necessarily have char(k) = 0, as v(p) 6=∞, and char(kv) = p.

(2) Let v be a p-adic valuation of k with valuation ring Ov. Then O1 := Ov[1/p] is the valuation
ring of the unique maximal proper coarsening v1 of v, which is called the canonical coarsening
of v. Note that setting k0 := kv1, and v0 := v/v1 the corresponding valuation on k0, we have:
v0 is a p-adic valuation of k0 with ev0 = ev and fv0 = fv; hence, dv0 = dv and, moreover, v0
is a discrete valuation of k0. In particular, the following hold.

(a) v has rank one if and only if v1 is the trivial valuation if and only if v = v0.

(b) Giving a p-adic valuation v of a field k of p-adic rank dv = evfv is equivalent to giving
a place p of k with values in a finite extension k0 of Qp such that the residue field
k0 := kp of p is dense in k0, and k0|Qp has ramification index ev and residual degree
fv.

(c) If vi < v is a strict coarsening of v, then vi 6 v1, and the quotient valuation v/vi on the
residue field kvi is a p-adic valuation with ev/vi = ev and fv/vi = fv; thus, dv/vi = dv.
(Actually, κ(vi/v1) ∼= kv1 and κ(vi/v) ∼= kv canonically.)

(3) Let v be a p-adic valuation of k, l|k a finite field extension, and denote by w|v the
prolongations of v to l. Then the following hold.
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(a) All prolongations w|v are p-adic valuations. Further, the fundamental equality holds

for the finite extension l|k, i.e., [l : k] =
∑

w|v e(w|v)f(w|v), where e(w|v) and f(w|v)

are the ramification index and the residual degree, respectively, of w|v.

(b) For each w|v, let w1 be the canonical coarsening of w, and w0 = w/w1 be the canonical

quotient on the residue field lw1. Then by general decomposition theory of valuations

one has e(w|v) = e(w1|v1)e(w0|v0) and f(w|v) = f(w0|v0). Further, ew = e(w0|v0)ev
and fw = f(w|v)fv; thus, dw = e(w0|v0)f(w|v)dv.

(c) In particular, if l|k is Galois, and wZ is the restriction of w to the decomposition field

lZ of w, then e(w|wZ) = e(w|v) and f(w|wZ) = f(w|v); thus, wZ is a p-adic valuation

having p-adic rank equal to the one of v. Further, the same is true for infinite Galois

extensions l|k.

(4) A field k is called (formally) p-adically closed if k carries a p-adic valuation v such that for

every finite extension k̃|k, one has: if v has a prolongation ṽ to k̃ with dṽ = dv, then k̃ = k.

One has the following characterization of the p-adically closed fields: for a field k endowed

with a p-adic valuation v, and its canonical coarsening v1, the following are equivalent.

(i) k is p-adically closed with respect to v.

(ii) v is Henselian and v1k is divisible (maybe trivial).

(iii) v1 is Henselian, v1k is divisible (maybe trivial), and the residue field k0 := kv1 is

relatively algebraically closed in its v0 = v/v1 completion k0 (itself a finite extension

of Qp).

Further, the p-adic valuation of a p-adically closed field is definable and unique.

(5) Finally, for every field k endowed with a p-adic valuation v, there exist p-adic closures k̂, v̂

such that dv̂ = dv. Moreover, the space of the k-isomorphy classes of p-adic closures of k, v

has a concrete description as follows: let v1 be the canonical coarsening of v, and k0|Qp the

completion of the residue field of k0 = kv1 with respect to the discrete valuation v0 = v/v1.

Recalling the canonical exact sequence 1 → Iv1 −→ Dv
pr−→ Gk0 → 1, one has that the space

of the isomorphy classes of p-adic closures of k, v is in bijection with the space of conjugacy

classes of sections of pr and thus with H1
cont(Gk0 , Iv1).

(6) In the above notation, the following hold.

(a) Let k, v be a p-adically closed field. Then k0 = kv1 is p-adically closed (with respect to

v0), and kabs is actually the relative algebraic closure of Q in k0. Further, k = kQ.

(b) The elementary equivalence class of a p-adically closed field k is determined by both

the absolute subfield kabs := k ∩ Q = k0 ∩ Q of k and the completion k0 of k0 = kv1
with respect to v0 (which equals the completion of kabs with respect to v0 as well).

