PACKING OF SPHERES IN 1,†

by E. SPENCE

(Received 16 January, 1969)

1. Introduction. The Banach space $l_p (p \ge 1)$ is the space of all infinite sequences $\mathbf{x} = (x_1, x_2, x_3, ...)$ of real or complex numbers such that $\sum_{i=1}^{\infty} |x_i|^p$ is convergent, with the norm defined by

$$\|\mathbf{x}\| = \left\{\sum_{i=1}^{\infty} |x_i|^p\right\}^{1/p}.$$

The unit sphere S of l_p is the set of all points $\mathbf{x} \in l_p$ with $\|\mathbf{x}\| \leq 1$ and the sphere of radius $a \geq 0$ centred at $\mathbf{y} \in l_p$ is denoted by $S_a(\mathbf{y})$, so that

$$S_a(\mathbf{y}) = \{\mathbf{x} \in l_p \colon \| \mathbf{x} - \mathbf{y} \| \leq a\}.$$

A (finite or infinite) set of spheres $S_a(y_1)$, $S_a(y_2)$, ... is said to form a *packing* in S if each sphere $S_a(y_i)$ is contained in S and no two of the spheres overlap (they are, however, allowed to touch). By taking $\mathbf{x} = (1 + a/||\mathbf{y}||)\mathbf{y}$ if $\mathbf{y} \neq \mathbf{0}$ and $\mathbf{x} = (a/||\mathbf{u}||)\mathbf{u}$ for a non-zero \mathbf{u} if $\mathbf{y} = \mathbf{0}$, it is seen that, if $S_a(\mathbf{y}) \subseteq S$, then $\mathbf{x} \in S$ and $||\mathbf{y}|| \leq 1-a$. Conversely, if $||\mathbf{y}|| \leq 1-a$ and $||\mathbf{x}-\mathbf{y}|| \leq a$, then $||\mathbf{x}|| \leq ||\mathbf{x}-\mathbf{y}|| + ||\mathbf{y}|| \leq 1$, so that $S_a(\mathbf{y}) \subseteq S$. Also, two spheres $S_a(\mathbf{y})$ and $S_a(\mathbf{z})$ do not overlap if and only if $||\mathbf{y}-\mathbf{z}|| \geq 2a$, so that an equivalent condition for the set of spheres $S_a(y_1)$, $S_a(y_2)$, ... to form a packing is that

$$\|\mathbf{y}_i\| \leq 1-a \quad \text{for all } i \quad \text{and} \quad \|\mathbf{y}_i - \mathbf{y}_j\| \geq 2a \quad \text{if } i \neq j.$$
 (1.1)

Let $\lambda_p = (1+2^{1-1/p})^{-1}$ and $\mu_p = (1+2^{1/p})^{-1}$. In [1] the following results were proved:

THEOREM 1.1. If p > 2, an infinity of spheres $S_a(\mathbf{y})$ of fixed radius a can be packed in S if and only if $a \leq \lambda_p$. If $\lambda_p < a \leq \mu_p$, any finite number of spheres $S_a(\mathbf{y})$ can be packed in S but an infinite number cannot. If $\mu_p < a \leq 1$, the maximum number of spheres of fixed radius a which can be packed in S does not exceed

$$M_{p}(a) = \left[\left\{ 1 - \frac{1}{2} \left(\frac{1-a}{a} \right)^{p} \right\}^{-1} \right].$$

(The square brackets denote the integral part.)

THEOREM 1.2. If $1 \le p \le 2$, an infinity of spheres $S_a(\mathbf{y})$ of fixed radius a can be packed in S if and only if $a \le \lambda_p$. If $\lambda_p < a \le 1$, the maximum number of spheres $S_a(\mathbf{y})$ which can be packed in S does not exceed $L_p(a)$, where $L_1(a) = 1$ and

$$L_p(a) = \left[\left\{ 1 - \frac{1}{2} \left(\frac{1-a}{a} \right)^{p/(p-1)} \right\}^{-1} \right] \quad (1$$

[†]The contents of this paper formed part of a Ph.D. thesis submitted to Glasgow University in 1968. I should like to thank my supervisor, Professor R. A. Rankin, for his advice and encouragement.

