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Central charges in superalgebras

In this Section we will briefly review general issues related to central charges (CC)
in superalgebras.

2.1 History

The first superalgebra in four-dimensional field theory was derived by Golfand and
Likhtman [18] in the form

{Q̄α̇Qβ} = 2Pμ
(
σμ
)
αβ

, {Q̄αQ̄β} = {QαQβ} = 0, (2.1.1)

i.e. with no central charges. Possible occurrence of CC (elements of superalgebra
commuting with all other operators) was first mentioned in an unpublished paper of
Lopuszanski and Sohnius [19] where the last two anticommutators were modified as

{QI
αQ

G
β } = ZIGαβ . (2.1.2)

The superscripts I ,Gmark extended supersymmetry. A more complete description
of superalgebras with CC in quantum field theory was worked out in [20]. The
only central charges analyzed in this paper were Lorentz scalars (in four dimen-
sions), Zαβ ∼ εαβ . Thus, by construction, they could be relevant only to extended
supersymmetries.

A few years later, Witten and Olive [1] showed that in supersymmetric theories
with solitons, central extension of superalgebras is typical; topological quantum
numbers play the role of central charges.

It was generally understood that superalgebras with (Lorentz-scalar) central
charges can be obtained from superalgebras without central charges in higher-
dimensional space-time by interpreting some of the extra components of the
momentum as CC’s (see e.g. [21]). When one compactifies extra dimensions one
obtains an extended supersymmetry; the extra components of the momentum act
as scalar central charges.
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8 Central charges in superalgebras

Algebraic analysis extending that of [20] carried out in the early 1980s (see
e.g. [22]) indicated that the super-Poincaré algebra admits CC’s of a more general
form, but the dynamical role of additional tensorial charges was not recognized
until much later. Now it is common knowledge that central charges that originate
from operators other than the energy-momentum operator in higher dimensions can
play a crucial role. These tensorial central charges take non-vanishing values on
extended objects such as strings and membranes.

Central charges that are antisymmetric tensors in various dimensions were intro-
duced (in the supergravity context, in the presence of p-branes) in Ref. [23] (see
also [24, 25]). These CC’s are relevant to extended objects of the domain wall type
(membranes). Their occurrence in four-dimensional super-Yang–Mills theory (as a
quantum anomaly) was first observed in [11]. A general theory of central extensions
of superalgebras in three and four dimensions was discussed in Ref. [26]. It is worth
noting that those central charges that have the Lorentz structure of Lorentz vectors
were not considered in [26]. The gap was closed in [27].

2.2 Minimal supersymmetry

The minimal number of supercharges νQ in various dimensions is given in Table 2.1.
Two-dimensional theories with a single supercharge, although algebraically possi-
ble, are quite exotic. In “conventional” models inD = 2 with local interactions the
minimal number of supercharges is two.

The minimal number of supercharges in Table 2.1 is given for a real represen-
tation. Then, it is clear that, generally speaking, the maximal possible number of
CC’s is determined by the dimension of the symmetric matrix {QiQj } of the size
νQ × νQ, namely,

νCC = νQ(νQ + 1)

2
. (2.2.1)

In fact, D anticommutators have the Lorentz structure of the energy-momentum
operator Pμ. Therefore, up to D central charges could be absorbed in Pμ, gener-
ally speaking. In particular situations this number can be smaller, since although
algebraically the corresponding CC’s have the same structure as Pμ, they are
dynamically distinguishable. The point is that Pμ is uniquely defined through the
conserved and symmetric energy-momentum tensor of the theory.

Additional dynamical and symmetry constraints can further diminish the number
of independent central charges, see e.g. Section 2.2.1.

The total set of CC’s can be arranged by classifying CC’s with respect to their
Lorentz structure. Below we will present this classification forD = 2, 3 and 4, with
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2.2 Minimal supersymmetry 9

Table 2.1. The minimal number of supercharges, the complex dimension of the
spinorial representation and the number of additional conditions (i.e. the Majorana
and/or Weyl conditions).

