
LATTICE TETRAHEDRA 

G. K. WHITE 

I. I n t r o d u c t i o n . A class of problems in the geometry of numbers , for 
which there are bu t fragmentary results, may be expressed in general terms, 
as follows. Let 5 be a given point-set and let G be a given discrete point-set, 
both in Euclidean w-space. Suppose tha t A is a lattice which contains G b u t 
no point of S not in G. Such lattices, if they exist, will be said to be admissible 
for 5 with respect to G, and the general problem is to investigate their pro
perties and, if possible, classify them. For our present purpose, and to illus
t ra te the ideas involved, it is best to confine ourselves to two cases: 

I. G consists of the vertices 0 , P i , . . . , Pn of an w-dimensional simplex T; 

I I . G consists of 0 and the vertices =bPi, . . . , =bPw of an ^-dimensional 
octahedron K, 

with 5 = C(G), the closed convex cover of G, or S = I(C(G)), its interior. 
In these cases a t least, the particular lattice with basis {Pi, . . . , Pn] is evi
dent ly admissible for S with respect to G. Our two cases also serve to distinguish 
two mutual ly exclusive properties of our class of lattices. T h e fact t h a t the 
origin 0 is an inner point of S in II implies t h a t d(A), for any such lattice A, 
is bounded below by some positive constant depending only on G, whereas 
this is not t rue for I, as is well known. When n = 2, both I and II are s t raight
forward. T h e problem for II has been solved for n = 3 and 4 as well. In (4), 
Mordell gives simplified proofs, for the case S = C(G), for solutions obtained 
by Minkowski (3) for n = 3, and by Brunngraber (2) and Wolff (5), for 
n = 4; while Bantegnie (1) supplies a solution for the more difficult problem 
when 5 = I (C(G)) . In Theorem 1, I settle the question for n = 3 in Case I 
with 61 = C(G) and in the process (without undue elaboration) establish a 
slightly more general result. In formulating this, we shall say tha t a plane T 
for which dim ( A H T T ) = 2 is a lattice plane of A and tha t two lattice planes 
7T, 7r' are adjacent if T is parallel to IT' and no points of A lie strictly between 
IT and 7rV 

T H E O R E M 1. (n = 3). Let G be the set of vertices of a tetrahedron T = C (G) 

and let Et = {au vî\,i = 1,2, 3, be the set of points belonging to a pair of opposite 
edges ai, (ii of T. Then A is admissible for 
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with respect to G is and only if there is a pair of opposite edges Ej and adjacent 
lattice planes irh ir/ of A for which 

(Tj 6 Wj, (Tj Ç TTj . 

We remark that since T D St for each i, any lattice A admissible for T 
with respect to G has the above property aj Ç TTjy a/ Ç w/ for some j . Also, 
if Et contains points of A other than the vertices G, then j = i. In Theorem 2, 
the essence of our result is expressed in terms of diophantine approximation. 

I should like to thank Dr. J. H. H. Chalk for his generous help in the 
preparation of this paper. 

2. A result connected with the greatest integer function [x]. In 
the course of our proof of Theorem 1, we shall need a result (Theorem 2) of 
some intrinsic interest. If x is any real number, [x] denotes the greatest 
integer <x, and we shall denote the fractional part of x by 

{x} = x — [x]. 

THEOREM 2. Let a, b, c, d be integers satisfying 

(1) d 5*0, b + c ^ 0, c + a ^ 0 , a + b ^ 0 (mod d). 

Then there is an integer u for which 

(2) 0<{fi.} + ^ } + {a}<1, 
with strict inequality whenever (a + b + c, d) = 1. 

Our proof depends on the following lemma. 

LEMMA. If d, k, t are integers satisfying 

(3) 1 < k < k + t and 2(2& + t) < d, 

then there is an integer u such that 

(4) [«i*±il] = o, 0<u<d, 

(6) [u{kr]] < [M(2V °] • 
except when (d, k, t) = (9, 1, 2) or (15, 2, 3). 

Proof. By (3), (4), (5), it is sufficient to prove that there is an integer u 
with 0 < u < d in one of the intervals 

(6) J(«): ~Tln<U<IT~t^ 

where n is an integer satisfying 
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(7) °< W <IT Î -

Note that this follows whenever the length of I(n), L(n) satisfies 

(8) L(n) = ru , f^u , ^ > 1 l (k + 0 (2k + 0 2k + T 

We now express £ in the form 

(9) * = m(k + 1) + r, where 0 < r < &, m > 0, 

and consider two cases according as r > 0 or r = 0. 

