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Abstract

Let X be a smooth complex projective variety with basepoint x. We prove that every
rigid integral irreducible representation π1(X,x) → SL(3,C) is of geometric origin, i.e.,
it comes from some family of smooth projective varieties. This partially generalizes an
earlier result by Corlette and the second author in the rank 2 case and answers one of
their questions.

1. Introduction

The main examples of local systems in complex algebraic geometry are those that come from
families of varieties. Suppose f : Z → X is a smooth projective morphism of algebraic varieties.
Then the ith higher direct image of the constant sheaf CZ is a semi-simple local system Rif∗(CZ)
on X. It furthermore has a structure of polarized Z-variation of Hodge structure with integral
structure given by the image of the map Rif∗(ZZ) → Rif∗(CZ). We will view all the irreducible
direct factors of such local systems as coming from geometry.

Somewhat more generally, over a smooth variety X we say that an irreducible C-local system
L is of geometric origin if there is a Zariski open dense subset U ⊂ X and a smooth projective
family f : Z → U such that L|U is a direct factor of Rif∗(CZ) for some i. See §§ 2.5 and 7 for a
further discussion of possible variants of this notion.

Local systems of geometric origin are C-variations of Hodge structure. Furthermore, from the
Rif∗(ZZ) they inherit integral structure, in the sense that the traces of monodromy matrices are
algebraic integers. Local systems of geometric origin also have a Galois descent property when
viewed as Q`-local systems over an arithmetic model of X, as described in [Sim92, Theorem 4].

Several natural questions may be posed. For instance, does an integral local system underlying
a C-variation of Hodge structure have geometric origin?

Recall from Mostow–Margulis rigidity theorems that many local systems naturally occurring
over higher-dimensional varieties are rigid, i.e. they have no non-trivial deformations. One can
easily see that rigid Q`-local systems automatically have the Galois descent property mentioned
above. Furthermore, it is a consequence of Corlette’s theorem that rigid local systems are C-
variations of Hodge structure. It is natural to formulate the following conjecture.

Conjecture 1.1. Over a smooth projective variety X, any rigid local system L is of geometric
origin.
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Rank 3 rigid representations of projective fundamental groups

This conjecture was proven for local systems on root stacks over P1 by Katz [Kaz96], who
gives a complete classification and inductive description of rigid local systems in that case. For
local systems of rank 2 it was proven by Corlette and the second author [CS08] who also prove
a stronger classification result.

A consequence of the conjecture would be the following subsidiary statement.

Conjecture 1.2. Over a smooth projective variety X, any rigid local system is integral.1

In this paper we consider the case of rank 3, and obtain the following main theorem.

Theorem 1.3. Let X be a smooth complex projective variety with basepoint x. Then every
rigid integral irreducible representation ρ : π1(X,x) → SL(3,C) is of geometric origin.

Our techniques will not address the question of proving that a local system is integral, so we
have included integrality as a hypothesis. Consequently, our theorem does not provide a complete
answer to Conjecture 1.1 in the rank 3 case, but it does show for rank 3 that Conjecture 1.2
implies Conjecture 1.1.

On the other hand, for varieties with no symmetric differentials in some range, Conjecture 1.2
was proven by Klingler in [Kli13]. Together with Theorem 1.3 his results imply the following
corollary.

Corollary 1.4. Let X be a smooth projective variety with H0(X,SymiΩX) = 0 for i = 1, 2, 3.
Then any representation π1(X,x) → GL(3,C) is of geometric origin.

We now explain the main ideas of the proof of Theorem 1.3. We say that a variation of
Hodge structure (VHS for short) is of weight one if its Hodge types are contained in the set
{(1, 0), (0, 1)}. It is well-known that a polarizable weight-one Z-VHS comes from an algebraic
smooth family of abelian varieties. Therefore, if we can construct such a VHS then we obtain
an algebraic family and the underlying local system is of geometric origin. A refined version of
this observation, which one can learn for example from Deligne’s [Del71], goes as follows. Start
with a local system L of complex vector spaces, but assume that L is rigid. Then it is defined
over some algebraic number field K ⊂ C. If we also assume that L is integral, then Bass–Serre
theory says that there is a local system of projective OK-modules LOK

with

L ∼= LOK
⊗OK

C.

The local system LOK
may be viewed as a local system of abelian groups, and hence of (free)

Z-modules. Now

LOK
⊗Z C =

⊕
σ:K→C

Lσ,

where Lσ is the C-local system obtained by extension of scalars using the embedding σ. In order
to give our Z-local system a structure of polarized weight-one Z-VHS, we should therefore give
each complex local system Lσ a structure of polarized C-VHS of weight one. Adjusting these
together in order to have the required properties to get a family of abelian varieties, will be
discussed in more detail in § 7.

1 Esnault and Groechenig have recently posted a proof of this conjecture for cohomologically rigid local
systems [EG17]. See Remark 7.12 for the definition of cohomologically rigid and an application.
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A. Langer and C. Simpson

Our original local system L is one of the factors Lσ0 corresponding to the initially given
embedding σ0 : K ↪→ C. The plan to show that L is of geometric origin is therefore to try
to put weight-one VHSs on each Lσ. Assuming L is irreducible, so all these local systems are
irreducible, if they have VHSs then these structures are unique up to translation of Hodge types.
The existence of weight-one structures is therefore a property of the Lσ.

In the case rk(L) = 2, this property is automatic. Indeed the only two possibilities for the
Hodge numbers are a single Hodge number equal to 2, a case we denote (2), or two adjacent
Hodge numbers equal to 1, a case we denote (1, 1). Notice that if the non-zero Hodge numbers are
not adjacent then the Kodaira–Spencer map (Higgs field) must be zero and the system becomes
reducible. This explains in a nutshell the procedure that was used in [CS08] to treat the rigid
and integral local systems of rank 2.

In the case of local systems of rank 3, there are four possibilities for the type of VHS: either
(3) corresponding to unitary ones, or (1, 2) or (2, 1) corresponding to weight-one VHS (with
Hodge numbers h1,0 = 1, h0,1 = 2 or h1,0 = 2, h0,1 = 1 respectively); or the last case (1, 1, 1)
when the Hodge bundles are three line bundles. The unitary type (3) can be considered as
having weight one in two different ways. Thus we have the following lemma which is implicit in
the proof of [CS08, Theorem 8.1].

Lemma 1.5. Suppose V is an irreducible rank 3 local system on a smooth quasi-projective variety
X. If V is rigid then it underlies either a complex VHS of weight one or a complex VHS of type
(1, 1, 1).

The reasoning up until now has been well-known and standard. The main idea of the present
paper is that we can use substantial arguments in birational geometry to rule out the case of
VHS type (1, 1, 1), unless some special behaviour occurs; namely factorization through a curve.
In turn, the case of factorization through a curve can be shown, again by standard arguments
using Katz’s theorem, to lead to local systems of geometric origin under the hypothesis of rigidity.
We show the following main theorem. See Theorem 5.1 for a more detailed version of part (1) of
the conclusion.

Theorem 1.6. Let X be a smooth complex projective variety with basepoint x and let ρ :
π1(X,x) → SL(3,C) be an irreducible representation coming from a complex variation of Hodge
structure of type (1, 1, 1). Let Vρ denote the corresponding local system. Then one of the following
holds:

(i) the image of ρ is not Zariski-dense in SL(3,C); or

(ii) ρ projectively factors through an orbicurve.

Once we have this theorem, the proof of Theorem 1.3 follows the outline described above:
the case of factorization through a curve is treated on the side, and otherwise the theorem rules
out having a VHS of type (1, 1, 1). Therefore, all of our local systems Lσ underlie VHS of weight
one, and these may be put together into a polarized Z-VHS of weight one corresponding to a
family of abelian varieties. The details are described in § 7.

We note that Theorem 1.6 generalizes Klingler’s result [Kli03, Proposition 3.3] which had as
the hypothesis that the Neron–Severi group be of rank 1.

Let us now explain briefly how we can use arguments from birational geometry to rule out
the case of VHS of type (1, 1, 1). Such a VHS corresponds to a Higgs bundle of the form

E = E2,0 ⊕ E1,1 ⊕ E0,2
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Rank 3 rigid representations of projective fundamental groups

with Ep,q line bundles, and the Higgs field consists of θ : E2,0
→ E1,1 ⊗ Ω1

X and θ : E1,1
→

E0,2 ⊗ Ω1
X . In terms of the VHS (V, F ·,∇), the line bundles are the Hodge bundles Ep,q =

F pV/F p+1V and the θ are the Kodaira–Spencer maps induced by ∇. Since the Ep,q are line
bundles, locally θ looks like a collection of sections of Ω1

X and the integrability condition θ∧θ = 0
implies that these local sections are proportional where non-vanishing. They generate a saturated
subline bundle M ⊂ Ω1

X .
For simplicity, let us here assume that X is a surface. Consider the line bundles L1 =

E2,0 ⊗ (E1,1)∗ and L2 = E1,1 ⊗ (E0,2)∗. The sections θ may be viewed as inclusions Li ↪→
M ⊂ Ω1

X . Write

M = L1(B1) = L2(B2)

with Bi effective divisors. Bogomolov’s lemma (see [Bog78, Theorem 4]) says that M cannot be
big. We know that the Higgs bundle (E, θ) is stable, and its rational Chern classes vanish. We
are able to conclude several fairly strong properties:
• the line bundles Li both lie on the same line in NS(X)Q;
• at least one of Li is nef of strictly positive degree; and
• L2

i = 0.
That happens in § 4. The technique is to play off the numerical properties given by stability

and vanishing of Chern classes, against the fact that we have effective divisors Bi such that
Li +Bi are contained in Ω1

X and not big by Bogomolov’s lemma.
Then in § 5, assuming for example that L1 is nef of strictly positive degree, we write L2 = a.L1

in the rational Neron–Severi group, with a ∈Q, and we try to get information about a. Notice that
having L2

1 = 0 and L1 ↪→ Ω1
X allows us to create the rank 2 Higgs bundle OX⊕L1 corresponding

to a projectively flat connection. We would like to view E as being the symmetric square of this
rank 2 bundle. In other words, we would like to show that a = 1 and moreover L1 = L2.