D 2 3 4 5 6 7 8 9 10

νQ (1∗) 2 2 4 8 8 8 16 16 16
Dim(ψ)C 2 2 4 4 8 8 16 16 32
# cond. 2 1 1 0 1 1 1 1 2

special emphasis on the four-dimensional case. In Section 2.3 we will deal with
N = 2 superalgebras.

2.2.1 D = 2

Consider two-dimensional non-chiral theories with two supercharges. From the
discussion above, on purely algebraic grounds, three CC’s are possible: one Lorentz-
scalar and a two-component vector,

{Qα , Qβ} = 2(γ μγ 0)αβ(Pμ + Zμ)+ i(γ 5γ0)αβZ . (2.2.2)

We refer to Appendix A for our conventions regarding gamma matrices. Zμ �= 0
would require existence of a vector order parameter taking distinct values in dif-
ferent vacua. Indeed, if this central charge existed, its current would have the
form

ζ μν = ενρ ∂
ρAμ, Zμ =

∫
ζ
μ

0 dz,

where Aμ is the above-mentioned order parameter. However, 〈Aμ〉 �= 0 will break
Lorentz invariance and supersymmetry of the vacuum state. This option will not be
considered. Limiting ourselves to supersymmetric vacua we conclude that a single
(real) Lorentz-scalar central charge Z is possible in N = 1 theories. This central
charge is saturated by kinks.

2.2.2 D = 3

The central charge allowed in this case is a Lorentz-vector Zμ, i.e.

{Qα ,Qβ} = 2(γ μγ 0)αβ(Pμ + Zμ). (2.2.3)
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10 Central charges in superalgebras

One should arrange Zμ to be orthogonal to Pμ. In fact, this is the scalar central
charge of Section 2.2.1 elevated by one dimension. Its topological current can be
written as

ζμν = εμνρ ∂
ρA, Zμ =

∫
d2x ζμ0. (2.2.4)

By an appropriate choice of the reference frameZμ can always be reduced to a real
number times (0, 0, 1). This central charge is associated with a domain line oriented
along the second axis.

Although from the general relation (2.2.3) it is pretty clear why BPS vortices
cannot appear in theories with two supercharges, it is instructive to discuss this
question from a slightly different standpoint. Vortices in three-dimensional theories
are localized objects, particles (BPS vortices in 2 + 1 dimensions were previously
considered in [28]; see also references therein). The number of broken translational
generators is d, where d is the soliton’s co-dimension, d = 2 in the case at hand.
Then at least d supercharges are broken. Since we have only two supercharges in
the problem at hand, both must be broken. This simple argument tells us that for a
1/2-BPS vortex the minimal matching between bosonic and fermionic zero modes
in the (super) translational sector is one-to-one.

Consider now a putative BPS vortex in a theory with minimal N = 1 super-
symmetry (SUSY) in 2 + 1D. Such a configuration would require a world volume
description with two bosonic zero modes, but only one fermionic mode. This is
not permitted by the argument above, and indeed no configurations of this type
are known. Vortices always exhibit at least two fermionic zero modes and can be
BPS-saturated only in N = 2 theories.

2.2.3 D = 4

Maximally one can have 10 CC’s which are decomposed into Lorentz representa-
tions as (0, 1)+ (1, 0)+ (1/2, 1/2):

{Qα , Q̄α̇} = 2(γ μ)αα̇(Pμ + Zμ), (2.2.5)

{Qα ,Qβ} = (
μν)αβZ[μν], (2.2.6)

{Q̄α̇ , Q̄β̇} = (
̄μν)α̇β̇ Z̄[μν], (2.2.7)

where (
μν)αβ = (σμ)αα̇(σ̄
ν)α̇β is a chiral version of σμν (see e.g. [29]). The

antisymmetric tensorsZ[μν] and Z̄[μν] are associated with domain walls, and reduce
to a complex number and a spatial vector orthogonal to the domain wall. The (1/2,
1/2) CC Zμ is a Lorentz vector orthogonal to Pμ. It is associated with strings (flux
tubes), and reduces to one real number and a three-dimensional unit spatial vector
parallel to the string.
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2.3 Extended SUSY 11

