PACKING OF SPHERES IN $l_{p} \dagger$

by E. SPENCE

(Received 16 January, 1969)

1. Introduction. The Banach space $l_{p}(p \geqq 1)$ is the space of all infinite sequences $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ of real or complex numbers such that $\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}$ is convergent, with the norm defined by

$$
\|\mathbf{x}\|=\left\{\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right\}^{1 / p}
$$

The unit sphere S of l_{p} is the set of all points $\mathbf{x} \in l_{p}$ with $\|\mathbf{x}\| \leqq 1$ and the sphere of radius $a \geqq 0$ centred at $\mathbf{y} \in l_{p}$ is denoted by $S_{a}(\mathbf{y})$, so that

$$
S_{a}(\mathbf{y})=\left\{\mathbf{x} \in l_{p}:\|\mathrm{x}-\mathrm{y}\| \leqq a\right\} .
$$

A (finite or infinite) set of spheres $S_{a}\left(\mathbf{y}_{1}\right), S_{a}\left(\mathbf{y}_{2}\right), \ldots$ is said to form a packing in S if each sphere $S_{a}\left(\mathbf{y}_{i}\right)$ is contained in S and no two of the spheres overlap (they are, however, allowed to touch $)$. By taking $\mathbf{x}=(1+a /\|\mathbf{y}\|) \mathbf{y}$ if $\mathbf{y} \neq \mathbf{0}$ and $\mathbf{x}=(a\| \| \mathbf{u} \|) \mathbf{u}$ for a non-zero \mathbf{u} if $\mathbf{y}=\mathbf{0}$, it is seen that, if $S_{a}(\mathbf{y}) \subseteq S$, then $\mathbf{x} \in S$ and $\|\mathbf{y}\| \leqq 1-a$. Conversely, if $\|\mathbf{y}\| \leqq 1-a$ and $\|\mathbf{x}-\mathbf{y}\| \leqq a$, then $\|\mathbf{x}\| \leqq\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}\| \leqq 1$, so that $S_{a}(\mathbf{y}) \subseteq S$. Also, two spheres $S_{a}(\mathbf{y})$ and $S_{a}(\mathbf{z})$ do not overlap if and only if $\|\mathbf{y}-\mathbf{z}\| \geqq 2 a$, so that an equivalent condition for the set of spheres $S_{a}\left(\mathbf{y}_{1}\right), S_{a}\left(\mathbf{y}_{2}\right), \ldots$ to form a packing is that

$$
\begin{equation*}
\left\|\mathbf{y}_{i}\right\| \leqq 1-a \quad \text { for all } i \text { and } \quad\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\| \geqq 2 a \quad \text { if } i \neq j \tag{1.1}
\end{equation*}
$$

Let $\lambda_{p}=\left(1+2^{1-1 / p}\right)^{-1}$ and $\mu_{p}=\left(1+2^{1 / p}\right)^{-1}$. In [1] the following results were proved:
Theorem 1.1. If $p>2$, an infinity of spheres $S_{a}(\mathbf{y})$ of fixed radius a can be packed in S if and only if $a \leqq \lambda_{p}$. If $\lambda_{p}<a \leqq \mu_{p}$, any finite number of spheres $S_{a}(\mathbf{y})$ can be packed in S but an infinite number cannot. If $\mu_{p}<a \leqq 1$, the maximum number of spheres of fixed radius a which can be packed in S does not exceed

$$
M_{p}(a)=\left[\left\{1-\frac{1}{2}\left(\frac{1-a}{a}\right)^{p}\right\}^{-1}\right] .
$$

(The square brackets denote the integral part.)
Theorem 1.2. If $1 \leqq p \leqq 2$, an infinity of spheres $S_{a}(\mathbf{y})$ of fixed radius a can be packed in S if and only if $a \leqq \lambda_{p}$. If $\lambda_{p}<a \leqq 1$, the maximum number of spheres $S_{a}(\mathbf{y})$ u hich can be packed in S does not exceed $L_{p}(a)$, where $L_{1}(a)=1$ and

$$
L_{p}(a)=\left[\left\{1-\frac{1}{2}\left(\frac{1-a}{a}\right)^{p /(p-1)}\right\}^{-1}\right] \quad(1<p \leqq 2)
$$

†The contents of this paper formed part of a Ph.D. thesis submitted to Glasgow University in 1968. I should like to thank my supervisor, Professor R. A. Rankin, for his advice and encouragement.