Case 1. 0 < r < &. Observe that 

(jfe + t)(k + l ) " 1 = m + (k + r)(k + I )" 1 > m + 1, 

and we may select n = m + 1 in (7). Thus the length of I(n) satisfies 

L(m + 1) > 2ife»(fe + 0" 1 = 2&(m + l)(m(k + 1) + k + r)~\ 

by (8) and our hypothesis (3) for d. Moreover, 

2k(m + 1) = (m(k + 1) + k + r) + k - r + m(k - 1) > m (ft + l)+ft + r, 

since & > 1, r < k, and m > 0. Hence L(m + 1) > 1, and 7(m + 1) contains 
an integer u. 

Case 2. r = 0. Then by (7), we may select n = m. Since £ > 1 by (3), we 
have m > 1. With w = m, 

L(m) > 2kn(k + t)~l = 2ftm(ft + m(ft + l ) ) - 1 > 1 

when (m — l)(ft — 1) > 1. Thus for m > 2, & > 2, we have L(m) > 1. It 
remains to consider the cases k = 1 and m = 1. 

(i) Suppose ft = 1. Then £ = 2m and by (3), d = 4m + 4 + e (e = 1, 
2, . . .). Thus 

L(m) - (1 - (2ft + t)~l) = dm(2m + l)-1(2m + 2)"1 - 1 + (2m + 2)- 1 

= (4m2 + 4m + em - 4m2 - 4m - 1) (2m + l)-1(2m + 2)"1 > 0, 

unless e = m = 1, when (d, ft, t) = (9, 1, 2). 
(ii) Suppose m = 1. Then we can assume that k > 2, and we have 

t = k + l, d = 6k + 2 + e (e = 1, 2, . . .) by (3), so that 

L(m) - (1 - (2* + Z)-1) = dk{2k + 1)-1(3* + l ) " 1 - 1 + (3* + l ) " 1 

= (6ft2 + 2k + ek - 6ft2 - 3^) (2^ + l)"1(3ife + 1)_ 1 > 0, 

unless (e — l)ft < 0, i.e. e = 1, d = 6ft + 3. For this remaining case we 
choose u = 5 in (4) and (5). Then 

[ t ^ ] - ». - * - [m?] < [TO1] -2 
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for k > 3. This leaves only k = 2, giving (d, k, t) = (15, 2, 3), and completing 
the proof of the lemma. 

3. Proof of Theorem 2. We remark initially that by our hypothesis (1), 
d cannot divide all of a, b, c: 

(10) dK (a,b,c), 

and there is no loss of generality in assuming that 

(i) d > 2, 0 < u < d, 0 < a < d, 0 < b < d, 0 < c < d, 
( U ) ((ii) (a,b,c,d) = 1, 

since if k > 2 and 0 < u < d < kd, then u, ka, kb, kc, kd satisfy (1) and (2) 
if and only if (1) and (2) hold for u, a, b, c, d. For convenience, we divide 
our proof into three parts: 

(A) a + b + c = 1 (modd), 

(B) (a + b + c, d) = 1, and 

(C) (a + b + c, d) > 1. 

(A) Suppose that 

(12) a + b + c = 1 (modd). 

Then by (1) and (11) we have 

(13) (a - l)(b - l)(c- 1) 5^0. 

By (11), (12), and (13), a + b + c = 1 + md, where m = 1 or 2. Since 
w(a + 6 + c) = u (modd), the inequality (2) holds with strict inequality 
for 0 < u < d if and only if 

/-.^N jaw I . Jowl . )cu\ u 
(14)

 ITI
 + XJf + W = d • 

i.e. 

raw. 

Now any integers u and v satisfy 

( , \v(d — u)l \vu\ = )v iid\vu, 
U j L d J ^ L d J \ v - l otherwise. 