Part of the difficulty is that there exist VHSs over a curve where a could be somewhat
arbitrary, including being negative. Therefore, our strategy is to show that either a = 1, or else
our VHS factors through a map to a curve. In the case a = 1, again with some further arguments
assuming that there is no factorization through a curve, we finally conclude that L1 = L2 and
indeed our VHS was a symmetric square of a rank 2 local system. These arguments use various
aspects of the theory of factorization of representations. We include a proof that several different
statements of the property ‘factors through a curve’ are equivalent, in Appendix A. The proof
of Theorem 1.6 is concluded at the end of § 5.

Section 6 contains some remarks about the possible extension of this discussion to VHSs of
type (1, 1, . . . , 1) in higher ranks, and § 6 derives the corollaries about local systems of geometric
origin leading to the proof of Theorem 1.3.

1.1 Notation
Let us recall that a Higgs bundle is a pair (E, θ) consisting of a locally free OX -module and an
OX -linear map θ : E → E ⊗ ΩX such that θ ∧ θ = 0. A system of Hodge bundles is a Higgs
bundle (E, θ) with a decomposition E =

⊕
Ep,q such that θ maps Ep,q into Ep−1,q+1 ⊗ ΩX . We

say that a system of Hodge bundles (E, θ) is of type (i0, . . . , in) if

rkEp,q =

{
iq if p+ q = n,

0 if p+ q 6= n,

and all the maps θ : Em−q,q → Em−q−1,q+1 ⊗ ΩX are non-zero for q = 0, . . . , n − 1. Similarly,
replacing ΩX with ΩX(logD) one can define logarithmic systems of Hodge bundles.
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In the following we make the convention that complex variation of VHS always means

polarizable VHS. Giving an irreducible VHS on a smooth complex projective variety is equivalent

to giving a stable system of Hodge bundles with vanishing rational Chern classes.

We say that a complex VHS is of type (i0, . . . , in) if the corresponding system of Hodge

bundles is of type (i0, . . . , in).

Let X be a smooth complex projective variety. Let us recall that a line bundle is called nef

if it has a non-negative degree on every irreducible projective curve in X. Let us recall that

after Miles Reid, ‘nef’ stands for ‘numerically eventually free’. A line bundle L is called big if its

Iitaka’s dimension κ(L) is equal to the dimension of X.

A Q-divisor D is called effective if it can be written as D =
∑
aiDi, where Di are prime

divisors and ai are non-negative rational numbers. We write D1 > D2 for two Q-divisors D1, D2,

if their difference (D1 −D2) is an effective Q-divisor.

If L1 and L2 are line bundles then we write L1 > L2 if H0(L1 ⊗ L−1
2 ) 6= 0.

For various other definitions and properties of line bundles we refer the reader to [Laz04,

Theorem 2.2.16]. Let us just mention that if L is nef then it is big if and only if LdimX > 0.

A morphism f : X → Y between smooth quasi-projective varieties (or just orbifolds) is called

a fibration if it is surjective and the fibers of f are connected.

A morphism f : X → Y is called an alteration if X is smooth and f is proper, surjective and

generically finite.

In the following we often abuse notation and we do not distinguish between an algebraic

variety and the underlying analytic space. For example, the fundamental group π1(X) and

cohomology groups H∗(X,Q) of an algebraic variety X always denote the corresponding notion

for the underlying analytic space. Similarly, essentially all varieties, bundles and maps are

algebraic. In the projective case this convention is harmless due to GAGA-type theorems but in

general this could lead to some confusion so in case we use non-algebraic structures we explicitly

say so (see the use of analytic maps in the proof of Theorem 5.1).

Let X be a smooth complex quasi-projective variety. Let us fix a smooth projective

compactification X̄ of X such that D = X̄ −X is a simple normal crossing divisor. Let {γi} be

loops going around the irreducible components of D. Let ρ : π1(X,x) → G be a representation

of π1(X,x) in some reductive group G and let us assume that all ρ(γi) are quasi-unipotent. Let

us denote by Ci the closure of the conjugacy class of ρ(γi). We say that ρ : π1(X,x) → G is

rigid if it represents an isolated point in the moduli space M(X,G, {Ci}) of representations of

τ : π1(X,x) → G with conjugacy classes of τ(γi) contained in Ci.

2. Preliminaries

2.1 Homotopy exact sequence

Let C be a smooth complex quasi-projective curve and let X be a smooth complex quasi-

projective variety. Let f : X → C be a fibration and let c be a closed point of C. Let us recall

that the multiplicity of a fiber F =
∑
aiFi, where Fi are irreducible components of F , is equal to

the greatest common divisor of the coefficients ai. Let p1, . . . , pk be all the points of C at which

the fiber of f is multiple (i.e., it has multiplicity at least 2) and let mj denote the multiplicity

of the fiber of f over pj . Let c be a point of C over which the fiber of f has multiplicity 1.

We define the orbifold fundamental group πorb
1 (Cf , c) of C with respect to f as the quotient

of π1(C−{p1, . . . , pk}, c) by the normal subgroup generated by all the elements of the form γ
mj

j ,

where γj is a simple loop going around the point pj .
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The following theorem is well-known.

Theorem 2.1. Let c ∈ C − {p1, . . . , pk} and let x be a closed point of the fiber Xc of f over c.
Let us assume that either f is proper or c ∈ C is general. Then the following sequence of groups
is exact:

π1(Xc, x) → π1(X,x) → πorb
1 (Cf , c) → 1.

In particular, if we also assume that f has no multiple fibers then the sequence

π1(Xc, x) → π1(X,x) → π1(C, c) → 1

is exact.

Proof. If all the fibers of f have at least one smooth point then the theorem is due to Nori [Nor83,
Lemma 1.5] (for general fiber) with a small improvement due to Debarre [Deb05, Lemma 8.11]
allowing arbitrary fibers to be dealt with in the proper case. Nori’s proof with appropriate changes
as in [Xia91] works also for general fibers even without assumption that all the fibers have at
least one smooth point. In the general proper case, the assertion comes from [Xia91, Lemmas 1–3]
in the surface case, but Xiao’s proof also works in the general case. Alternatively, for smooth
fibers the general case can be reduced to the surface case by the Lefschetz hyperplane theorem.
Namely, if dimX > 3 then by Bertini’s theorem we can find a very ample divisor H such that
both Xc ∩ H and H are smooth and connected. Since, by the Lefschetz hyperplane theorem,
the map π1(Xc ∩ H) → π1(Xc) is surjective and the map π1(H) → π1(X) is an isomorphism,
exactness of the homotopy sequence for f follows from exactness of the homotopy sequence for
f |H : H → C. Now the required assertion follows from the surface case by induction. 2

Remark 2.2. If f is not proper then the homotopy sequence from the above theorem need not be
exact even if we assume that all the fibers of f are smooth. One can easily construct examples
when this sequence is not exact by blowing up a smooth surface fibered over a curve and removing
non-exceptional components in the fiber over the blown-up point.

2.2 Intersection pairing
Let X be a smooth complex projective variety of dimension d > 2. Let A be a fixed very ample
divisor on X. Then we use intersection pairing on Q-divisors given by

D1.D2 := D1 ·D2 ·Ad−2.

We will often use the fact that if D.A = D2 = 0 then the class of D in H2(X,Q) is 0. To prove
that note that if Y ∈ |A|∩ · · ·∩ |A| denotes a general complete intersection surface in X then the
class of D|Y in H2(Y,Q) is zero by the Hodge index theorem. But by the Lefschetz hyperplane
theorem the restriction H2(X,Q) → H2(Y,Q) is injective so the class of D in H2(X,Q) is also
zero.

In the following we write D1 ≡ D2, if for every Q-divisor D we have D1.D = D2.D. In that
case the Lefschetz hyperplane theorem implies that the class of (D1 −D2) in H2(X,Q) is equal
to zero. L1 ≡ L2 for line bundles L1 and L2 denotes equality c1(L1) ≡ c1(L2) in H2(X,Q). In
that case L1 ⊗ L−1

2 ∈ PicτX.
If dimX = 2 then an effective Q-divisor N =

∑
aiNi, where ai > 0 and Ni are prime, is

called negative if the intersection matrix [Ni.Nj ] is negative definite. It is called semi-negative
if the matrix [Ni.Nj ] is negative semi-definite. By convention, the zero divisor is both negative
and semi-negative.
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2.3 Zariski semi-decomposition
Let X be a smooth complex projective surface. We say that the degree of a Q-divisor L on X is
strictly positive if for every ample divisor H we have L.H > 0.