It is the purpose of this paper to prove that in the case of complex l_{p} space the upper bound $M_{p}(a)$ obtained in Theorem 1.1 is in a sense the best possible, but that in the case of real l_{p} space both bounds $M_{p}(a)$ and $L_{p}(a)$ can be considerably improved.
2. Conditions for the existence of finite packings. In this section the following theorem is proved.

Theorem 2.1. If $p \geqq 1, n(\geqq 2)$ spheres of radius $a \leqq 1$ can be packed in S if and only if

$$
\begin{equation*}
\left(\frac{1-a}{a}\right)^{p} \geqq 2^{p-1} \frac{n-1}{K_{p}(n)} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{p}(n)=\max \frac{\sum_{1 \leq i<j \leq n}\left|z_{i}-z_{j}\right|^{p}}{\sum_{i=1}^{n}\left|z_{i}\right|^{p}} \tag{2.2}
\end{equation*}
$$

the maximum being taken over all n-tuples of complex numbers $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ except $(0,0, \ldots, 0)$. The theorem is still valid when $n=1$ if the right-hand side of (2.1) is interpreted as zero.

Proof. Suppose that n spheres of radius a, centred at $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$, where $\mathbf{x}_{i}=$ $\left(x_{i 1}, x_{i 2}, \ldots\right)$, can be packed in S. Then, since $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\| \geqq 2 a$ for $1 \leqq i<j \leqq n$ by (1.1),

$$
\begin{aligned}
(2 a)^{\frac{\rho}{2}} n(n-1) & \leqq \sum_{1 \leqq i<j \leqq n} \sum_{k=1}^{\infty}\left|x_{i k}-x_{j k}\right|^{p} \\
& \leqq \sum_{k=1}^{\infty} K_{p}(n) \sum_{i=1}^{n}\left|x_{j k}\right|^{p} \\
& =K_{p}(n) \sum_{i=1}^{n}\left\|\mathbf{x}_{j}\right\|^{p} \\
& \leqq n K_{p}(n)(1-a)^{p},
\end{aligned}
$$

from which (2.1) is obtained.
To prove the converse, we first of all note that $K_{p}(n)$ is certainly an attained upper bound. Suppose that it is attained at the point $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and consider an $n \times n!$ matrix

$$
P=\left[P_{1} P_{2} \ldots P_{n!}\right]=\left[p_{i j}\right]
$$

where each P_{i} is a column vector $\left\{z_{i(1)}, z_{i(2)}, \ldots, z_{i(n)}\right\}$ obtained from $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ by considering, in turn, the $n!$ permutations $(i(1), i(2), \ldots, i(n))$ of $(1,2, \ldots, n)$. Points $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n} \in l_{p}$ are chosen as follows:

$$
\mathbf{y}_{i}=\left(y_{i 1}, y_{i 2}, \ldots\right), \quad \text { where } \quad y_{i j}=\left\{\begin{array}{cl}
b p_{i j} & (1 \leqq j \leqq n!) \\
0 & (j>n!),
\end{array}\right.
$$

the constant b being chosen in accordance with

$$
\begin{equation*}
\frac{(1-a)^{p}}{(n-1)!} \geqq|b|^{p} \sum_{j=1}^{n}\left|z_{j}\right|^{p} \geqq \frac{(2 a)^{p}}{2(n-2)!K_{p}(n)} \tag{2.3}
\end{equation*}
$$