It is the purpose of this paper to prove that in the case of complex l_p space the upper bound $M_p(a)$ obtained in Theorem 1.1 is in a sense the best possible, but that in the case of real l_p space both bounds $M_p(a)$ and $L_p(a)$ can be considerably improved.

2. Conditions for the existence of finite packings. In this section the following theorem is proved.

THEOREM 2.1. If $p \ge 1$, $n(\ge 2)$ spheres of radius $a \le 1$ can be packed in S if and only if

$$\left(\frac{1-a}{a}\right)^{p} \ge 2^{p-1} \frac{n-1}{K_{p}(n)},$$
(2.1)

where

$$K_{p}(n) = \max \frac{\sum_{1 \le i < j \le n} |z_{i} - z_{j}|^{p}}{\sum_{i=1}^{n} |z_{i}|^{p}},$$
(2.2)

the maximum being taken over all n-tuples of complex numbers $(z_1, z_2, ..., z_n)$ except (0, 0, ..., 0). The theorem is still valid when n = 1 if the right-hand side of (2.1) is interpreted as zero.

Proof. Suppose that *n* spheres of radius *a*, centred at $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, where $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots)$, can be packed in *S*. Then, since $|||\mathbf{x}_i - \mathbf{x}_j|| \ge 2a$ for $1 \le i < j \le n$ by (1.1),

$$(2a)^{p_{\frac{1}{2}}}n(n-1) \leq \sum_{1 \leq i < j \leq n} \sum_{k=1}^{\infty} |x_{ik} - x_{jk}|^{p}$$
$$\leq \sum_{k=1}^{\infty} K_{p}(n) \sum_{j=1}^{n} |x_{jk}|^{p}$$
$$= K_{p}(n) \sum_{j=1}^{n} ||\mathbf{x}_{j}||^{p}$$
$$\leq nK_{p}(n)(1-a)^{p},$$

from which (2.1) is obtained.

To prove the converse, we first of all note that $K_p(n)$ is certainly an attained upper bound. Suppose that it is attained at the point $(z_1, z_2, ..., z_n)$ and consider an $n \times n!$ matrix

$$P = [P_1 P_2 \dots P_{n!}] = [p_{ij}],$$

where each P_i is a column vector $\{z_{i(1)}, z_{i(2)}, \ldots, z_{i(n)}\}$ obtained from $\{z_1, z_2, \ldots, z_n\}$ by considering, in turn, the n! permutations $(i(1), i(2), \ldots, i(n))$ of $(1, 2, \ldots, n)$. Points $y_1, y_2, \ldots, y_n \in I_p$ are chosen as follows:

$$\mathbf{y}_i = (y_{i1}, y_{i2}, \ldots), \text{ where } y_{ij} = \begin{cases} b p_{ij} & (1 \le j \le n!) \\ 0 & (j > n!), \end{cases}$$

the constant b being chosen in accordance with

$$\frac{(1-a)^p}{(n-1)!} \ge |b|^p \sum_{j=1}^n |z_j|^p \ge \frac{(2a)^p}{2(n-2)!K_p(n)}.$$
(2.3)

This is possible, since we have, by (2.1),

$$\frac{(1-a)^p}{(n-1)!} \ge \frac{(2a)^p}{2(n-2)! K_p(n)}.$$

If all the permutations of $(z_1, z_2, ..., z_n)$ are considered, each z_j occupies the *i*th position (n-1)! times, and consequently

$$\|\mathbf{y}_i\|^p = |b|^p (n-1)! \sum_{j=1}^n |z_j|^p \le (1-a)^p \qquad (1 \le i \le n),$$
(2.4)

by (2.3). Also, if $i \neq j, z_i$ and z_j simultaneously occupy the kth and lth positions respectively in (n-2)! of the permutations, and so, for $1 \leq k < l \leq n$,

$$\|\mathbf{y}_{k} - \mathbf{y}_{l}\|^{p} = 2 |b|^{p} (n-2)! \sum_{1 \le l < j \le n} |z_{i} - z_{j}|^{p} = 2 |b|^{p} (n-2)! K_{p}(n) \sum_{j=1}^{n} |z_{j}|^{p} \ge (2a)^{p}, \quad (2.5)$$

by (2.3). (2.4) and (2.5) show that if the spheres of radius a are centred at y_1, y_2, \ldots, y_n , then the theorem is proved.