Lemma 2.3. Let L be a Q-divisor on X. Assume that L.A > 0 for some ample A and L2 > 0. If
L is not big then L is nef, L2 = 0 and the degree of L is strictly positive.

Proof. Let us first note that L is pseudoeffective, i.e., its intersection with any nef divisor is
non-negative. Indeed, if L.H < 0 for some nef H then there exists a positive rational number a
such that L.(A+ aH) = 0. Since A+ aH is ample, by the Hodge index theorem we get L2 < 0,
a contradiction.

Now recall that pseudoeffective divisors admit the so-called Zariski decomposition. This
means that L can be written as a sum P + N , where P is a nef Q-divisor and N is a negative
effective Q-divisor with P.N = 0. Since L is not big, P is also not big which implies that P 2 = 0.
But in this case if N 6= 0 then L2 = N2 < 0, a contradiction. Therefore L = P so L is nef with
L2 = 0.

To prove that the degree of L is strictly positive it is sufficient to show that there are no
ample divisors H with L.H = 0. But if such a divisor H exists then by the Hodge index theorem
L is numerically trivial contradicting inequality L.A > 0. 2

Lemma 2.4. Let C be a Q-divisor on X. Assume that C = L + B, where L is nef and B is
effective. If C is not big then the following conditions are satisfied:

(i) L2 = 0;

(ii) B is semi-negative;

(iii) L.B = 0. In particular, if we write B =
∑
aiCi, where ai > 0 and Ci are prime divisors,

then L.Ci = 0 for every i.

In this case we say that C = L+B is a Zariski semi-decomposition of C.

Note that unlike the usual Zariski decomposition, Zariski semi-decomposition need not be
unique, i.e., one divisor can have many different Zariski semi-decompositions.

Proof. Since L is nef we have L2 > 0. If L2 > 0 then L is big. But then C is big, contradicting
our assumption. This proves the first assertion.

To prove the second one, it is sufficient to take any combination
∑
αiCi with rational numbers

αi ∈ [0, ai] and prove that (
∑
αiCi)

2 6 0.
Let us take a rational number β ∈ [0, 1]. Since (βL +

∑
αiCi) 6 C and C is not big, the

Q-divisor (βL+
∑
αiCi) is not big. But (βL+

∑
αiCi).A > 0, so we have (βL+

∑
αiCi)

2 6 0.
Putting β = 0, we get the required inequality.

Putting β = 1 we see that for any ε ∈ [0, 1], we have (L+ εB)2 6 0. Since L2 = 0, this gives
2L.B + εB2 6 0. Passing with ε to 0 we get L.B 6 0. But L is nef and B is effective so we get
L.B = 0. 2

2.4 Lifting representations of the fundamental group
Let G/C be a connected, semi-simple group and let Γ be a group. A homomorphism of groups
ρ : Γ → G is called irreducible if the Zariski closure of the image of Γ is not contained in any
proper parabolic subgroup of G. In the case G = SL(n,C), this notion is equivalent to the usual
notion of an irreducible representation.

1540

https://doi.org/10.1112/S0010437X18007182 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007182


Rank 3 rigid representations of projective fundamental groups

Let us recall the following definition (cf. [dJo01, 2.14]).

Definition 2.5. A homomorphism ρ : Γ → G is called Lie irreducible if it is irreducible and

remains so on all finite index subgroups of Γ.

Let ρ : Γ → G be an irreducible homomorphism and let Gρ ⊂ G be the Zariski closure of the

image of ρ. Then ρ is Lie irreducible if and only if the inclusion of the connected component G0
ρ

of Gρ into G is irreducible. In that case Gρ is semi-simple and its centralizer in G is finite.

The following lemma is a stronger version of [Cou15, Theorem 3.1].

Lemma 2.6. Let X be a smooth, complex, quasi-projective variety and let ρ : π1(X,x) → G be

a homomorphism into a complex, linear algebraic group G and let G̃ → G be a central isogeny.

Then there exists a finite surjective morphism p : Z → X such that p∗ρ : π1(Z, z) → G lifts to

π1(Z, z) → G̃. Moreover, for any completion X ⊂ X̄ there exists an alteration p̄ : Z̄ → X̄, such

that Z̄ is smooth and projective, D = Z̄−Z is a simple normal crossing divisor and the restriction

p = p̄|p−1X : Z = p−1(X) → X is such that p∗ρ : π1(Z, z) → G can be lifted to π1(Z, z) → G̃.

Proof. Let A be the finite abelian group defined by the short exact sequence

1 → A → G̃ → G → 1.

Since A is contained in the center of G̃, this sequence induces an exact sequence

H1(X, G̃) → H1(X,G)
δ

→H2(X,A).

By the comparison theorem, for a finite abelian group A we have a natural isomorphism

H2(X,A) ' H2
ét(X,A) of the complex cohomology group with an étale cohomology group.

By [Bha12, Theorem 1.1] there exists a finite surjective morphism p : Z → X such that the

image of the obstruction class δ([ρ]) in H2
ét(Z,A) vanishes. This shows that p∗ρ : π1(Z, z) → G

can be lifted to a homomorphism ρZ : π1(Z, z) → G̃.

The second part of the lemma follows from the first one and from existence of log resolution

of singularities of the normalization of X̄ in the function field of Z. 2

Let us recall that a linear algebraic group is called almost-simple, if it does not contain

any Zariski closed, connected normal subgroups of positive dimension. Clearly, an almost-simple

group is semi-simple and connected.

Proposition 2.7. Let X be a smooth complex quasi-projective variety and let G/C be a

connected, semi-simple group. Let ρ : π1(X,x) → G be an irreducible homomorphism. Then

one of the following holds:

(i) there exists a finite étale covering p : Z →X such that p∗ρ : π1(Z, z) → G is not irreducible;

(ii) there exists a finite étale covering p : Z → X such that the Zariski closure of the image of

p∗ρ in G is almost-simple and irreducible;

(iii) there exists a finite surjective morphism p : Z → X and simple, simply connected groups

H1, . . . ,Hm, m > 2, such that p∗ρ : π1(Z, z) → G factors through a homomorphism τ : π1

(Z, z) → H1 × · · · ×Hm with a Zariski-dense image.
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Proof. There exists a finite étale covering Z → X such that π1(Z, z) maps into the connected
component H = G0

ρ of the Zariski closure of the image of π1(Z, z) in G. If H ⊂G is not irreducible
then we are in the first case. So let us assume that H ⊂ G is irreducible. Then H has a canonical
decomposition into an almost direct product of its almost-simple factors (see [Bor91, Theorem
22.10]). More precisely, let H1, . . . ,Hm be the minimal elements among the closed, connected
normal subgroups of H of positive dimension. Then all Hi are almost-simple and the isogeny
H1 × · · · × Hm → H is central (with finite kernel). If m = 1 then we are in the second case.
If m > 2 then we can pass to the universal covering of the product H1× · · · ×Hm and we are in
the last case by Lemma 2.6. 2

Remark 2.8. The second case of the above proposition is particularly interesting in the presence
of fibrations. More precisely, if f : X → Y is a fibration, G is almost-simple and ρ : π1(X,x) → G
has a Zariski-dense image, then the image of the restriction of ρ to a smooth fiber of f is
either Zariski-dense in G or it is finite (see [Zuo99, Proposition 2.2.2]). In the second case, after
some blowing up and taking a finite étale cover, one can factor ρ through the induced fibration
(see [Zuo99, Lemma 2.2.3]).

2.5 Representations of geometric origin
Let X be a smooth complex quasi-projective variety and let ρ : π1(X,x) → SL(n,C) be a
semi-simple representation. Let us recall the following definition from the introduction.

Definition 2.9. We say that a semi-simple representation ρ and its associated local system V
are of geometric origin if there exists a dense Zariski open subset U ⊂X and a smooth projective
morphism f : Z → U such that V |U occurs as a subquotient of the local system Rif∗(CZ) for
some i.

Proposition 2.10. If V1 and V2 are local systems then V1⊕V2 is of geometric origin if and only
if V1 and V2 are. If V1 and V2 are of geometric origin then so is V1 ⊗ V2. A rank 1 local system
is of geometric origin if and only if it is of finite order.

If p : Y → X is a generically surjective map between irreducible varieties, and V is a semi-
simple local system on X, then V is of geometric origin if and only if p∗(V ) is of geometric
origin.

Suppose that ρ1 and ρ2 are two irreducible representations with determinants of finite order,
whose projectivizations are isomorphic. Then ρ1 is of geometric origin if and only if ρ2 is.

Proof. Given families for V1 and V2 we can take a disjoint union of products with fixed varieties
for V1 ⊕ V2. One may also stay within the world of fibrations with connected fibers by then
embedding the resulting family in a big projective space and blowing up along that locus.
If V1⊕V2 is of geometric origin then V1 and V2 are so by definition. If V1 and V2 are of geometric
origin, taking the fiber product of the families results, by the Künneth formula, in a family for
V1 ⊗ V2.