(c) If N is p-adically closed with respect to the p-adic valuation w, and k ⊆ N is a subfield

which is relatively closed in N , then k is p-adically closed with respect to v := w|k, v
and w have equal p-adic ranks, and N and k are elementary equivalent.

(d) If N |k is an extension of p-adically closed fields of the same rank, the following hold.

• k̃|k 7→ Nk̃ defines a bijection from the set of algebraic extensions k̃|k of k onto

the set of algebraic extensions of N .

• The canonical projection GN → Gk is an isomorphism.
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(e) In particular, if L|l is an extension of p-adically closed fields of the same rank, in the
notation from the Introduction, the following canonical projections are isomorphisms:

pr′L : Gal(K ′|L) → Gal(k′|l), pr′′L : Gal(K ′′|L) → Gal(k′′|l). (†)

(D) Valuations and rigid elements

We recall the result of Arason et al. [AEJ87, Theorem 2.16]; see also Koenigsmann [Koe95],
Ware [War81], Efrat [Efr99], and especially Topaz [Top15] for much more about this. The point
is that one can recover valuations of a field K from particular subgroups T ⊂ K× as follows: let
T ⊂ K× be a subgroup with −1 ∈ T . We say that x ∈ K×\T is T -rigid if 1 + x ∈ T ∪ xT ; and,
by abuse of language, we say that K is T -rigid if all x ∈ K×\T are T -rigid.

Theorem 3 (Arason et al.). In the above notation, let T ⊂ K× be a subgroup with −1 ∈ T
such that K is T -rigid. Then there exists a valuation v of K whose valuation ideal mv satisfies
1 + mv ⊆ T , and whose valuation ring Ov has the property that |O×v /(T ∩ O×v )| 6 2.

3. Proof of Theorem B

To (1): Let K̂, ŵ be a p-adic closure of K,w. Then ŵ prolongs w and has p-adic rank dŵ = dw
and thus equal to dv by the fact that dw = dv. Therefore, since k is p-adically closed, k must be
relatively algebraically closed in K̂. We conclude by using (†) from § 2(C)(6)(e), with l := k and
L := K̂, and taking into account that the isomorphism Gal(K̂ ′′|K̂) → Gal(k′′|k) factors through
Gal(K ′′|K) → Gal(k′′|k) and thus gives rise to a liftable section of Gal(K ′|K) → Gal(k′|k).

To (2): The proof of assertion (2) is divided into three main steps, whereas the hypothesis
p > 2 is used only in Step 2. This might be relevant when trying to address the case p = 2.

Step 1. By Kummer theory, pr′K : Gal(K ′|K) → Gal(k′|k) is Pontrjagin dual to the canonical
embedding k×/p → K×/p. Second, given a liftable section s′ : Gal(k′|k) → Gal(K ′|K) of pr′K , it
follows by Kummer theory that the Pontrjagin dual of s′ : Gal(k′|k) → Gal(K ′|K) is a surjective
projection K×/p → k×/p, whose kernel Σ/p ⊂ K×/p is a complement of k×/p ⊂ K×/p. That
means that s′ gives rise canonically to a presentation of K×/p as a direct sum

K×/p = Σ/p · k×/p. (†)

For every k-subfield Kα ⊂K which is relatively algebraically closed in K, one has a commutative
diagram of surjective projections

Gal(K ′′|K) //

��

Gal(K ′′α|Kα) //

��

Gal(k′′|k)

��
Gal(K ′|K) // Gal(K ′α|Kα) // Gal(k′|k)

and s′ gives rise canonically to a liftable section s′α of pr′α : Gal(K ′α|Kα) → Gal(k′|k), etc. In
particular, one has corresponding canonical presentations as direct sums

K×α /p = Σα/p · k×/p (†)α

defined by the sections s′α : Gal(k′|k) → Gal(K ′α|Kα) induced by s′ : Gal(k′|k) → Gal(K ′|K).
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Claim. In the above notions, one has Σα/p = Σ/p ∩K×α /p and thusΣ/p determines Σα/p.

Indeed, let Dα := im(s′α) ⊂ Gal(K ′α|Kα). Then, by the definition of s′α, it follows that
Dα is the image of D = im(s′) under the canonical projection Gal(K ′|K) → Gal(K ′α|Kα). In
other words, by Pontrjagin duality, the projection K×α /p → k×/p factors through the inclusion
K×α /p ↪→ K×/p. Hence, Σα/p is mapped into Σ/p under K×α /p ↪→ K×/p, which proves the
claim.