We immediately deduce

COROLLARY 2.2. The maximum number of spheres of radius a that can be packed in S is n if and only if

$$\frac{2^{p-1}n}{K_p(n+1)} > \left(\frac{1-a}{a}\right)^p \ge \frac{2^{p-1}(n-1)}{K_p(n)} \,.$$

Proof. The proof follows immediately from Theorem 2.1.

The inequality

$$K_p(n) \le 2^{p-2}n \qquad (p \ge 2),$$
 (2.6)

was first derived by Rankin in [2], while in the case $1 \le p < 2$ he obtained the estimate $K_p(n) \le n^{p-1}(n-1)^{2-p}$ in his paper [3]. These estimates were used in [1] to obtain $M_p(a)$ and $L_p(a)$ defined in Theorems 1.1 and 1.2. We shall show in the next section that, in the case when $K_p(n)$ is defined as a maximum over *n*-tuples of real numbers, it can be evaluated explicitly and as a consequence $M_p(a)$ and $L_p(a)$ can be improved when the space l_p is real.

However, by taking n = 2m, $z_i = -1$ for $1 \le i \le m$ and $z_i = +1$ for $m < i \le 2m$, it is easily seen that

$$K_p(2m) = 2^{p-1}m \qquad (p \ge 2).$$
 (2.7)

As a result we may deduce

COROLLARY 2.3. If $p \ge 2$ and $\mu_p < a \le 1$ and if $M_p(a)$ is even, then exactly $M_p(a)$ spheres of radius a can be packed in S.

74

PACKING OF SPHERES IN l_p 75

Proof. We first of all observe that $M_p(a) = 2m$ if and only if

$$\frac{1}{2m} \ge \left\{ 1 - \frac{1}{2} \left(\frac{1-a}{a} \right)^p \right\} > \frac{1}{2m+1},$$

$$\frac{2m-1}{m} \le \left(\frac{1-a}{a} \right)^p < \frac{4m}{2m+1}.$$
(2.8)

which is equivalent to

Also, from (2.7),

$$\frac{2^{p-1}(2m-1)}{K_p(2m)} = \frac{2m-1}{m},$$

and, from (2.6),

$$\frac{4m}{2m+1} \leq \frac{2^p m}{K_p(2m+1)} \,.$$

Thus, from (2.8), $M_p(a) = 2m$ implies that

$$\frac{2^{p-1}(2m-1)}{K_p(2m)} \leq \left(\frac{1-a}{a}\right)^p < \frac{2^p m}{K_p(2m+1)},$$

and an application of Corollary 2.2 yields the result.

3. Real l_p space. In this section the l_p spaces under consideration will be real.

Suppose that $p \ge 1$ and that n is a positive integer >1. Let

$$f(x_1, x_2, \dots, x_n) = \frac{\sum_{1 \le i < j \le n} |x_i - x_j|^p}{\sum_{j=1}^n |x_j|^p},$$

and $N_p(n) = \max f(x_1, x_2, ..., x_n)$, the maximum being taken over all *n*-tuples of real numbers $(x_1, x_2, ..., x_n)$ except (0, 0, ..., 0). Corresponding to Theorem 2.1 and Corollary 2.2 we have

THEOREM 3.1. If $p \ge 1$, n spheres of radius a can be packed in S if and only if

$$\left(\frac{1-a}{a}\right)^p \ge \frac{2^{p-1}(n-1)}{N_p(n)}.$$

COROLLARY 3.2. The maximum number of spheres of radius a that can be packed in S is n if and only if

$$\frac{2^{p-1}n}{N_p(n+1)} > \left(\frac{1-a}{a}\right)^p \ge \frac{2^{p-1}(n-1)}{N_p(n)}.$$

In this section we evaluate $N_p(n)$ and have the following

THEOREM 3.3. (i) If $p \ge 2$, then

$$N_{p}(n) = \begin{cases} 2^{p-2}n, & \text{if } n \text{ is even,} \\ \frac{1}{2}\{(n-1)^{1/(p-1)} + (n+1)^{1/(p-1)}\}^{p-1}, & \text{if } n \text{ is odd.} \end{cases}$$

(ii) If $1 \le p \le 2, N_{p}(n) = n - 2 + 2^{p-1}.$

Proof. Since

$$\sum_{i < j} |x_i - x_j| \leq \sum_{i < j} \{ |x_i| + |x_j| \} = (n-1) \sum_{j=1}^n |x_j|,$$

it is seen that $N_1(n) \le n-1$; taking $x_i = 0$ for $1 \le i < n$, and $x_n = 1$ shows in fact that $N_1(n) = n-1$. We may therefore suppose that p > 1. Also, since the theorem is trivial when n = 2, we may suppose that $n \ge 3$.