A rank 1 system of finite order is a direct factor in the 0th direct image of a finite ramified
cover. In the other direction, let V be a rank 1 local system of geometric origin. Let f : Z →

U ⊂ X be the corresponding map. Note that Rif∗CZ comes with an integral structure given by
the image of Rif∗ZZ → Rif∗CZ . Hence the eigenvalues of all monodromy transformations are
algebraic integers, so any direct summand of Rif∗CZ is integral. The action of Gal (C/Q) takes
one direct summand to another. Now existence of a polarization implies that any rank 1 direct
summand is unitary. Thus, V and all its Gal (C/Q)-conjugates are integral and unitary. But by
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Kronecker’s theorem, an algebraic integer all of whose conjugates have absolute value 1 is a root
of unity, so V is of finite order (not only on U but also on X).

Suppose p : Y → X is a generically surjective map and V a local system on X. If V is of
geometric origin on X then since the image of p intersects the open set U ⊂ X on which V is
defined, we get a family over p−1(U) showing that p∗(V ) is of geometric origin.

In the other direction, suppose p∗(V ) is of geometric origin coming from a family f : Z → U
with U ⊂ Y . Choose a subvariety Y ′ ⊂ U which is quasi-finite over X. By replacing Y ′ by a
Zariski open subset, we may assume that p′ : Y ′ → U ′ is a finite étale map to a dense open
subset U ′ ⊂ X. Let Z ′ ⊂ Z be the inverse image of Y ′, and denote by f ′ : Z ′ → Y ′ the map.
Under our suppositions, it is smooth and projective, hence also the composed map

Z ′
f ′
→ Y ′

p′
→ U ′

is smooth and projective. By the decomposition theorem, Ri(f ′)∗(CZ′) is semi-simple so a
subquotient may be viewed as a direct factor. Thus, we may assume given an injective map
(p′)∗(V ) → Ri(f ′)∗(CZ′) which gives by composition, in turn, an injective map

V |U ′ → (p′)∗(p
′)∗(V ) → Ri(p′f ′)∗(CZ′),

showing that V is of geometric origin.
For the last part, suppose given two irreducible representations ρ1 and ρ2 whose determinants

are of finite order. Let V1 and V2 respectively denote the corresponding local systems. Suppose the
projectivizations of ρ1 and ρ2 are isomorphic, and fix bases for (V1)x and (V2)x at the basepoint
x ∈ X that are compatible with the isomorphism of projectivizations. For any γ ∈ π1(X,x) we
may then write

ρ2(γ) = a(γ)ρ1(γ),

with a(γ) a diagonal matrix. Now a : π1(X,x) → C∗ is a rank 1 representation corresponding to
a rank 1 local system A, and we have V2 = A ⊗ V1. If r = rk(V1) then

det(V2) = A⊗r ⊗ det(V1).

From the hypothesis, A⊗r is of finite order, so A is of finite order. Hence, A is of geometric origin.
It follows that V2 is of geometric origin if and only if V1 is. 2

Concerning the second paragraph, it is also true that any pullback of a system of geometric
origin, is of geometric origin. For the case of pullback along a map that goes into the complement
of the open set U over which the smooth family is given, this requires using the theory of perverse
sheaves and applying the decomposition theorem; we do not treat that here.

The converse to the part about V1 ⊗ V2 looks like an interesting question: if V1 and V2 are
irreducible local systems with trivial determinant such that V1 ⊗ V2 is of geometric origin then
are V1 and V2 of geometric origin?

Our definition of local systems of geometric origin is rather large, and one can envision a
couple of strengthenings. The following remarks on this point are not needed in the rest of the
paper: we refer everywhere only to the notion of Definition 2.9, and leave open the question of
obtaining the stronger properties we now mention.

First, one could ask for U = X, that is to say one could ask for a smooth family extending
over X. We might say in that case that V is smoothly of geometric origin. This looks to be a
very strong condition, and it is difficult to predict when it should be satisfied. There are natural
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examples of local systems coming from families of varieties, such that the local system extends to

a larger subset than the subset of definition of the smooth family. Indeed, any even-dimensional

Lefschetz pencil has order two monodromy around the singularities, so after pulling back to a

twofold cover of the base ramified at the singular points, the local system extends. It is highly

unclear whether to expect the existence of a smooth globally defined family realizing the same

monodromy representation.

In particular, Katz’s theorem that rigid local systems over the orbifold projective line are of

geometric origin, does not give smooth geometric origin. The discussion of the notion of geometric

origin in [Tot07] should probably be modified accordingly.

Another point is the question of whether the projector to our direct factor is motivic. Say

that a local system V is strongly of geometric origin if there exists a proper morphism f : Z →X

and an algebraic cycle representing a projector π : Rf∗(ZZ) → Rf∗(ZZ) such that V is the image

of π.

One would need at least the Hodge conjecture to go from our (weak) notion of geometric

origin to this notion of strong geometric origin, but in fact it does not even seem clear that the

Hodge conjecture would be sufficient for that.

For instance one would like to answer the following question (a punctual analogue of

the converse question for tensor products of local systems mentioned above): given Z-Hodge

structures V1 and V2 with trivial determinants such that V1 ⊗ V2 is a motive, are V1 and V2

motives?

If we do not know the answer to that question, but do assume the Hodge conjecture, then

one might be able to show that V of weak geometric origin implies that some V ⊕k is of strong

geometric origin. Some understanding of algebraic cycles and the decomposition theorem would

also clearly be needed.

In the context of the present paper, our main constructions provide smooth families of abelian

varieties, and hence give smooth geometric origin in some cases. One can envision looking at

the question of strong geometric origin for those cases – that would require delving into the

endomorphism algebras of the families of abelian varieties we construct. We do not make any

claims about that here.

3. Factorization through orbicurves

An orbicurve C is a smooth one-dimensional Deligne–Mumford stack whose generic stabilizer

group is trivial. The coarse moduli space Ccoarse is a smooth curve having a collection of points

p1, . . . , pk such that there exist strictly positive integers n1, . . . , nk such that

C ∼= Ccoarse

[
p1

n1
, . . . ,

pk
nk

]
is the root stack. The fundamental group π1(C, y) is the same as the orbifold fundamental group

considered in § 2.1 (with ni equal to multiplicities of the fibers over pi).

The goal of this subsection is to prove the equivalence of several different notions of

factorization through orbicurves.

Definition 3.1. Let X be a smooth complex quasi-projective variety. Suppose that ρ : π1(X,x)

→ GL(n,C) is an irreducible representation.
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(i) We say that ρ projectively factors through an orbicurve if there is an orbicurve C, a fibration
f : X → C, and the following commutative diagram.

π1(X,x)

��

// GL(n,C)

��
π1(C, f(x)) // PGL(n,C)

(ii) We say that ρ virtually projectively factors through an orbicurve if there is an alteration
p : Z → X such that p∗ρ projectively factors through an orbicurve.

Definition 3.2. Let X be a smooth complex quasi-projective variety. We say that an irreducible
representation ρ : π1(X,x) → GL(n,C) is tensor decomposable if the associated local system Vρ
can be written as a tensor product V1 ⊗ V2 of two local systems of rank > 2. Say that ρ is
virtually tensor decomposable if there exists an alteration p : Z → X such that p∗ρ is tensor
decomposable.

Say that ρ is virtually reducible if there is an alteration p : Z → X such that p∗ρ is reducible,
i.e. it decomposes into a non-trivial direct sum.

Let us note that a representation ρ : π1(X,x) → SL(n,C) is virtually reducible if and only if it
is not Lie irreducible. Indeed, if p : Z →X is an alteration then the image of π1(Z, z) → π1(X,x)
has finite index in π1(X,x). So if ρ is virtually reducible then it is not Lie irreducible. The
implication in the other direction follows from the fact that a finite index subgroup in π1(X,x)
gives rise to a finite étale covering.

For the proof of the following factorization theorem we refer to Appendix A (see
Theorem A.4).

Theorem 3.3. Let X be a smooth complex projective variety. Let us fix an irreducible
representation ρ : π1(X,x) → SL(n,C) for some n > 2. Suppose that ρ is not virtually tensor
decomposable, and not virtually reducible. Then the following conditions are equivalent:

(i) ρ projectively factors through an orbicurve;

(ii) ρ virtually projectively factors through an orbicurve;

(iii) there exists a map f : X → C to an orbicurve and a fiber F = f−1(y), such that the
restriction of ρ to π1(F ) becomes reducible;

(iv) there exists an alteration p : Z → X such that the previous condition holds for the pullback
p∗ρ.

Lemma 3.4. Suppose ρ : π1(X,x) → SL(n,C) is an irreducible representation of rank n 6 3.
Then ρ is not virtually tensor decomposable. If ρ is virtually reducible then it has image either
in a finite subgroup, or in the normalizer of a maximal torus. If ρ is virtually reducible and
underlies a VHS then it is unitary with a single Hodge type.