On defining 

(17) «,) . nu ~ [f] - [$] - [f ] . 
we have 
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(18) $m(u) > mu — drl(a + b + c) = —udr1 

> 0 (if 0 < u < d), 

, . , . , . / = 2 if d \ au, d \ bu, d Jf eu, 
(19) * „ . ( d - « ) + * . ( « ) | < 2 o t h e m i s e > 

The case m = 2 may be settled by taking w = 1, for then 

^2(1) = 2 - [ad"1] - [6J-1] - [cdr1] = 2 

by (11), and ^2(d - 1) = 0, by (18) and (19), and so u = d - 1 is the 
required integer, by (15). Hence we can suppose that m = l,a + b + c = d+l 
and write \l/(u) for \pi(u). By (18) and (19), we see that either \//(u) or \//(d — u) 
vanishes for some integer u with 0 < u < d (in which case (15) is satisfied) 
unless 

(20) d \ au, d \ bu, d \ cu for all integers u with 0 < u < d, 

i.e., 

(21) (d, a) = (d, i) = (d, c) = 1. 

By permuting a, b, c if necessary, we may clearly assume that 

(22) a < b < c. 

Also, by (17), we have yp{2) = 2 and \p(d — 2) = 0 if c is small, say c < | d ; 
so we can suppose that c > \d {c = \d contradicting (20)). Then b < \d, 
since a + b + c = d + l and a > 1 by (21). Thus, assembling our inequali
ties, we have 

(23) a < b < id, c > |d. 

In order to apply our lemma, we introduce the symbols k and / defined by 

(24) a = k + 1, b = k + t, 

where 

(25) 1 < k < k + t and 2k + t < \d, 

since a > 2 by (21) and (13), / = b - a + 1 > 1 by (22), and 

2& + / = a + 6 - l = d - < ; < | d 

by (23). Now (d,k,t) ^ (9,1,2) or (15,2,3) by (21) and so, using the 
lemma, there is an integer u satisfying (4) and (5). Whence, by (16), 

(26) ,<.,_,_[«]_[*] + [£=£].] 

= i _ r«£i±i)i _ ["*(*+oi + \u(2k+*)~\ > 2 

and so \f/(d — u) — 0, by (19). Thus Theorem 2 holds in case (A). 
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(B) Suppose a + b + c = s (mod d), where (s, d) = 1. Then there exists 
an integer d such that sd = 1 (mod d) and if we set a' = s'a, bf = db, 
d = dc, we have a' + V + c' = 1 (mod d). Clearly ($', d) = 1, so the con
ditions in (1) are equivalent to 

V + d = 0, d + a' = 0, a! + i ' = 0 (mod J). 

Thus there exists an integer u' ^ 0 (mod d) for which 

by part (A) of our proof. Set u = du'(mod d), 0 < u < d. Then 0 < u < d and 
a'uf = s'aw' = aw, 6 V = 6w, du' = eu, so, by (27), u is our required integer. 

(C) Finally, suppose a -\- b + c = s (mod d) where (s, d) = e > 1. Let 
s = s'e, d = d'e, so that (d, df) = 1, 0 < d' < d. Then d's = 0 (mod d), but 
not all of d'a, d'b, d'e are divisible by d, since otherwise a, 6, c, J have a com
mon factor e > 1, contrary to (11). Thus if we define 

6(x) = {xad-1} + {xbd-1} + {xcd'1}, 

we have 0(d') > 0. Also, B(d - d') > 0 and so 6(d') and 0(d - d') are positive 
integers whose sum is at most 3, since fx} + { —x) < 1. Thus either 6(dr) = 1 
or 6(d — df) = 1, and one of d' and d — d' must be the desired integer u. 
This completes our proof of Theorem 2. 

4. Proof of Theorem 1. 

Case 1. Suppose that A is admissible for T with respect to G and choose 
the co-ordinate system so that the vertices G of T are 

(28) 0 = (0, 0, 0), P = (1, 0, 0), Q = (0, 1, 0), R = (0, 0, 1). 

Then we can choose a point 

(29) 5 = (a, 0, 5) with ô > 0 

of A such that P, Q, S form a basis for A. We thus induce a second co-ordinate 
system [ujv, w] in which 

(30) (x, j>, z) = xP + yQ -\- zR = uP + vQ + wS = [ut v, w], 

and for which A = A0 = \[u, v, w\\ u,v,w = 0, ± 1 , ± 2 , . . .} and 

(31) P = [1,0,0], Q= [0,1,0], R=[a,b,d], 

where a, è, d are integers satisfying 

ad + a = 0, fid + b = 0, M = 1, 

by (30). Hence 

(32) d > 1, and 5 - d~\ 0 = - M " 1 , a = -ad'1 

and any point (x, y, z) of A satisfies 
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(33) x = u — -j-, y = v — - j - , 2 = — , u, v, w = 0, ± 1 , ± 2 , . . . . 