Clearly, because of the homogeneity, we may restrict our attention to the compact subset Q of \mathbb{R}^n defined by $\frac{1}{2} \leq \sum_{i=1}^n |x_i|^p \leq 1$ and, since f is continuous on Q, its maximum is attained at some point of Q which we may take to be an interior point of Q. Since p > 1, fpossesses partial derivatives at every point of Q and consequently, by the above remarks, $N_p(n)$ will be attained at some stationary point of f. If (a_1, a_2, \ldots, a_n) is any stationary point of f, by differentiating

$$f(x_1, x_2, ..., x_n) \sum_{i=1}^n |x_i|^p = \sum_{i < j} |x_i - x_j|^p$$

with respect to x_i , we see that

$$a_l |a_l|^{p-2} f(a_1, a_2, \dots, a_n) = \sum_{j=1}^n (a_l - a_j) |a_l - a_j|^{p-2} \qquad (1 \le l \le n).$$

From this it follows that, if $f(a_1, a_2, \ldots, a_n) \neq 0$, then

$$\sum_{l=1}^{n} a_{l} \left| a_{l} \right|^{p-2} = 0.$$
(3.1)

Since $f(a_1, a_2, ..., a_n) = 0$ corresponds to the minimum value of f, we suppose that this is not the case. Thus from (3.1) there exists an integer $k (1 \le k \le n-1)$ such that

$$a_1 \leq a_2 \leq \ldots \leq a_k \leq 0 < a_{k+1} \leq \ldots \leq a_n, \tag{3.2}$$

where the a_i 's have been renumbered if necessary. Then

$$\sum_{i=1}^{k} |a_i|^{p-1} = \sum_{j=k+1}^{n} |a_j|^{p-1}, \qquad (3.3)$$

and, for $l \leq k$,

$$|a_l|^{p-1}f(a_1, a_2, \ldots, a_n) = \sum_{j=l+1}^n |a_l - a_j|^{p-1} - \sum_{j=1}^l |a_l - a_j|^{p-1}.$$

76

Hence

$$f(a_1, a_2, \dots, a_n) \sum_{l=1}^{k} |a_l|^{p-1} = \sum_{l=1}^{k} \sum_{j=l+1}^{n} |a_l - a_j|^{p-1} - \sum_{l=1}^{k} \sum_{j=1}^{l} |a_l - a_j|^{p-1}$$
$$= \sum_{l=1}^{k} \sum_{j=k+1}^{n} |a_l - a_j|^{p-1}.$$
(3.4)

We now suppose that $p \ge 2$ and apply Minkowski's inequality to get

$$\begin{cases} \sum_{l=1}^{k} \sum_{j=k+1}^{n} |a_{l}-a_{j}|^{p-1} \end{cases}^{1/(p-1)} \leq \begin{cases} \sum_{l=1}^{k} \sum_{j=k+1}^{n} |a_{l}|^{p-1} \end{cases}^{1/(p-1)} + \begin{cases} \sum_{l=1}^{k} \sum_{j=k+1}^{n} |a_{j}|^{p-1} \end{cases}^{1/(p-1)} \\ = \{(n-k)^{1/(p-1)} + k^{1/(p-1)}\} \begin{cases} \sum_{l=1}^{k} |a_{l}|^{p-1} \end{cases}^{1/(p-1)}, \end{cases}$$

by (3.3). It follows therefore from (3.4) that

$$f(a_1, a_2, \ldots, a_n) \leq \{(n-k)^{1/(p-1)} + k^{1/(p-1)}\}^{p-1}$$

Since $N_p(n) = \max_k f(a_1, a_2, \dots, a_n)$, (a_1, a_2, \dots, a_n) being a stationary point of f satisfying (3.2), we see that

$$N_{p}(n) \leq \begin{cases} 2^{p-2}n, & \text{if } n \text{ is even,} \\ \frac{1}{2} \{ (n-1)^{1/(p-1)} + (n+1)^{1/(p-1)} \}^{p-1}, & \text{if } n \text{ is odd.} \end{cases}$$