This is possible, since we have, by (2.1),

$$
\frac{(1-a)^{p}}{(n-1)!} \geqq \frac{(2 a)^{p}}{2(n-2)!K_{p}(n)}
$$

If all the permutations of $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ are considered, each z_{j} occupies the i th position ($n-1$)! times, and consequently

$$
\begin{equation*}
\left\|\mathbf{y}_{i}\right\|^{p}=|b|^{p}(n-1)!\sum_{j=1}^{n}\left|z_{j}\right|^{p} \leqq(1-a)^{p} \quad(1 \leqq i \leqq n) \tag{2.4}
\end{equation*}
$$

by (2.3). Also, if $i \neq j, z_{i}$ and z_{j} simultaneously occupy the k th and l th positions respectively in $(n-2)$! of the permutations, and so, for $1 \leqq k<l \leqq n$,

$$
\begin{equation*}
\left\|y_{k}-y_{t}\right\|^{p}=2|b|^{p}(n-2)!\sum_{1 \leqq i<j \leqq n}\left|z_{i}-z_{j}\right|^{p}=2|b|^{p}(n-2)!K_{p}(n) \sum_{j=1}^{n}\left|z_{j}\right|^{p} \geqq(2 a)^{p} \tag{2.5}
\end{equation*}
$$

by (2.3). (2.4) and (2.5) show that if the spheres of radius a are centred at $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}$, then the theorem is proved.

We immediately deduce
Corollary 2.2. The maximum number of spheres of radius a that can be packed in S is n if and only if

$$
\frac{2^{p-1} n}{K_{p}(n+1)}>\left(\frac{1-a}{a}\right)^{p} \geqq \frac{2^{p-1}(n-1)}{K_{p}(n)}
$$

Proof. The proof follows immediately from Theorem 2.1.
The inequality

$$
\begin{equation*}
K_{p}(n) \leqq 2^{p-2} n \quad(p \geqq 2) \tag{2.6}
\end{equation*}
$$

was first derived by Rankin in [2], while in the case $1 \leqq p<2$ he obtained the estimate $K_{p}(n) \leqq n^{y-1}(n-1)^{2-p}$ in his paper [3]. These estimates were used in [1] to obtain $M_{p}(a)$ and $L_{p}(a)$ defined in Theorems 1.1 and 1.2. We shall show in the next section that, in the case when $K_{p}(n)$ is defined as a maximum over n-tuples of real numbers, it can be evaluated explicitly and as a consequence $M_{p}(a)$ and $L_{p}(a)$ can be improved when the space l_{p} is real.

However, by taking $n=2 m, z_{i}=-1$ for $1 \leqq i \leqq m$ and $z_{i}=+1$ for $m<i \leqq 2 m$, it is easily seen that

$$
\begin{equation*}
K_{p}(2 m)=2^{p-1} m \quad(p \geqq 2) \tag{2.7}
\end{equation*}
$$

As a result we may deduce
COROLLARY 2.3. If $p \geqq 2$ and $\mu_{p}<a \leqq 1$ and if $M_{p}(a)$ is even, then exactly $M_{p}(a)$ spheres of radius a can be packed in S.

Proof. We first of all observe that $M_{p}(a)=2 m$ if and only if

$$
\frac{1}{2 m} \geqq\left\{1-\frac{1}{2}\left(\frac{1-a}{a}\right)^{p}\right\}>\frac{1}{2 m+1}
$$

which is equivalent to

$$
\begin{equation*}
\frac{2 m-1}{m} \leqq\left(\frac{1-a}{a}\right)^{p}<\frac{4 m}{2 m+1} \tag{2.8}
\end{equation*}
$$

Also, from (2.7),

$$
\frac{2^{p-1}(2 m-1)}{K_{p}(2 m)}=\frac{2 m-1}{m}
$$

and, from (2.6),

$$
\frac{4 m}{2 m+1} \leqq \frac{2^{p} m}{K_{p}(2 m+1)} .
$$

Thus, from (2.8), $M_{p}(a)=2 m$ implies that

$$
\frac{2^{p-1}(2 m-1)}{K_{p}(2 m)} \leqq\left(\frac{1-a}{a}\right)^{p}<\frac{2^{p} m}{K_{p}(2 m+1)}
$$

and an application of Corollary 2.2 yields the result.
3. Real l_{p} space. In this section the l_{p} spaces under consideration will be real.