Note that the parallel lattice planes x + y = 0 and x + y = 1 passing 
through OR and PC satisfy 2/ + v — dr1(a + 6) = 0, 1 respectively, and thus 
are adjacent whenever a + 6 = 0 (mod d). Similarly, the planes x -j- z = 0 
and x + s = 1 through OQ and PR are adjacent whenever a = 1 (mod J), 
and the planes y + z = 0 and 3> + z = 1 through the edges OP and QP are 
adjacent whenever 6 = 1 (mod d). In the case d = 1 (where P is clearly a 
basis for A), all three conditions 

a = 1, 6 = 1 , a + 6 = 0 (mod J), 

are trivially satisfied, and so all three pairs of opposite edges lie on adjacent 
lattice planes. Now suppose, if possible, that 

(34) fl^l, 6 ^ 1 , a + 6 ^ 0 (mod d); 

we shall establish our result by deducing a contradiction. By (33), the set 

P* = T- {0 ,P , (2 ,P} = {(x,y,z) : 
0 < x < l , 0 <y < 1, 0 < z < 1, 0<x + y + z<l} 

will contain a point of A if and only if there exists an integer w for which 

(35) 0 < „ < * 0 < { - f } + { - ^ } + ï < 1 

since for given w, x = {—awd~1}, y = {—bwd~1} are the only possible choices 
in T*, and w = 0 implies that x + y + s = 0. By Theorem 2, such an integer 
indeed exists when (34) holds, and consequently A is not admissible, contrary 
to hypothesis. Thus for admissible A (with respect to the vertices), either 

(36) a= 1 or 6 = 1 or a + 6 = 0 (mod d), 

and we have our result. The converse is now trivial. 

Case 2. Suppose that A is not admissible for T with respect|to G, and that 
all points of A in T lie on the two opposite edges <JI = P'P, a/ = QQ', say. 
We prove that P'P, QQ' lie on adjacent lattice planes. We may assume, with
out loss of generality, that P'P contains a point R' of A, with Rr ^ P ' , 
R! 9^ P . Take R' to be the nearest such point to P and set R' = 0. Let R 
be the point of A on QQ' closest to Q. Then A is clearly admissible for OPQR 
with respect to its vertices, and we may assign co-ordinates 

(x, y, z) = xP + yQ + zR, [u, v, w] = uP + vQ + wS 

as in (28) to (33) of Case 1. Since 0 = R' ^ P r , we have P" = [ - 1 , 0, 0] G A 
and, from our hypothesis, A is admissible for OP"QR with respect to 
{0, P " , Q, R}, So, as in (36) of Case 1, applied now to OPQR and OP"QR, 
we have 
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{0 . I a = 1 or ô = 1 or a + b = 0 (mod d), and 
\—a= 1 or 6 = 1 or — a'-\- b = 0 (mod d), 

where P - [1, 0, 0], P " = [ - 1 , 0, 0], Q = [0, 1, 0], R = [a, b, d]. Note that 
if b = 1 (mod d), the planes y + z — 0 and ^ + 2 = 1 through OP and (?P 
are adjacent, and since OP C PfP, QR C (?(?', our result follows. We thus 
conclude our proof of Theorem 1 by showing that (37) implies that b = 1 
(mod d). Firstly, if either a = 1 and — a + fr = 0, or — a = 1 and a + è = 0, 
then & = 1 (mod d). Next, if a = 1 and a = — 1, then d = 2, b = 1 (mod d) 
(if 0 = 0, K^P + ^ ) £ OPÇP H A). Finally, if a + b = -a + b = 0, we have 
2a = 0 (mod d). li d = 2e is even, then e divides a, b, and d, so that 

érlR 6 OPQR r\ A. 

Hence e = 1, d = 2, and 6 = 1 (mod d) as before. If d is odd, then a = 6 = 0 
(mod d), d - 1P G A, and so d = 1. But when d = 1, it is trivial that 6 = 1 
(modd). This completes our proof of Theorem 1. 

5. Remark. There is a strikingly simple relation between the problems 
for I and II, when n = 3. If T is the tetrahedron with vertices at 0, Ph P2 , 
P 3 and if is the corresponding octahedron with vertices ± P i , ±P2, =bP3, 
then A is admissible for K with respect to G = {O, ± P i , ±P2, i P s } if and 
only if all three pairs of opposite edges of T belong to adjacent lattice planes 
of A. 
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