Proof. Clearly ρ cannot be virtually tensor decomposable because then it should have rank > 4.
Suppose ρ is virtually reducible, becoming reducible upon pullback to p : Z → X. The image
of π1(Z, z) is of finite index in π1(X,x) and the restriction of ρ to this subgroup is reducible.
Therefore we may replace Z by the finite étale covering corresponding to this subgroup, in other
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words, we may suppose that p is finite étale. We may furthermore suppose it is Galois with
group G. Write the decomposition into isotypical components

Vρ|Z =
⊕

Vi ⊗ Wi,

where Vi are irreducible local systems on Z and Wi are vector spaces. The Galois group acts on
{Vi}. This action is transitive, otherwise ρ would be reducible. In particular, all of the Vi and all
of the Wi have the same rank.

Suppose there is more than one isotypical component. Then Vi and Wi must be of rank 1
and G acts on the set of isotypical components by permutation. Since the subgroup of SL(n,C)
fixing the decomposition of Vρ|Z into isotypical components is a maximal torus, the image of ρ
is contained in the normalizer of a maximal torus. Furthermore, assume that ρ underlies a VHS.
The Galois action preserves the Hodge type, and there is a single Hodge type for the rank 1
isotypical component (note that the isotypical decomposition is compatible with the Hodge
structure). Therefore ρ has only a single Hodge type and it is unitary. This proves the lemma in
the case of several isotypical components.

We may now assume Vρ|Z = V1 ⊗ W1. Since the rank is 6 3, and by hypothesis Vρ|Z is
reducible so the rank of V1 is strictly smaller than n, we get that V1 has rank 1. It means
that the restriction and projection to a representation π1(Z, z) → PGL(n,C) is trivial. Since by
hypothesis our representation is into SL(n,C) we get that ρ has finite image. In particular it is
unitary, and a unitary irreducible VHS can have only a single Hodge type. This completes the
proof of the lemma. 2

Corollary 3.5. Let X be a smooth complex projective variety, and suppose ρ : π1(X,x) →

SL(3,C) is an irreducible representation of rank 3 underlying a VHS with more than a single
Hodge type. Then the conditions listed in Theorem 3.3 are equivalent.

Proof. By the above lemma, ρ is not tensor decomposable and not virtually reducible. 2

4. Structure of complex VHS of type (1, 1, 1)

In this section we study general complex VHS of type (1, 1, 1) on quasi-projective varieties. The
main aim is to prove that every complex VHS of type (1, 1, 1) or its dual can be constructed
analogously to the following example.

Example 4.1. Let X be a smooth complex projective surface. Let L1 be a nef line bundle with
strictly positive degree, L2

1 = 0 and fixed inclusion j1 : L1 ↪→ ΩX . Let us fix a line bundle
j2 : L2 ↪→ ΩX generically the same as j1(L1) such that c1(L2) = a c1(L1) in H2(X,Q) for some
(rational) a ∈ (−1

2 , 1]. Finally, let us fix a line bundle L0 such that 3c1(L0) = (2 + a)c1(L1) in
H2(X,Q).

Let us consider the system of Hodge bundles defined by

E2,0 := L0, E1,1 := L0 ⊗ L−1
1 , E0,2 := L0 ⊗ L−1

1 ⊗ L−1
2

with θ given by inclusions ji : Li ↪→ ΩX tensored with identity on Ep,q for (p, q) = (2, 0), (1, 1).
Then for any ample line bundle A the pair (E, θ) is an A-stable system of Hodge bundles with
vanishing rational Chern classes.

Later we will see that if a 6= 1 then this system of Hodge bundles comes from an orbicurve
(see Theorem 5.1).
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Let X be a smooth complex quasi-projective variety of dimension d > 2. Let us fix a smooth
projective variety X̄ containing X as an open subset and such that D = X̄ − X is a simple
normal crossing divisor. In this section, we consider the quasi-projective case for future reference,
although afterwards in the present paper we shall assume D = ∅.

Let A be a fixed very ample divisor on X̄. In the following we use the intersection pairing of
Q-divisors on the polarized variety (X̄, A) as defined in § 2.2.

Remark 4.2. Technically speaking, one should make a distinction between a line bundle and its
corresponding divisor class. In the subsequent numerical calculations that would add burdensome
extra notation, so we make the convention that a symbol such as, typically, Li can either mean
the line bundle or the corresponding divisor class, according to context. In particular, we usually
use the tensor product L1 ⊗ L2 but in computation of intersection numbers we use divisor classes
and write, e.g., (L1 + 2L2).A instead of (L1 ⊗ L⊗2

2 ).A.

Let us recall that by Bertini’s theorem the general complete intersection surface Ȳ in X̄
is smooth and irreducible. We can also assume that DY = Ȳ ∩ D is a simple normal crossing
divisor on Ȳ . Let us set Y := Ȳ −DY .

Let (E =
⊕

p+q=2E
p,q, θ) be a rank 3 logarithmic system of Hodge bundles of type (1, 1, 1).

Recall that this definition includes the condition that both Kodaira–Spencer maps θ be non-zero,
so they induce injections of rank 1 sheaves

L1 := E2,0 ⊗ (E1,1)∗ ↪→ ΩX̄(logD)

and
L2 := E1,1 ⊗ (E0,2)∗ ↪→ ΩX̄(logD).

The proof of the following proposition is inspired by the proof of [Lan02, Theorem 4.2].

Proposition 4.3. Assume that E has vanishing rational Chern classes and that (E, θ) is slope
A-stable. Then the following conditions are satisfied:

(i) c1(Ep,q).c1(Ep
′,q′) = 0 for all pairs (p, q) and (p′, q′);

(ii) the classes of L1 and L2 lie on the same line in the vector space H2(X̄,Q);

(iii) there exist effective divisors B1 and B2 such that M := L1(B1) = L2(B2) is a saturation of
both L1 and L2 in ΩX̄(logD). Moreover, we have Li.M = 0 and Li.Bj = 0 for all i and j;

(iv) either L1|Ȳ or L2|Ȳ is nef with self intersection zero and strictly positive degree.

Proof. We claim that the map

α : L1 ⊕ L2 → ΩX̄(logD)

induced from θ has rank 1. Indeed, in the local coordinates α is given by two logarithmic 1-forms
ω1 and ω2 and the integrability of θ implies that ω1∧ω2 = 0, so they are proportional and α has
rank 1. Let M be the saturation of the image of α in ΩX̄(logD) (i.e., the largest rank 1 subsheaf
of ΩX̄(logD) containing the image of α). Then M is a line bundle (as it is a rank 1 reflexive
OX -module on a smooth variety) such that ΩX̄(logD)/M is torsion-free.

By construction we have inclusions L1 ⊂ M and L2 ⊂ M defining effective divisors B1 and
B2, respectively. Let us set ep,q = c1(Ep,q), li = c1(Li) and bi = c1(Bi). Then we can write

m = c1(M) = l1 + b1 = l2 + b2.
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By assumption we have
e0,2 + e1,1 + e2,0 = 0

in the rational cohomology H2(X̄,Q), so the classes ep,q can be written in terms of l1 and l2 in
the following way:

e2,0 = 1
3(2l1 + l2), e1,1 = 1

3(l2 − l1), e0,2 = 1
3(−l1 − 2l2).

Therefore
3m = l1 + b1 + 2(l2 + b2) > l1 + 2l2 = −3e0,2.

In particular, we have m > −e0,2. Similarly, we have

3m = 2(l1 + b1) + (l2 + b2) > 2l1 + l2 = 3e2,0,

so m > e2,0.
The following lemma is a corollary of the well-known Bogomolov’s lemma.

Lemma 4.4. For any line bundle N ⊂ ΩX̄(logD) the restriction N |Ȳ is not big on Ȳ .

Proof. We have a short exact sequence

0 → OȲ (−A)n−2
→ ΩX̄(logD)|Ȳ → ΩȲ (logDY ) → 0.

Let us consider the composition N |Ȳ → ΩX̄(logD)|Ȳ → ΩȲ (logDY ). By Bogomolov’s lemma
(see [Bog78, Theorem 4] and [EV92, Corollary 6.9]) ΩȲ (logDY ) does not contain big line bundles.
So if this composition is non-zero then N |Ȳ is not big.

If the map N |Ȳ → ΩȲ (logDY ) is zero then by the above exact sequence N |Ȳ is contained
in OȲ (−A)n−2, so κ(N |Ȳ ) = −∞. 2

Slope A-stability of (E, θ) implies that

e0,2. A < 0

and
−e2,0. A = (e0,2 + e1,1). A < 0.

If (e0,2)2 > 0 then, thanks to Lemma 2.3, the first inequality implies that −e0,2|Ȳ is big. But
then M |Ȳ is big, which contradicts the above lemma. Therefore

(e0,2)2 6 0.

Similarly, if (e2,0)2 > 0 then e2,0|Ȳ is big. But then M |Ȳ is big, a contradiction. Therefore

(e2,0)2 6 0.

Let us also recall that

0 = c2(E) = e2,0. e1,1 + e1,1. e0,2 + e0,2. e2,0 = −(e2,0)2 + e1,1. e0,2.

Therefore
L2

2 = (e1,1 + e0,2)2 − 4e1,1. e0,2 = (e2,0)2 − 4(e2,0)2 = −3(e2,0)2 > 0.

Similarly, we have
L2

1 = (e2,0 − e1,1)2 = −3(e0,2)2 > 0.