That these bounds are attained can be seen by taking $x_1 = x_2 = \ldots = x_m = -1$, $x_{m+1} = \ldots = x_{2m} = +1$, when n = 2m, and $x_1 = x_2 = \ldots = x_{m+1} = 1$, $x_{m+2} = \ldots = x_{2m+1} = -\{(m+1)/m\}^{1/(p-1)}$, when n = 2m+1. This proves part (i) of the theorem.

To prove (ii) we require the following

LEMMA 3.4. Let n be an integer ≥ 3 and let the integer k be such that $1 \leq k \leq n-1$. Let

$$g_k(x_1, x_2, ..., x_n) = \sum_{i=1}^k \sum_{j=k+1}^n (x_i + x_j)^q$$

where 0 < q < 1. If A_k is the bounded closed subset of (n-2)-dimensional space defined by

$$\sum_{i=2}^{k} x_i^{q} \leq 1, \qquad \sum_{j=k+1}^{n-1} x_j^{q} \leq 1, \qquad x_l \geq 0 \qquad (2 \leq l \leq n-1),$$

where, if a summation is empty, it is taken to be zero, and if

$$x_1^q = 1 - \sum_{i=2}^k x_i^q, \qquad x_n^q = 1 - \sum_{j=k+1}^{n-1} x_j^q,$$

then

(i) $N_q(n,k) = \max_{A_k} g_k(x_1, x_2, ..., x_n)$ is attained on the boundary of A_k (i.e. at least one of the x_i 's is zero), and

(ii)
$$N_a(n,k) = n-2+2^q$$
.

Proof. g_k is certainly continuous on A_k and so attains its maximum value there. Since g_k is differentiable on the interior of A_k , if the maximum were attained at some interior point (b_1, b_2, \ldots, b_n) , Lagrange's equations would be satisfied:

$$\sum_{i=1}^{k} (b_i + b_j)^{q-1} + \lambda b_j^{q-1} = 0 \quad \text{if} \quad j \ge k+1,$$
$$\sum_{i=k+1}^{n} (b_i + b_j)^{q-1} + \mu b_i^{q-1} = 0 \quad \text{if} \quad i \le k.$$

These equations imply that $b_1 = b_2 = \ldots = b_k$, $b_{k+1} = \ldots = b_n$. For if, for example, $b_i < b_l$ when $i < l \leq k$, then

$$\left(\frac{b_i}{b_i + b_j}\right)^{1-q} < \left(\frac{b_i}{b_i + b_j}\right)^{1-q} \qquad (0 < q < 1),$$

and the above equations would not be satisfied. For these values of b_1, b_2, \ldots, b_n we have

$$g_k(b_1, b_2, \dots, b_n) = k(n-k) \{k^{-1/q} + (n-k)^{-1/q}\}^q$$
$$= \{(n-k)^{1/q} + k^{1/q}\}^q.$$

However, this is in fact the minimum value of g_k as an application of Minkowski's inequality shows (0 < q < 1). This contradiction establishes part (i).

(ii) is proved by induction.

When n = 3, k = 1 or 2 and $N_q(3, k) = \max\{(1+x)^q + (1+y)^q\}$, where $x^q + y^q = 1$, $x \ge 0$ and $y \ge 0$. By (i), at the maximum x = 0 and consequently y = 1. Thus $N_q(3, k) = 1 + 2^q$.