Now let T/p := Σ/p ·O×v /p and T ⊂K× be the corresponding subgroup (thus containing the
pth powers in K×). Then, for every k-subfield Kα ⊂ K which is relatively algebraically closed
in K, by the remarks above one has that Tα := T ∩K×α ⊂ K×α satisfies Tα/p = Σα/p · O×v /p.

Finally, let (Kα)α be the family of all the k-subfields Kα ⊂ K which are relatively
algebraically closed in K and satisfy tr.deg(Kα|k) = 1. Then, by Pop [Pop10, Theorem B],
for every subfield Kα, there exists a unique p-adic valuation wα of Kα prolonging the p-adic
valuation v of k to Kα and having the same p-adic rank as v. Our final aim is to show that there
exists a (unique) p-adic valuation w of K such that wα is the restriction of w to Kα for each Kα.

Lemma 4. In the above notation, Kα is Tα-rigid. Further, T =
⋃
α Tα, and K is T -rigid.

Proof. We first show that Owα ⊂ Tα. Indeed, let v be the p-adic valuation of k, and further
consider: first, the canonical coarsening v1 of v and the canonical p-adic valuation v0 := v/v1
on the residue field k0 := kv1 of v1. Second, consider the p-adic valuation wα of Kα, and let
wα1 and wα0 := wα/wα1 and Kα0 be correspondingly defined. Notice that wα|k = v implies that
wα1|k = v1 and wα0|k0 = v0. The following hold.

(a) First, by Fact 2, it follows that p
√

1 + p2mwα is contained in the decomposition field of wα
over K, which is actually the fixed field of Zwα in K ′α. Second, the fixed field of im(s′) in
K ′α is, by the mere definitions, generated as a field extension of K by p

√
Σ′
α. Thus, since

im(s′) ⊂ Zwα , it follows by Kummer theory that 1 + p2mwα ⊂ Σα.

(b) Since, by the mere definition, one has mwα1 ⊂ mwα and p is invertible in Owα1 , it follows
that 1 + mwα1 ⊂ 1 + p2mwα . Thus, one has finally 1 + mwα1 ⊂ Σα as well.

(c) Since wα and v have the same p-adic rank, it follows by the discussion in § 2(C)(5) that wα0

and v0 are discrete p-adic valuations of the same p-adic rank and hence k0 is dense in Kα0.
Therefore, since wα0|v0 are discrete valuations, and k0 is dense in Kα0 under k0 ↪→ Kα0, one
has that O×wα0 = O×v0 · (1 + p2mwα0) and K×α0 = k×0 · (1 + p2mwα0) as well.

(d) Since K×α0 =O×wα1/(1+mwα1), k×0 =O×v1/(1+mv1), and 1+p2mwα0 = (1+p2mwα)/(1+mwα1),
from the equality K×α0 = k×0 · (1 + p2mwα0) above, it follows that O×wα1 = O×v1 · (1 + p2mwα).

(e) Similarly, the equalities O×wα0 = O×wα/(1 +mwα1) and O×wα0 = O×v0 · (1 + p2mwα0) imply that
O×wα = O×v · (1 + p2mwα).

Hence, since O×v , 1 + p2mwα ⊂ Tα, one finally has O×wα = O×v · (1 + p2mwα) ⊂ Tα, as claimed.
We next show that Kα is Tα-rigid. To do so, we first notice that by the discussion above, for

any fixed element π ∈ Ov of minimal positive value 1v ∈ vk, the following holds: let x ∈ O×wα1 be
an arbitrary wα1-unit. Then there exist m ∈ Z, ε ∈ O×v , and x1 ∈ 1 + p2mwα such that

x = πmεx1. (])

Now let x ∈ K×α \Tα be given. Then one has the following possibilities.

(1) wα1(x) > 0. Then 1 + x is a principal wα1-unit and, therefore, 1 + x ∈ Σα by assertion (b)
above. Since Σα ⊂ Tα, we conclude that 1 + x ∈ Tα.
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(2) wα1(x) < 0. Then 1+x = x(1+x−1). Since wα1(x
−1) > 0, by the discussion above, it follows

that 1 + x−1 ∈ Tα. Therefore, one finally has that 1 + x ∈ xTα.