2.3 Extended SUSY

In four dimensions one can extend superalgebra up to N = 4, which corresponds
to sixteen supercharges. Reducing this to lower dimensions we get a rich variety
of extended superalgebras in D = 3 and 2. In fact, in two dimensions the Lorentz
invariance provides a much weaker constraint than in higher dimensions, and one
can consider a wider set of (p, q) superalgebras comprising p + q = 4, 8, or 16
supercharges. We will not pursue a general solution; instead, we will limit our task
to (i) analysis of central charges in N = 2 in four dimensions; (ii) reduction of
the minimal SUSY algebra in D = 4 to D = 2 and 3, namely the N = 2 SUSY
algebra in those dimensions. Thus, in two dimensions we will consider only the
non-chiral N = (2, 2) case. As should be clear from the discussion above, in the
dimensional reduction the maximal number of CC’s stays intact. What changes is
the decomposition in Lorentz and R-symmetry irreducible representations.

2.3.1 N = 2 in D = 2

Let us focus on the non-chiral N = (2, 2) case corresponding to dimensional
reduction of the N = 1,D = 4 algebra. The tensorial decomposition is as follows:

{QI
α ,QJ

β } = 2(γ μγ 0)αβ

[
(Pμ + Zμ)δ

IJ + Z(IJ )μ

]
+ 2i (γ 5γ 0)αβ Z

{IJ }

+ 2i γ 0
αβZ

[IJ ], I , J = 1, 2. (2.3.1)

Here Z[IJ ] is antisymmetric in I , J ; Z{IJ } is symmetric while Z(IJ ) is symmetric
and traceless. We can discard all vectorial central chargesZIJμ for the same reasons
as in Section 2.2.1. Then we are left with two Lorentz singletsZ(IJ ), which represent
the reduction of the domain wall charges inD = 4 and two Lorentz singlets TrZ{IJ }
andZ[IJ ], arising fromP2 and the vortex charge inD = 3 (see Section 2.3.2). These
central charges are saturated by kinks.

Summarizing, the (2, 2) superalgebra in D = 2 is

{QI
α ,QJ

β } = 2(γ μγ 0)αβ Pμ δ
IJ + 2i(γ 5γ 0)αβ Z

{IJ } + 2i γ 0
αβZ

[IJ ]. (2.3.2)

It is instructive to rewrite Eq. (2.3.2) in terms of complex superchargesQα andQ†
β

corresponding to four-dimensional Qα , Q̄α̇ , see Section 2.2.3. Then

{
Qα ,Q†

β

}
(γ 0)βγ = 2

[
Pμγ

μ + Z
1 − γ5

2
+ Z† 1 + γ5

2

]
αγ

, (2.3.3)

{
Qα ,Qβ

}
(γ 0)βγ = −2Z′ (γ5)αγ ,

{
Q†
α ,Q†

β

}
(γ 0)βγ = 2Z′† (γ5)αγ .
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12 Central charges in superalgebras

The algebra contains two complex central charges,Z andZ′. In terms of components
Qα = (QR ,QL) the nonvanishing anticommutators are

{QL,Q†
L} = 2(H + P), {QR ,Q†

R} = 2(H − P),

{QL,Q†
R} = 2iZ, {QR ,Q†

L} = −2iZ†,

{QL,QR} = 2iZ′, {Q†
R ,Q†

L} = −2iZ′†.

(2.3.4)

It exhibits the automorphism QR ↔ Q
†
R , Z ↔ Z′ associated [30] with the transi-

tion to a mirror representation [31]. The complex central charges Z and Z′ can be
readily expressed in terms of real Z{IJ } and Z[IJ ],

Z = Z[12] + i

2

(
Z{11} + Z{22}) , Z′ = Z{12} + Z{21}

2
− i

Z{11} − Z{22}

2
. (2.3.5)

Typically, in a given model either Z or Z′ vanish. A practically important example
to which we will repeatedly turn below (e.g. Sections 3.5 and 4.5.3) is provided by
the so-called twisted-mass-deformed CP(N − 1) model [32]. The central charge
Z emerges in this model at the classical level. At the quantum level it acquires
additional anomalous terms [33, 34]. Both Z �= 0 and Z′ �= 0 simultaneously in a
contrived model [33] in which the Lorentz symmetry and a part of supersymmetry
are spontaneously broken.