Suppose that $p \geqq 1$ and that n is a positive integer >1. Let

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\sum_{1 \leq i<j \leq n}\left|x_{i}-x_{j}\right|^{p}}{\sum_{j=1}^{n}\left|x_{j}\right|^{p}}
$$

and $N_{p}(n)=\max f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the maximum being taken over all n-tuples of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ except $(0,0, \ldots, 0)$. Corresponding to Theorem 2.1 and Corollary 2.2 we have

Theorem 3.1. If $p \geqq 1, n$ spheres of radius a can be packed in S if and only if

$$
\left(\frac{1-a}{a}\right)^{p} \geqq \frac{2^{p-1}(: 2-1)}{N_{p}(n)}
$$

Corollary 3.2. The maximum number of spheres of radius a that can be packed in S is n if and only if

$$
\frac{2^{p-1} n}{N_{p}(n+}>\left(\frac{1-a}{a}\right)^{p} \geqq \frac{2^{p-1}(n-1)}{N_{p}(n)}
$$

In this section we evaluate $N_{p}(n)$ and have the following
Theorem 3.3. (i) If $p \geqq 2$, then

$$
\begin{aligned}
& N_{p}(n)=\left\{\begin{array}{l}
2^{p-2} n, \quad \text { if } n \text { is even, } \\
\frac{1}{2}\left\{(n-1)^{1 /(p-1)}+(n+1)^{1 /(p-1)}\right\}^{p-1},
\end{array} \text { if } n \text { is odd. } .\right. \\
& \text { (ii) If } \mathrm{l} \leqq p \leqq 2, N_{p}(n)=n-2+2^{p-1} .
\end{aligned}
$$

Proof. Since

$$
\sum_{i<j}\left|x_{i}-x_{j}\right| \leqq \sum_{i<j}\left\{\left|x_{i}\right|+\left|x_{j}\right|\right\}=(n-1) \sum_{j=1}^{n}\left|x_{j}\right|,
$$

it is seen that $N_{1}(n) \leqq n-1$; taking $x_{i}=0$ for $1 \leqq i<n$, and $x_{n}=1$ shows in fact that $N_{1}(n)=n-1$. We may therefore suppose that $p>1$. Also, since the theorem is trivial when $n=2$, we may suppose that $n \geqq 3$.

Clearly, because of the homogeneity, we may restrict our attention to the compact subset Q of R^{n} defined by $\frac{1}{2} \leqq \sum_{i=1}^{n}\left|x_{i}\right|^{p} \leqq 1$ and, since f is continuous on Q, its maximum is attained at some point of Q which we may take to be an interior point of Q. Since $p>1, f$ possesses partial derivatives at every point of Q and consequently, by the above remarks, $N_{p}(n)$ will be attained at some stationary point of f. If $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is any stationary point of f, by differentiating

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sum_{i=1}^{n}\left|x_{i}\right|^{p}=\sum_{i<j}\left|x_{i}-x_{j}\right|^{p}
$$

with respect to x_{1}, we see that

$$
a_{l}\left|a_{l}\right|^{p-2} f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{j=1}^{n}\left(a_{l}-a_{j}\right)\left|a_{l}-a_{j}\right|^{p-2} \quad(1 \leqq l \leqq n)
$$

From this it follows that, if $f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \neq 0$, then

$$
\begin{equation*}
\sum_{l=1}^{n} a_{l}\left|a_{l}\right|^{p-2}=0 \tag{3.1}
\end{equation*}
$$