(3) wα1(x) = 0 or, equivalently, x ∈ O×wα1 . Let x = πmεx1 be as given in (]) above. One has:

(α) if m > 0, then x ∈ πm · O×wα and thus 1 + x ∈ O×wα as well. Hence, by the relation (]) above,
1 + x = η1 · η0 for some η1 ∈ 1 + p2mwα ⊂ Σα, η0 ∈ O×v . Thus, finally, 1 + x ∈ Tα;

(β) if m < 0, then 1 + x = x(1 + x−1), and x−1 has value −m > 0. But then, by the first case
above, 1 + x−1 ∈ Tα. Hence, 1 + x = x(1 + x−1) ∈ xTα and thus 1 + x ∈ xTα;

(γ) if m = 0, then x ∈ O×wα ⊂ Tα and thus x 6∈ K×α \Tα.

For the T -rigidity of K, let x ∈ K\T be given. If x ∈ k, then x ∈ k\O×v (by the definition
of T ). An easy case by case analysis, namely v(x) > 0 or v(x) < 0, shows that 1+x ∈ O×v ∪xO×v ,
etc. Finally, if x 6∈ k, then letting Kα ⊂ K be the relative algebraic closure of k(x) in K, one
has: since x ∈ K\T , one must have x ∈ Kα\Tα. Thus, by the discussion above, it follows that
1 + x ∈ Tα ∪ xTα and, therefore, 1 + x ∈ T ∪ xT , etc.

This concludes the proof of Lemma 4. 2

Step 2. Using Lemma 4 above and applying the Arason–Elman–Jacob theorem 3, we get: there
exists a valuation w on K such that |O×w/(Ow ∩ T )| 6 2 and 1 + mw ⊂ T . Hence, letting
O×wT ⊂ K× be the subgroup generated by T and Ow, one has Ow/(Ow ∩ T ) = (O×wT )/T and
thus |(O×wT )/T | 6 2. We claim that O×w ⊂ T . Indeed, first, one has k× = O×v · πZ as direct sum
and hence (k×/p)/(O×v /p) = πZ/p. Second, by definitions, one has that K×/p = Σ/p · k×/p and
T/p = Σ/p · O×v /p, both of which being direct sums. Thus, finally one gets that

K×/p = Σ/p · k×/p = Σ/p · O×v /p · πZ/p = T/p · πZ/p,

where the dot denotes direct sums; in particular, one has |K×/T | = |(K×/p)/(T/p)| = p. Hence,
considering the canonical inclusions of groups T ⊆ O×wT ⊆ K×, we get

p = |K×/T | = |K×/(O×wT )| · |(O×wT )/T |.

Since |(O×wT )/T | 6 2 and 2 < p, it follows that |(O×wT )/T | = 1 is the only possibility; hence,
T = O×wT , and, finally, O×w ⊆ T . Hence, we conclude that |K×/O×w | > p and therefore we have
the following result.
• The valuation w is a non-trivial valuation of K.

Step 3. Recalling that O×w ⊂ T , one has that the canonical projection K×/O×w → K×/T is
surjective. Therefore, if b ∈ K is a generator of K×/T , e.g., b = π ∈ k0 has v0(π) = 1, then b is
not a w-unit and w(b) is not divisible by p in wK = K×/O×w and hence wK is not divisible by p.

For every subfield Kα ⊂ K as in the proof of Lemma 4, let vα := w|Kα be the restriction of
w to Kα. Then Ovα = Ow ∩Kα and, therefore, O×vα is contained in Tα = T ∩Kα.

Lemma 5. The restriction vα := w|Kα of w to Kα equals the p-adic valuation wα.

Proof. By the first part of the proof of Lemma 4, we have that O×wα ⊂ Tα. Since O×vα ⊆ Tα as
well, it follows that the element-wise product O×wαO

×
vα is contained in Tα. Since Tα is a proper

subgroup of K×α , it follows that O×wαO
×
vα 6= K× as well. The following is well-known valuation

theoretical nonsense: let n be the largest common ideal of Ovα and Owα . Then O := OvαOwα

1441

https://doi.org/10.1112/S0010437X1700714X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1700714X


F. Pop

equals both the localization ofOvα at n and the localization ofOwα at n. Further,O is the smallest
valuation ring of K which contains both Ovα and Owα ; or, equivalently, O is the valuation ring
of the finest common coarsening of vα and wα. We now claim that one has

O× = O×vαO
×
wα .