From stability of E we get (L1 + 2L2).A = −3e0,2.A > 0 and hence there exists i with
Li.A > 0. Lemmas 2.3 and 4.4 imply that Li|Ȳ is nef with L2

i = 0 and the degree of Li|Ȳ is
strictly positive.
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Lemma 4.5. We have L2
1 = L1.L2 = L2

2 = 0.

Proof. Let us first assume that i = 1, i.e., L1|Ȳ is nef with L2
1 = 0. Since B2 is effective, we

have L1.B2 > 0. By the Lefschetz hyperplane theorem for quasi-projective varieties (see [HL85,
Theorem 1.1.3]) we have π1(Y ) ' π1(X). So by functoriality of the correspondence between
representations and Higgs bundles, the restriction

(E|Ȳ , θY : E|Ȳ
θ|Y
→E|Ȳ ⊗ ΩX̄(logD)|Ȳ → E|Ȳ ⊗ ΩȲ (logDY ))

of (E, θ) to Ȳ is A-stable (one can also give a direct proof of this fact: see [Lan15, Theorem 12]
and [Lan16]). Since the rational Chern classes of E|Ȳ vanish, (E|Ȳ , θY ) is stable with respect to
every stable polarization and semi-stable with respect to every nef polarization. In particular,
L1|Ȳ -semi-stability of (E|Ȳ , θY ) implies that L1.(L1 + 2L2) > 0. Therefore we have L1.L2 > 0.

Applying Lemma 2.4 to M = L1 + B1 we see that L2
1 = 0, L1.B1 = 0 and L1.M = 0. Using

M = L2 +B2 we get equalities L1.L2 = L1.B2 = 0. But then

c2(E) = 1
9(L2

1 + L1.L2 + L2
2) = 0

implies that L2
2 = −L1.L2 = 0.

The proof in the case i = 2 is analogous. 2

This lemma finishes the proof of assertions (i) and (iv) of the proposition. To prove (ii), let
us consider i′ such that {i, i′} = {1, 2}. Let us choose a rational a such that (Li′ − aLi).A = 0.
Since (Li′ − aLi)2 = 0 this implies that li′ = ali in H2(X,Q).

Assertion (iii) of the proposition follows from the proof of Lemma 4.5. More precisely, if i = 1
then this proof shows that L1.M = L1.B1 = L1.B2 = 0. So (ii) implies that L2.M = L2.B1 =
L2.B2 = 0. The proof in the case i = 2 is analogous. 2

Remark 4.6. Let us remark that stability of E implies that (L1+2L2).A > 0 and (2L1+L2).A > 0
so that a > −1

2 in the notation of the above proof. In fact, this condition is sufficient to define
a stable rank 3 logarithmic system of Hodge bundles.

Let us recall that a smooth log pair is a pair consisting of a smooth variety and a (reduced)
simple normal crossing divisor. A morphism of log pairs f̄ : (Z̄,DZ) → (X̄,D) is a proper
morphism of normal varieties such that f̄(DZ) = D. For a morphism of smooth projective log
pairs f̄ : (Z̄,DZ) → (X̄,D), we write Z := Z̄ − DZ , we choose a point z over x and we set
f = f̄ |Z̄−DZ

.
Let ρ : π1(X,x) → SL(n,C) be an irreducible representation with quasi-unipotent

monodromy at infinity (i.e., such that ρ has quasi-unipotent monodromies along small simple
loops around all irreducible components of D). Then by Kawamata’s covering trick there exists a
finite flat morphism of smooth projective log pairs f̄ : (Z̄,DZ) → (X̄,D) such that (f̄∗D)red =DZ

and f∗ρ : π1(Z, z) → SL(n,C) has unipotent monodromy at infinity, i.e., f∗ρ has unipotent local
monodromies along all irreducible components of DZ . This implies that the residues of Deligne’s
canonical extension of the flat bundle associated to f∗ρ are nilpotent (since all the eigenvalues
of the residues are zero) and we are interested in bundles with trivial parabolic structure.

More precisely, let us consider a vector bundle with connection (V,∇) with regular
singularities and rational residues in [0, 1) along the irreducible components of D, that
corresponds to the representation ρ. This bundle comes equipped with a canonical parabolic
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structure, which makes the corresponding parabolic flat bundle stable with vanishing parabolic
Chern classes (cf. [Moc06, Moc09] and [IS07, Lemma 3.3]).

If we assume the local system Vρ underlies a complex variation of Hodge structure then f∗ρ
also underlies a complex VHS. The logarithmic parabolic Higgs bundle corresponding to ρ is
stable and it has vanishing parabolic first and second Chern classes (see [Moc06, Moc09]). The
pullback of this logarithmic parabolic Higgs bundle to (Z̄,DZ) (cf. [IS07, Lemma 3.7]) becomes a
stable logarithmic system of Hodge bundles (with trivial parabolic structure) which has vanishing
all rational Chern classes (by functoriality of the Kobayashi–Hitchin correspondence, the Higgs
bundle associated to the pullback f∗ρ corresponds to a complex VHS, so it is a system of Hodge
bundles). Thus, we have the following lemma.

Lemma 4.7. Let ρ : π1(X,x) → SL(n,C) be an irreducible representation with quasi-unipotent
monodromy at infinity. If ρ underlies a complex VHS then there exists a finite flat morphism
of smooth projective log pairs f̄ : (Z̄,DZ) → (X̄,D) such that f∗ρ : π1(Z, z) → SL(n,C) has
unipotent monodromy at infinity. To this representation the Kobayashi–Hitchin correspondence
associates a stable rank n system of logarithmic Hodge sheaves with vanishing rational Chern
classes.

In case the underlying rank 3 logarithmic system of Hodge bundles on (Z̄,DZ) is of type
(1, 1, 1), we can apply Proposition 4.3.

Remark 4.8. If ρ is a rigid irreducible representation with quasi-unipotent monodromy at infinity,
then it underlies a complex VHS (this part of [CS08, Theorem 8.1] works in any rank) and we
can apply the above lemma to such representations.

5. Geometry of complex VHS of type (1, 1, 1)

Let X be a smooth complex projective variety. If ρ : π1(X,x) → SL(n,C) is a representation
then the induced projective representation π1(X) → PGL(n,C) is denoted by ρ̄.

Theorem 5.1. Let ρ : π1(X,x) → SL(3,C) be an irreducible representation coming from a
complex variation of Hodge structure of type (1, 1, 1). Let Vρ denote the corresponding local
system. Then one of the following holds.

(i) There exists a projective representation π1(X,x) → PGL(2,C) which induces ρ̄ via the
homomorphism PGL(2,C) → PGL(3,C) given by second symmetric power. Moreover, there
exists a finite covering π : Y → X from a smooth projective variety Y , a rank 1 local
system W1 on X such that W⊗3

1 is trivial and a rank 2 local system W2 on Y such that
π∗Vρ = π∗W1 ⊗ Sym2W2.

(ii) ρ projectively factors through an orbicurve.

Proof. We can assume that X has dimension at least 2 as otherwise there is nothing to be proven.
Therefore the complex variation of Hodge structure corresponding to ρ is of the form described
in Proposition 4.3. Let us write L2 ≡ aL1. Since the assertion for a representation is equivalent to
the assertion for its dual, we can assume that for a general complete intersection surface S ⊂ X
the restriction L1|S is nef with strictly positive degree and a 6 1.

In the notation of Proposition 4.3 we have M = L1(B1) = L2(B2). Let us write B1 = B+B′1
and B2 = B + B′2, where B, B′1, B′2 are effective and B′1 and B′2 have no common irreducible
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components. Recall that L1.B = L1.B
′
1 = 0 and L2.B = L2.B

′
2 = 0. We set M ′ := M(−B).

This line bundle has a canonical inclusion into ΩX given by composing M(−B) ⊂ M with
M → ΩX . By definition we also have M ′ = L1(B′1) = L2(B′2). Intersecting both sides of equality
L1 +B′1 = L2 +B′2 with B′1 we get

(B′1)2 = B′1.B
′
2 > 0

(here we use that L2.B
′
1 = aL1.B

′
1 = 0, and since B′1 and B′2 have no common components their

intersection is positive). But Lemma 2.4 implies that (B′1)2 6 0, so we have (B′1)2 = B′1.B
′
2 = 0.

Hence, we also get (B′2)2 = 0. There exists also some non-negative α1 such that (B′1 − α1L1).A
= 0. Since (B′1 − α1L1)2 = 0, we have B′1 ≡ α1L1. Similarly, there exists some non-negative α2

such that B′2 ≡ α2L1. Note also that B′i = 0 is equivalent to αi = 0, since if B′i is a non-zero
effective divisor then B′i.A > 0. Let us recall that L1 +B′1 = L2 +B′2, so (1+α1)L1 ≡ (a+α2)L1.
But L1.A > 0, so 1 + α1 = a+ α2. Since a 6 1, this implies that 0 6 α1 6 α2.