2.3.2 N = 2 in D = 3

The superalgebra can be decomposed into Lorentz and R-symmetry tensorial
structures as follows:

{QI
α ,QJ

β } = 2(γ μγ 0)αβ[(Pμ + Zμ)δ
IJ + Z(IJ )μ ] + 2i γ 0

αβZ
[IJ ], (2.3.6)

where all central charges above are real. The maximal set of 10 CC’s enter as a
triplet of spacetime vectors ZIJμ and a singlet Z[IJ ]. The singlet CC is associated
with vortices (or lumps), and corresponds to the reduction of the (1/2,1/2) charge
or the 4th component of the momentum vector inD = 4. The tripletZIJμ is decom-
posed into an R-symmetry singlet Zμ, algebraically indistinguishable from the

momentum, and a traceless symmetric combination Z(IJ )μ . The former is equiva-

lent to the vectorial charge in the N = 1 algebra, while Z(IJ )μ can be reduced to a
complex number and vectors specifying the orientation. We see that these are the
direct reduction of the (0,1) and (1,0) wall charges in D = 4. They are saturated
by domain lines.
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2.3.3 On extended supersymmetry (eight supercharges) in D = 4

Complete algebraic analysis of all tensorial central charges in this problem is anal-
ogous to the previous cases and is rather straightforward. With eight supercharges
the maximal number of CC’s is 36. Dynamical aspect is less developed – only a
modest fraction of the above 36 CC’s are known to be non-trivially realized in
models studied in the literature. We will limit ourselves to a few remarks regarding
the well-established CC’s. We will use a complex (holomorphic) representation of
the supercharges. Then the supercharges are labeled as follows

QF
α , Q̄α̇ G, α, α̇ = 1, 2, F ,G = 1, 2. (2.3.7)

On general grounds one can write

{QF
α , Q̄α̇ G} = 2δFG Pαα̇ + 2(ZFG)αα̇ ,

{QF
α , QG

β } = 2Z{FG}
{αβ} + 2 εαβ ε

FG Z,

{Q̄α̇ F , Q̄β̇ G} = 2
(
Z̄{FG}

)
{α̇β̇} + 2εα̇β̇ εFG Z̄. (2.3.8)

Here (ZFG)αα̇ are four vectorial central charges (1/2, 1/2), (16 components alto-

gether) while Z{FG}
{αβ} and the complex conjugate are (1,0) and (0,1) central charges.

Since the matrix Z{FG}
{αβ} is symmetric with respect to F ,G, there are three fla-

vor components, while the total number of components residing in (1,0) and (0,1)
central charges is 18. Finally, there are two scalar central charges, Z and Z̄.

Dynamically the above central charges can be described as follows. The scalar
CC’s Z and Z̄ are saturated by monopoles/dyons. One vectorial central charge Zμ
(with the additional conditionPμZμ = 0) is saturated [35] by Abrikosov–Nielsen–
Olesen string (ANO for short) [36]. A (1,0) central charge with F = G is saturated
by domain walls [37].

Let us briefly discuss the Lorentz-scalar central charges in Eq. (2.3.8) that are sat-
urated by monopoles/dyons. They will be referred to as monopole central charges.
A rather dramatic story is associated with them. Historically they were the first to
be introduced within the framework of an extended 4D superalgebra [19, 20]. On
the dynamical side, they appeared as the first example of the “topological charge ↔
central charge” relation revealed by Witten and Olive in their pioneering paper [1].
Twenty years later, the N = 2 model where these central charges first appeared,
was solved by Seiberg and Witten [2, 3], and the exact masses of the BPS-saturated
monopoles/dyons found. No direct comparison with the operator expression for
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14 Central charges in superalgebras

the central charges was carried out, however. In Ref. [38] it was noted that for
the Seiberg–Witten formula to be valid, a boson-term anomaly should exist in the
monopole central charges. Even before [38] a fermion-term anomaly was identi-
fied [37], which plays a crucial role [39] for the monopoles in the Higgs regime
(confined monopoles).
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