Indeed, let v1
α and w1

α be the valuations of κ(n) :=O/n defined by Owα/n and Ovα/n, respectively.
Then v1

α and w1
α are independent, and one has exact sequences

1 → (1 + n) → O×vα → O×
v1α

→ 1 and 1 → (1 + n) → O×wα → O×
w1
α

→ 1.

Since v1
α and w1

α are independent valuations of κ(n), one has that O×
v1α
O×
w1
α

= κ(n)× and therefore

(O×vαO
×
wα)/(1 + n) = κ(n)×.

On the other hand, one also has O×/(1 + n) = κ(n)×. Further, 1 + n is contained in both O×vα
and O×wα and hence we conclude that O×vαO

×
wα = O×, as claimed.

By contradiction, suppose that Ovα 6= Owα . Recall that the valuation ring Owα has finite
residue field and hence Owα is minimal among the valuation rings of Kα and, in particular, Ovα
cannot be contained in Owα . Therefore, in the above notation, one has that Owα ⊂ O strictly or,
equivalently, n ⊂ mwα is a strict inclusion. On the other hand, if b ∈ k is any element of minimal
positive value 1v, then mwα = bOwα and, therefore, b 6∈ n. Thus, we have

b ∈ O× = O×vαO
×
wα ⊆ Tα,

contradicting the fact that w(b) generates wK/w(T ) ∼= Z/p. Thus, we conclude that one must
have Owα = Ovα , and Lemma 5 is proved. 2

We next claim that w is a p-adic valuation of K having p-adic rank dw = dv. Indeed, for
t ∈ Ow, let Kα ⊂ K be the relative algebraic closure of k(t) in K. Then Kα|k has transcendence
degree 6 1 and, therefore, w|Kα = wα is the p-adic valuation wα by Lemma 5. In particular, if
b ∈ k is such that v(b) = 1v is the minimal positive element of v(k×), it follows that wα(b) is
the minimal positive element of wαKα under vk ↪→ wαKα and, further, kv = Kαwα is the finite
field of cardinality fv = fwα . One has the following.

(a) w(b) is the minimal positive element of w(K×). Indeed, for t ∈ mw, in the above notation
one has w(t) = wα(t) > wα(b) = w(b).

(b) kv = Kw and thus fv = fwα . Indeed, if t ∈ Ow, then in the above notation the residue
t ∈ Kw satisfies t ∈ Kαwα = kv.

Therefore, w is a p-adic valuation of rank dw = dv, which is unique, by the uniqueness of
wα = w|Kα for every subfield Kα. This concludes the proof of Theorem B.

4. Proof of the other announced results

(A) Proof of Theorem A
The following stronger assertion holds (from which Theorem A immediately follows).

Theorem 6. Let k|Qp be a finite extension containing the pth roots of unity, and let k0 ⊆ k be
a subfield which is relatively algebraically closed in k. Let X0 be a complete smooth k0-variety,
and K0 = k0(X) be the function field of X0. The following hold.
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(1) Every k-rational point x ∈ X0 gives rise to a bouquet of conjugacy classes of liftable
sections s′x of Gal(K ′0|K0) → Gal(k′0|k0) above x.

(2) Suppose that p > 2 and let s′ be a liftable section of Gal(K ′0|K0) → Gal(k′0|k0). Then there
exists a unique k-rational point x ∈ X0 such that s′ equals one of the sections s′x above.

Proof. The proof is very similar to the proof of Pop [Pop10, Theorem A]. We repeat here the
arguments briefly for the reader’s sake.

To (1): Let v be the valuation of k. We notice that by § 2(C)(b), there exists a bijection
from the set of (equivalence classes of) p-adic valuations w of K0 = κ(X0) with dw = dv onto the
set of bouquets of liftable sections above k-rational points x of X0, which sends each w to the
corresponding bouquet of liftable sections above the center x of the canonical coarsening w1 on
X = X0 ×k0 k. We conclude by applying assertion (1) of Theorem B.