We consider two cases depending on whether B′2 is zero or not.
If B′2 = 0 then α2 = α1 = 0, B′1 = 0 and L := L1 = L2 with the same map to M and ΩX . In

this case we set N := E2,0 ⊗ L−1
1 . Since detE = N⊗3, the line bundle N is 3-torsion. Therefore

(E, θ)' (N, 0)⊗ Sym2(F )⊗ det(F )−1, where F = (F 1,0 ⊕ F 0,1, θF ) is a system of Hodge bundles
with F 1,0 = L, F 0,1 = OX and the Higgs field θF given by the inclusion L → ΩX . Note that F
is an A-stable system of Hodge bundles but it does not have vanishing Chern classes so it does
not underlie a rank 2 representation of π1(X,x). But it comes from a projective representation
π1(X,x) → PGL(2,C). There exists a finite covering π : Y → X such that π∗L = M⊗2 for some
line bundle M on Y . Then π∗(E, θ) ' π∗(N, 0) ⊗ Sym2(FY ), where FY = (F 1,0

Y ⊕ F 1,0
Y , θY ) is

a system of Hodge bundles with F 1,0
Y = M , F 0,1

Y = M−1 and the Higgs field θY given by the
inclusion π∗L → π∗ΩX → ΩY .

This corresponds to case (i) of the theorem.
If B′2 6= 0, then by the Hodge index theorem there exist positive integers b and c such that

bM ′ ≡ cB′2. The idea is now to say that M ′ looks like an effective divisor. Roughly speaking,
we try to get a section of M ′ and then argue using this differential form. In practice we need to
extract a root, and we only have numerical information so, in the case where the Picard scheme
has positive dimension, we need to deal with several cases.

Start by noting that U := bM ′ − cB′2 ∈ Picτ (X). Multiplying b and c by the same positive
integer we can assume that in fact U ∈ Pic0(X). Therefore we have a non-zero map

U → (M ′)⊗b

determined by the divisor cB′2. We can write U = V ⊗b for some V ∈ Pic0(X) and hence we get
a section η ∈ H0(X, (M ′ ⊗ V ∗)⊗b) (whose divisor is cB′2).

Let p : Z → X be a desingularization of the ramified covering defined by taking the bth root
of η. Over Z we have a tautological section α ∈ H0(Z, p∗(M ′ ⊗ V ∗)) such that α⊗b = p∗η.

In particular, α ∈ H0(Z,Ω1
Z ⊗ p∗V ∗), which means that p∗V ∗ ∈ Pic0(Z) is in the jump-locus

for twisted sections of Ω1
Z :

S(Z) := {N ∈ Pic0(Z) | dimH0(Z,Ω1
Z ⊗ N) > 1}.

The irreducible components of this jump-locus are translates of abelian subvarieties of Pic0(Z)
by torsion points. The fact that the components are translates of abelian varieties was proved
in [GL91] and the assertion about torsion was proved in [Sim93b]. We distinguish two cases
depending on whether p∗V ∗ is a torsion point or not.
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Case 1 : let us assume that p∗V ∗ is a torsion point of Pic0(Z). Then the line bundle p∗V ∗

defines a finite étale covering q : Z ′ → Z such that V ∗ becomes trivial after pulling back

to Z ′. Let p′ denote the composition of q : Z ′ → Z with p : Z → X. Then over Z ′ we get

a non-zero section ξ ∈ H0(Z ′,Ω1
Z′) given by the composition of q∗α : OZ′ → q∗(p∗(M ′ ⊗ V ∗)) '

q∗(p∗(M ′)) = (p′)∗M ′ with the canonical map (p′)∗M ′ → (p′)∗ΩX → Ω1
Z′ .

The line bundle (p′)∗M ′ ⊂ Ω1
Z′ is generically generated by this section ξ.

We can look at the Albanese map defined by ξ (see [Sim93a, p. 101]). This is the map

ψ : Z ′ → A = Alb(Z ′)/B, where B is the sum of all abelian subvarieties of Alb(Z ′) on which ξ

vanishes. By construction ξ = ψ∗(ξA) for some 1-form ξA on A such that the restriction of ξA to

any non-trivial abelian subvariety of A is non-zero.

We distinguish two subcases depending on the dimension of ψ(Z ′).

Subcase 1.1 : the image of ψ is a curve. In this case taking the Stein factorization of Z ′ → ψ(Z ′),

we get a fibration f : Z ′ → C over a smooth projective curve and a 1-form ξC on C such

that ξ = f∗ξC . Considering ξ as a map OZ′ → ΩZ′ , this means that the map factors through

f∗ξC : OZ′ = f∗OC → f∗ΩC . Therefore (p′)∗M is contained in the saturation of f∗ΩC in ΩZ′ .

If F is a smooth fiber of f (or just a multiplicity 1 irreducible component of a fiber of f) then

this shows that the canonical map (p′)∗M |F → ΩZ′/C |F = ΩF is zero. This implies that the

Kodaira–Spencer maps of our variation of Hodge structures restricted to the fiber F , vanish.

Each Hodge subbundle is therefore a flat subbundle. Hence, the restriction of our variation of

Hodge structures to F splits into a direct sum of three rank 1 variations of Hodge structure

at the three different Hodge types. Clearly, ρ is not virtually tensor decomposable. It is also

not virtually reducible as the Kodaira–Spencer maps remain non-zero under alterations. So by

Theorem 3.3 (4⇒ 1), ρ projectively factors through an orbicurve.

Subcase 1.2 : the dimension of the image ψ(Z ′) is at least 2. Let Ã → A be the universal covering

of A (treated as a complex vector space). This map is only analytic and not algebraic. Let

Z̃ := Z ′ ×A Ã be the covering of Z ′ defined by the Albanese map ψ and let π : Z̃ → Z ′ be the

projection on the first factor and ψ̃ : Z̃ → Ã on the second factor (these maps are also only

analytic). Let us fix a point z̃0 ∈ Z̃. There exists a unique linear function gÃ : Ã → C such that

gÃ(ψ̃(z̃0)) = 0 and dgÃ = ξA. Let g : Z̃ → C be the composition of gÃ with ψ̃. Then the Lefschetz

theorem (see [Sim93a, Theorem 1]; since dim(ψ(Z ′)) > 2 the assumptions of this theorem are

satisfied) says that for any fiber F of g (or, in other words, a possibly non-compact leaf of the

foliation defined by ξ), the map π1(F, z̃0) → π1(Z̃, z̃0) is surjective.

Note that by our construction the restriction π∗ξ|F is zero. Choosing F so that it does not

lie in the preimage of B′2, the inclusion M ′ → ΩX becomes zero after pulling back to F and

composing with the canonical map to ΩF . So our variation of Hodge structure splits on F into a

direct sum of three line bundles. In this case the image of the representation π1(F, z̃0) → SL(3,C)

is contained in a maximal torus. Therefore the monodromy representation is abelian on π1(Z̃, z̃0).

But π1(Z ′, ψ̃(z̃0))/π1(Z̃, z̃0) is an abelian group, so the monodromy of our original VHS would be

solvable. Then the Zariski closure G ⊂ SL(3,C) of im ρ is also solvable (this follows from [Bor91,

I.2.4 Proposition]). On the other hand, since ρ is irreducible, the connected component G0 is

reductive. Hence, G0 is contained in a maximal torus of SL(3,C). Taking the étale covering

q : X̃ → X corresponding to the image of π1(X,x) → G/G0, we see that the monodromy of

q∗Vρ is contained in the maximal torus of SL(3,C). But then the corresponding pullback of
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the system of Hodge bundles is a direct sum of line bundles with trivial maps between the
components, contradicting the fact that the original VHS was of type (1, 1, 1).

Case 2 : assume that p∗V ∗ is not a torsion point. Then an irreducible component of S(Z)
containing this point has dimension > 1.

Let us recall that for a line bundle N ∈ Pic0(Z) we have an isomorphism of complex vector
spaces

H0(Z,Ω1
Z ⊗ N) ' H1(Z,N−1),

so
S(Z) = {N ∈ Pic0(Z) | dimH1(Z,N−1) > 1}.

Beauville proves in [Bea92] that the positive-dimensional components of this set all come from
maps to orbicurves. More precisely, [Bea92, Corollaire 2.3] says that there exists a fibration
f : Z → C over a smooth projective curve of genus g > 1 such that p∗V ∗ is trivial on every
smooth fiber of f .

The proof of the following lemma is modelled on the proof of [Bea92, Proposition 1.10].

Lemma 5.2. Let Z be a smooth complex projective variety and let C be a smooth complex
projective curve. Let f : Z → C be a fibration with reduced fibers. Let L ∈ PicτZ be a non-torsion
line bundle, which is trivial on some smooth fiber of f . If 0 6= α ∈ H0(ΩZ ⊗ L−1) then there
exists a line bundle LC on C and β ∈ H0(ΩC ⊗ L−1

C ) = Hom(LC ,ΩC) such that L = f∗LC and
the composition

L = f∗LC
f∗β−→ f∗ΩC −→ ΩZ

corresponds to α.