Since $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ corresponds to the minimum value of f, we suppose that this is not the case. Thus from (3.1) there exists an integer $k(1 \leqq k \leqq n-1)$ such that

$$
\begin{equation*}
a_{1} \leqq a_{2} \leqq \ldots \leqq a_{k} \leqq 0<a_{k+1} \leqq \ldots \leqq a_{n}, \tag{3.2}
\end{equation*}
$$

where the a_{i} 's have been renumbered if necessary. Then

$$
\begin{equation*}
\sum_{i=1}^{k}\left|a_{i}\right|^{p-1}=\sum_{j=k+1}^{n}\left|a_{j}\right|^{p-1} \tag{3.3}
\end{equation*}
$$

and, for $l \leqq k$,

$$
\left|a_{l}\right|^{p-1} f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{j=l+1}^{n}\left|a_{l}-a_{j}\right|^{p-1}-\sum_{j=1}^{l}\left|a_{l}-a_{j}\right|^{p-1} .
$$

Hence

$$
\begin{align*}
f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \sum_{l=1}^{k}\left|a_{l}\right|^{p-1} & =\sum_{l=1}^{k} \sum_{j=l+1}^{n}\left|a_{l}-a_{j}\right|^{p-1}-\sum_{l=1}^{k} \sum_{j=1}^{l}\left|a_{l}-a_{j}\right|^{p-1} \\
& =\sum_{l=1}^{k} \sum_{j=k+1}^{n}\left|a_{l}-a_{j}\right|^{p-1} \tag{3.4}
\end{align*}
$$

We now suppose that $p \geqq 2$ and apply Minkowski's inequality to get

$$
\begin{aligned}
\left\{\sum_{l=1}^{k} \sum_{j=k+1}^{n}\left|a_{l}-a_{j}\right|^{p-1}\right\}^{1 /(p-1)} & \leqq\left\{\sum_{l=1}^{k} \sum_{j=k+1}^{n}\left|a_{l}\right|^{p-1}\right\}^{1 /(p-1)}+\left\{\sum_{l=1}^{k} \sum_{j=k+1}^{n}\left|a_{j}\right|^{p-1}\right\}^{1 /(p-1)} \\
& =\left\{(n-k)^{1 /(p-1)}+k^{1 /(p-1)}\right\}\left\{\sum_{l=1}^{k}\left|a_{l}\right|^{p-1}\right\}^{1 /(p-1)}
\end{aligned}
$$

by (3.3). It follows therefore from (3.4) that

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leqq\left\{(n-k)^{1 /(p-1)}+k^{1 /(p-1)}\right\}^{p-1} .
$$

Since $N_{p}(n)=\max _{k} f\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ being a stationary point of f satisfying (3.2), we see that

$$
N_{p}(n) \leqq\left\{\begin{array}{l}
2^{p-2} n, \quad \text { if } n \text { is even, } \\
\frac{1}{2}\left\{(n-1)^{1 /(p-1)}+(n+1)^{1 /(p-1)}\right\}^{p-1}, \quad \text { if } n \text { is odd. }
\end{array}\right.
$$

That these bounds are attained can be seen by taking $x_{1}=x_{2}=\ldots=x_{m}=-1, x_{m+1}=$ $\ldots=x_{2 m}=+1$, when $n=2 m$, and $x_{1}=x_{2}=\ldots=x_{m+1}=1, x_{m+2}=\ldots=x_{2 m+1}=$ $-\{(m+1) / m\}^{1 /(p-1)}$, when $n=2 m+1$. This proves part (i) of the theorem.