Assume now that $N_q(n-1,k') = n-3+2^q$ for some integer $n \ge 4$ and all k' such that $1 \le k' \le n-2$. Then by (i), either

$$N_q(n,k) = \max\left\{\sum_{i=1}^{k-1} \sum_{j=k+1}^n (x_i + x_j)^q + \sum_{j=k+1}^n x_j^q\right\},\,$$

where $\sum_{i=1}^{k-1} x_i^q = \sum_{j=k+1}^n x_j^q = 1$, taking $x_k = 0$, or

$$N_q(n,k) = \max\left\{\sum_{i=1}^k \sum_{j=k+2}^n (x_i + x_j)^q + \sum_{i=1}^k x_i^q\right\},\$$

where $\sum_{i=1}^{k} x_i^q = \sum_{j=k+2}^{n} x_j^q = 1$, taking $x_{k+1} = 0$. (If k = 1 or n-1 it is clear which of the two alternatives must hold.) In other words,

$$N_q(n,k) = 1 + \max\{N_q(n-1,k-1), N_q(n-1,k)\}$$
$$= 1 + n - 3 + 2^q = n - 2 + 2^q.$$

by the induction hypothesis. This completes the proof of the lemma.

PACKING OF SPHERES IN l_p

Returning to Theorem 3.3, (ii), we have, by (3.2), (3.3), and (3.4),

$$N_p(n) \leq \max_{1 \leq k \leq n-1} \max \left\{ \sum_{i=1}^k \sum_{j=k+1}^n (x_i + x_j)^{p-1} \right\},$$

where (by the homogeneity) $\sum_{i=1}^{k} x_i^{p-1} = \sum_{\substack{j=k+1 \ j=k+1}}^{n} x_j^{p-1} = 1$ and $x_l \ge 0$ ($1 \le l \le n$). Now apply Lemma 3.4 with p-1 = q to obtain $N_p(n) \le \max_{\substack{1 \le k \le n-1 \ 1 \le k \le n-1}} N_{p-1}(n,k) = n-2+2^{p-1}$ ($n \ge 3$). Taking $x_1 = -x_2 = 1, x_3 = \ldots = x_n = 0$ shows that this upper bound is in fact attained. This completes the proof of Theorem 3.3.

Applying Theorem 3.1 and Corollary 3.2 yields

COROLLARY 3.5. If p > 2, the maximum number of spheres of radius a that can be packed in S is 2m if and only if

$$\frac{2m-1}{m} < \left(\frac{1-a}{a}\right)^p < 2^p \left\{ 1 + \left(\frac{m+1}{m}\right)^{1/(p-1)} \right\}^{1-p},$$

and the maximum number of spheres of radius a that can be packed in S is 2m-1 if and only if

$$2^{p}\left\{1 + \left(\frac{m}{m-1}\right)^{1/(p-1)}\right\}^{1-p} \leq \left(\frac{1-a}{a}\right)^{p} < \frac{2m-1}{m}$$

(The left-hand side of the last inequality is to be taken to be zero when m = 1.)

Proof. For
$$2^{p-1}2m/N_p(2m+1) = 2^p \left\{ 1 + \left(\frac{m+1}{m}\right)^{1/(p-1)} \right\}^{1-p}$$
, and $2^{p-1}(2m-1)/N_p(2m) = (2m-1)^m$.

COROLLARY 3.6. If $1 and <math>a > \lambda_p$, the maximum number of spheres of radius a that can be packed in S is $[1 + v_p/(S_p(a) - 1)]$, where $v_p = 2^{p-1} - 1$ and $S_p(a) = 2^{p-1} / \left(\frac{1-a}{a}\right)^p$.

Proof. By Corollary 3.2, when 1 the maximum number of spheres of radius a that can be packed in S is m if and only if

$$\frac{2^{p-1}m}{m-1+2^{p-1}} > \left(\frac{1-a}{a}\right)^p \ge \frac{2^{p-1}(m-1)}{m-2+2^{p-1}} \,.$$

This condition is easily seen to be equivalent to

$$m+1>1+\frac{v_p}{S_p(a)-1}\geq m,$$

which completes the proof.

REFERENCES

1. Jane A. C. Burlak, R. A. Rankin and A. P. Robertson, The packing of spheres in the space l_p , *Proc. Glasgow Math. Assoc.* 4 (1958), 22–25.

2. R. A. Rankin, On sums of powers of linear forms I, Ann. of Math. 50 (1949), 691-698.

3. R. A. Rankin, On sums of powers of linear forms II, Ann. of Math. 50 (1949), 699-704.

UNIVERSITY OF GLASGOW GLASGOW, W.2.

80