To (2): Since k0 ⊆ k is relatively algebraically closed, it follows that k0 is p-adically closed.
Let v be the valuation of k and of all subfields of k. Since k0 is p-adically closed, we can apply
Theorem B and get: for every liftable section s′ of Gal(K ′0|K0) → Gal(k′0|k0), there exists a
unique p-adic valuation w of K0 which prolongs v to K0 and has p-adic rank equal to the p-adic
rank of v, such that s′ is a section above w. Let w1 be the canonical coarsening of w. Then we
have the following cases.

Case 1. The valuation w1 is trivial.
Then w is a discrete p-adic valuation of K prolonging v to K, having the same residue field

and the same value group as v. Equivalently, the completions of k0 and K0 are equal and hence
equal to k. Therefore, w is uniquely determined by the embedding ıw : (K0, w) ↪→ (k, v). In
geometric terms, ıw defines a k-rational point x of X0, etc.

Case 2. The valuation w1 is not trivial.
Then w1 is a k0-rational place of K0 and hence defines a k0-rational point x0 of X0; hence,

by base change, a k-rational point x of X0 as well, etc. 2

(B) Proof of Theorem B0

The proof is almost identical with the one of Theorem B0 from Pop [Pop10]. The proof
of assertion (1) is identical with the proof of assertion (1) of Theorem B; thus, we omit it.
Concerning the proof of assertion (2), let s′L : Gal(k′|l) → Gal(K ′|L) be a given liftable section
of pr′L : Gal(K ′|L) → Gal(k′|l). Then considering the restriction

s′ := pr′L |Gal(k′|k) : Gal(k′|k) → Gal(K ′|K),

it follows by mere definitions that s′ is a liftable section of pr′K : Gal(K ′|K) → Gal(k′|k). Hence,
by Theorem B, there exists a unique p-adic valuation w1 of K which prolongs the p-adic valuation
vk of k to K and has dw1 = dvk , and s′ = sw1 in the usual way.

Let w = w1|L be the restriction of w1 to L. Then w prolongs the valuation v of l to L. We
claim that w1 is the unique prolongation of w to K. Indeed, let w2 := w1 ◦σ0, with σ0 ∈ Gal(k|l),
be a further prolongation of w to K. Then, if (wi)′ is a prolongation of wi to K ′, i = 1, 2,
and σ ∈ im(s′L) is a preimage of σ0, then (w2)′ := (w1)′ ◦ σ is a prolongation of w2 to K ′.
Therefore, if Zw1 ⊂ Gal(K ′|K) is the decomposition group above w1, then Zw2 := σZw1σ−1

is the decomposition group above w2. On the other hand, im(s′) ⊆ Zw1 by Theorem B. Since
Gal(k′|k) is a normal subgroup of Gal(k′|l), it follows that im(s′) is normal in im(s′L). Hence, if
σ ∈ im(s′L), it follows that σ(im(s′))σ−1 = im(s′) and, therefore, one has

Zw1 ⊇ im(s′) = σ(im(s′))σ−1 ⊆ σZw1σ−1 = Zw2 .
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Hence, im(s′)⊂ Zw1 , Zw2 ; thus, by the uniqueness assertion of Theorem B, we must have w1 = w2.
Equivalently, if σ ∈ im(s′L), then σZw1σ−1 = Zw1 and therefore σ ∈ Zw1 . Finally, we conclude
that dw = dv, as claimed, and this concludes the proof of Theorem B0.

(C) Proof of Theorem A0

The following stronger assertion holds (from which Theorem A0 follows immediately).

Theorem 7. Let l|Qp be a finite extension. Let l0 ⊂ l be a relatively algebraically closed subfield,
and k0|l0 a finite Galois extension with µp ⊂ k0. Let Y0 be a complete smooth geometrically
integral variety over l0. Let L0 = κ(Y0) the function field of Y0, and K0 = L0k0.

(1) Every l-rational point y ∈ Y0 gives rise to a bouquet of conjugacy classes of liftable sections s′y
of Gal(K ′0|L0) → Gal(k′0|l0) above y.

(2) Let p > 2 and s′ : Gal(k′0|l0) → Gal(K ′0|L0) be a liftable section of Gal(K ′0|L0) → Gal(k′0|l0).
Then there exists a unique l-rational point y ∈ Y0(l) such that s′ equals one of the sections
s′y introduced in point (1) above.

Proof. The proof is identical to the proof of Theorem A above, with the only difference that one
uses Theorem B0 instead of Theorem B. 2
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