To prove (ii) we require the following
Lemma 3.4. Let n be an integer $\geqq 3$ and let the integer k be such that $1 \leqq k \leqq n-1$. Let

$$
g_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{k} \sum_{j=k+1}^{n}\left(x_{i}+x_{j}\right)^{q}
$$

where $0<q<1$. If A_{k} is the bounded closed subset of $(n-2)$-dimensional space defined by

$$
\sum_{i=2}^{k} x_{i}^{q} \leqq 1, \quad \sum_{j=k+1}^{n-1} x_{j}^{q} \leqq 1, \quad x_{l} \leqq 0 \quad(2 \leqq l \leqq n-1)
$$

where, if a summation is empty, it is taken to be zero, and if

$$
x_{1}^{q}=1-\sum_{i=2}^{k} x_{i}^{q}, \quad x_{n}^{q}=1-\sum_{i=k+1}^{n-1} x_{i}^{q},
$$

then
(i) $N_{q}(n, k)=\max _{A_{k}} g_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is attained on the boundary of A_{k} (i.e. at least one of the x_{i}^{\prime} 's is zero), and
(ii) $N_{q}(n, k)=n-2+2^{q}$.

Proof. g_{k} is certainly continuous on A_{k} and so attains its maximum value there. Since g_{k} is differentiable on the interior of A_{k}, if the maximum were attained at some interior point ($b_{1}, b_{2}, \ldots, b_{n}$), Lagrange's equations would be satisfied:

$$
\begin{array}{ll}
\sum_{i=1}^{k}\left(b_{i}+b_{j}\right)^{q-1}+\lambda b_{j}^{q-1}=0 & \text { if } \quad j \geqq k+1, \\
\sum_{j=k+1}^{n}\left(b_{i}+b_{j}\right)^{q-1}+\mu b_{i}^{q-1}=0 & \text { if } \quad i \leqq k .
\end{array}
$$

These equations imply that $b_{1}=b_{2}=\ldots=b_{k}, b_{k+1}=\ldots=b_{n}$. For if, for example, $b_{i}<b_{1}$ when $i<l \leqq k$, then

$$
\left(\frac{b_{i}}{b_{i}+b_{j}}\right)^{1-q}<\left(\frac{b_{l}}{b_{l}+b_{j}}\right)^{1-q} \quad(0<q<1)
$$

and the above equations would not be satisfied. For these values of $b_{1}, b_{2}, \ldots, b_{n}$ we have

$$
\begin{aligned}
g_{k}\left(b_{1}, b_{2}, \ldots, b_{n}\right) & =k(n-k)\left\{k^{-1 / q}+(n-k)^{-1 / q}\right\}^{q} \\
& =\left\{(n-k)^{1 / q}+k^{1 / q}\right\}^{q} .
\end{aligned}
$$

However, this is in fact the minimum value of g_{k} as an application of Minkowski's inequality shows ($0<q<1$). This contradiction establishes part (i).
(ii) is proved by induction.

When $n=3, k=1$ or 2 and $N_{q}(3, k)=\max \left\{(1+x)^{q}+(1+y)^{q}\right\}$, where $x^{q}+y^{q}=1, x \geqq 0$ and $y \geqq 0$. By (i), at the maximum $x=0$ and consequently $y=1$. Thus $N_{q}(3, k)=1+2^{q}$.

Assume now that $N_{q}\left(n-1, k^{\prime}\right)=n-3+2^{q}$ for some integer $n \geqq 4$ and all k^{\prime} such that $1 \leqq k^{\prime} \leqq n-2$. Then by (i), either

$$
N_{q}(n, k)=\max \left\{\sum_{i=1}^{k-1} \sum_{j=k+1}^{n}\left(x_{i}+x_{j}\right)^{q}+\sum_{j=k+1}^{n} x_{j}^{q}\right\},
$$

where $\sum_{i=1}^{k-1} x_{i}^{q}=\sum_{j=k+1}^{n} x_{j}^{q}=1$, taking $x_{k}=0$, or

$$
N_{q}(n, k)=\max \left\{\sum_{i=1}^{k} \sum_{j=k+2}^{n}\left(x_{i}+x_{j}\right)^{q}+\sum_{i=1}^{k} x_{i}^{q}\right\},
$$

where $\sum_{i=1}^{k} x_{i}^{q}=\sum_{j=k+2}^{n} x_{j}^{q}=1$, taking $x_{k+1}=0$. (If $k=1$ or $n-1$ it is clear which of the two alternatives must hold.) In other words,

$$
\begin{aligned}
N_{q}(n, k) & =1+\max \left\{N_{q}(n-1, k-1), N_{q}(n-1, k)\right\} \\
& =1+n-3+2^{q}=n-2+2^{q},
\end{aligned}
$$

by the induction hypothesis. This completes the proof of the lemma.

Returning to Theorem 3.3, (ii), we have, by (3.2), (3.3), and (3.4),

$$
N_{p}(n) \leqq \max _{1 \leqq k \leqq n-1} \max \left\{\sum_{i=1}^{k} \sum_{j=k+1}^{n}\left(x_{i}+x_{j}\right)^{p-1}\right\}
$$

where (by the homogeneity) $\sum_{i=1}^{k} x_{i}^{p-1}=\sum_{j=k+1}^{n} x_{j}^{p-1}=1$ and $x_{i} \geqq 0(1 \leqq l \leqq n)$. Now apply Lemma 3.4 with $p-1=q$ to obtain $N_{p}(n) \leqq \max _{1 \leqq k \leqq n-1} N_{p-1}(n, k)=n-2+2^{p-1}(n \geqq 3)$. Taking $x_{1}=-x_{2}=1, x_{3}=\ldots=x_{n}=0$ shows that this upper bound is in fact attained. This completes the proof of Theorem 3.3.

Applying Theorem 3.1 and Corollary 3.2 yields

Corollary 3.5. If $p>2$, the maximum number of spheres of radius a that can be packed in S is $2 m$ if and only if

$$
\frac{2 m-1}{m}<\left(\frac{1-a}{a}\right)^{p}<2^{p}\left\{1+\left(\frac{m+1}{m}\right)^{1 /(p-1)}\right\}^{1-p},
$$

and the maximum number of spheres of radius a that can be packed in S is $2 m-1$ if and only if

$$
2^{p}\left\{1+\left(\frac{m}{m-1}\right)^{1 /(p-1)}\right\}^{1-p} \leqq\left(\frac{1-a}{a}\right)^{p}<\frac{2 m-1}{m}
$$

(The left-hand side of the last inequality is to be taken to be zero when $m=1$.)
Proof. For $2^{p-1} 2 m / N_{p}(2 m+1)=2^{p}\left\{1+\left(\frac{m+1}{m}\right)^{1 /(p-1)}\right\}^{1-p}$, and $2^{p-1}(2 m-1) / N_{p}(2 m)=$ $(2 m-1)^{\prime} m$.

Corollary 3.6. If $1<p \leqq 2$ and $a>\lambda_{p}$, the maximum number of spheres of radius a that can be packed in S is $\left[1+v_{p} /\left(S_{p}(a)-1\right)\right]$, where $v_{p}=2^{p-1}-1$ and $S_{p}(a)=2^{p-1} /\left(\frac{1-a}{a}\right)^{p}$.

Proof. By Corollary 3.2, when $1<p \leqq 2$ the maximum number of spheres of radius a that can be packed in S is m if and only if

$$
\frac{2^{p-1} m}{m-1+2^{p-1}}>\left(\frac{1-a}{a}\right)^{p} \geqq \frac{2^{p-1}(m-1)}{m-2+2^{p-1}}
$$

This condition is easily seen to be equivalent to

$$
m+1>1+\frac{v_{p}}{S_{p}(a)-1} \geqq m,
$$

which completes the proof.

REFERENCES

1. Jane A. C. Burlak, R. A. Rankin and A. P. Robertson, The packing of spheres in the space I_{p}, Proc. Glasgow Math. Assoc. 4 (1958), 22-25.
2. R. A. Rankin, On sums of powers of linear forms I, Ann. of Math. 50 (1949), 691-698.
3. R. A. Rankin, On sums of powers of linear forms II, Ann. of Math. 50 (1949), 699-704.

University of Glasgow Glasgow, W.2.