Proof. First let us recall that existence of LC such that L = f∗LC follows from [Bea92,
Proposition 1.2]. We have a short exact sequence

0 → H1(C,LC) → H1(Z,L) → H0(C,R1f∗L) → 0

coming from the Leray spectral sequence. Using the isomorphisms H1(Z,L) 'H0(Z,Ω1
Z ⊗ L−1)

and H1(C,LC) ' H0(C,Ω1
C ⊗ L−1

C ), it is sufficient to show that H0(C,R1f∗L) = 0. But H0(C,
R1f∗L) = H0(C,LC ⊗ R1f∗OZ) and R1f∗OZ is dual to f∗ωZ/C , so we need to check that
Hom(f∗ωZ/C , LC) = 0. Let us recall that by [Fuj78, Theorem] (see also [CD17, Theorem 17]),
f∗ωZ/C is a direct sum of an ample vector bundle and a direct sum of stable vector bundles
of degree zero. Therefore Hom(f∗ωZ/C , LC) 6= 0 if and only if LC is isomorphic to one of the
direct summands of f∗ωZ/C . But by Deligne’s result, the rank 1 summands of f∗ωZ/C are torsion
(see [CD17, Corollary 21]) and LC is not torsion, so we get a contradiction. 2

Taking a semi-stable reduction of f we can assume that all the fibers of f are reduced.
Then, by the above lemma, there exists a line bundle LC ∈ Pic0(C) such that p∗V = f∗LC and
the section α comes from a section of H0(C,Ω1

C ⊗ L∗C). This shows that p∗V ∗ → f∗ΩC is an
isomorphism at the generic point of Z. Since p∗V → p∗M is also an isomorphism at the generic
point of Z, the sheaf p∗M is contained in f∗ΩC ⊂ ΩZ (since the fibers of f are reduced, f∗ΩC

is saturated in ΩZ).
As before this implies that the pullback of our variation of Hodge structure to a fiber of f

splits into a direct sum of three rank 1 variations of Hodge structure. Therefore Corollary 3.5
implies that ρ projectively factors through an orbicurve. Alternatively, the same arguments as
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before show that ((p′)∗M ′)⊗b is a line bundle associated to a certain sum of rational multiples
of fibers of f (but not necessarily positive). Then by passing to a certain cover Z ′′ → Z ′ we
conclude that the pullback of our original variation of Hodge structure to Z ′′ is isomorphic to
the pullback of a variation of Hodge structure on a certain curve C ′. So ρ virtually projectively
factors through an orbicurve and we can again conclude by Corollary 3.5. This completes the
proof of Theorem 4.1. 2

6. Some remarks on the case (1, 1, . . . , 1)

In this section we consider the possibility of generalization of the results of § 4 to the case
(1, 1, . . . , 1). For simplicity of notation, we consider only the case when X is a smooth projective
variety (i.e., X̄ = X).

Let n be a positive integer and let (E =
⊕

p+q=nE
p,q, θ) be a rank (n+ 1) system of Hodge

bundles of type (1, . . . , 1). Then θ induces injections

Li := En−i+1,i−1 ⊗ (En−i,i)∗ ↪→ ΩX

for i = 1, . . . , n.

Lemma 6.1. Assume that c1(E) = 0 and (E, θ) is slope A-stable. Let us set

Ni := (n− i+ 1)(L1 + 2L2 + · · ·+ iLi) + i((n− i)Li+1 + · · ·+ 2Ln−1 + Ln)

for i = 1, . . . , n. Then for all non-negative real numbers x1, . . . , xn we have( n∑
i=1

xiNi

)2

6 0.

Proof. We claim that for all i = 1, . . . , n− 1 the map

αi : Li ⊕ Li+1 → ΩX

induced from θ has rank 1. Indeed, in the local coordinates α is given by two 1-forms ω1 and ω2

and the integrability of θ implies that ω1 ∧ ω2 = 0, so they are proportional and αi has rank 1.
It follows that the map

α :
n⊕
i=1

Li → ΩX

also has rank 1. Let M be the saturation of the image of α in ΩX (i.e., the largest rank 1 subsheaf
of ΩX containing the image of α). Then M is a line bundle such that ΩX/M is torsion-free.

By construction we have inclusions Li ⊂ M defining effective divisors Bi. Let us set ep,q =
c1(Ep,q), li = c1(Li) and bi = c1(Bi). Then we can write

m = c1(M) = l1 + b1 = · · · = ln + bn.

By assumption we have
en,0 + en−1,1 + · · ·+ e0,n = 0

in the rational cohomology H2(X,Q), so the classes ep,q can be written in terms of li in the
following way:

en−i,i =
1

n+ 1
(−l1 − 2l2 − · · · − ili + (n− i)li+1 + (n− i− 1)li+2 + · · ·+ ln)

for i = 0, . . . , n.
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Slope A-stability of (E, θ) implies that

(e0,n + e1,n−1 + · · ·+ ei,n−i). A < 0

for i = 0, . . . , n− 1. This is equivalent to

(en,0 + en−1,1 + · · ·+ ei,n−i). A > 0

for i = 1, . . . , n. Rewriting these inequalities in terms of Li we get

Ni.A > 0

for i = 1, . . . , n. Since Li 6M we have
n∑
i=1

xiNi 6

( n∑
i=1

i(n− i+ 1)(n+ 1)

2
xi

)
M

for all non-negative rational numbers x1, . . . , xn. But by Lemma 4.4, M |Y is not big and hence
the Q-divisor

∑n
i=1 xiNi restricted to Y is also not big. Therefore we have( n∑

i=1

xiNi

)2

6 0

for all non-negative rational numbers x1, . . . , xn (so also for all non-negative real numbers
x1, . . . , xn). 2

This lemma gives many inequalities. Unfortunately, when n > 3 vanishing of higher Chern
classes of E does not seem to give any particularly useful information. For example for n = 3 in
dimension 2 it gives

L2
1 + (L1 + 2L2)2 + (L1 + 2L2 + 3L3)2 = 0.

Since

N1 = 3L1 + 2L2 + L3,

N2 = 2L1 + 4L2 + 2L3,

N1 = L1 + 2L2 + 3L3,

E is A-stable if L2.A is large and L1.A and L3.A are not too negative. In that case L2
1 can be

positive and we do not get an analogue of Proposition 4.3.

7. Corollaries

Recall that our variations of Hodge structure are always considered to be polarizable. We say
that a VHS is of weight k if its Hodge decomposition takes the form V =

⊕
p+q=k,p,q>0 V

p,q.

Proposition 7.1. Let X be a smooth complex quasi-projective variety. Suppose ρK : π1(X,x)
→ GL(n,K) is an absolutely irreducible representation defined over an algebraic number field,
such that for each embedding σ : K → C the associated C-local system Vσ underlies a polarized
complex VHS of weight k. Then there is a totally imaginary quadratic extension L of a totally real
algebraic number field F , with L Galois over Q, and a representation ρL : π1(X,x) → GL(n,L),
together with an extension K ′ containing both K and L such that the extensions of scalars of ρK
and ρL to K ′ are isomorphic (i.e. conjugate). Let VL denote the L-local system corresponding to
ρL and let VL/Q denote the same local system considered as a local system of Q-vector spaces by
restriction of scalars. We may arrange things so that VL/Q underlies a polarizable Q-variation of
Hodge structure of weight k.
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Proof. This is discussed in [CS08, § 10] and [Sim92, Theorem 5]. The basic idea goes back at
least to Deligne’s ‘Travaux de Shimura’ [Del71].

The discussion in the third and following paragraphs of the proof of Theorem 5 in [Sim92]
does not use the rigidity hypothesis of that theorem, but only the statement that for every
embedding σ : K → C the induced local system Vσ is a polarizable VHS. One should assume
there that K is a Galois extension of Q (we can make that hypothesis), and the discussion gives
the conclusion that the subfield L ⊂ K generated by the traces of monodromy elements, has a
uniquely defined complex conjugation operation.

We recall the reason. The field of traces that was denoted by L in [Sim92] will be denoted
by Ltr here, and the extension that we are looking for, denoted L′ in [Sim92], will be denoted
by L here.

Since Vσ is polarizable, its complex conjugate is isomorphic to its dual. As we assume V is
absolutely irreducible, each Vσ is irreducible so this isomorphism is unique up to a scalar.

Let c : C → C denote complex conjugation. It means that Vc◦σ ∼= (Vσ)∗. Suppose γ ∈ π1(X,x),
and let ρ∗K denote the dual representation. Recall that ρ∗K(γ) = (ρK(γ)−1)t, so Tr(ρ∗K(γ)) =
Tr(ρK(γ−1)). From the isomorphism Vc◦σ ∼= (Vσ)∗ we therefore get

(c ◦ σ)(Tr(ρK(γ))) = σ(Tr(ρK(γ−1))).

As we are assuming that K is a Galois extension of Q, the image of c ◦ σ is equal to the image
of σ and it makes sense to write σ−1 ◦ c ◦ σ : K → K (this notational shortcut was used without
explanation in [Sim92] and required the hypothesis that K be Galois). We obtain

σ−1 ◦ c ◦ σ(Tr(ρK(γ))) = Tr(ρK(γ−1)).

It follows that on the subfield Ltr ⊂ K generated by the traces of monodromy elements, the map

cLtr := σ−1 ◦ c ◦ σ : Ltr
→ Ltr

is well-defined and independent of σ. In other words, Ltr has a well-defined complex conjugation
operation.

Therefore, Ltr is either a totally real field, if cLtr is the identity, or a totally imaginary
quadratic extension of a totally real field F := (Ltr)cLtr otherwise.

Larsen’s lemma [Sim92, Lemma 4.8] says that we can extend Ltr to L (as said before, that
was denoted L′ there), a totally imaginary quadratic extension of a totally real field, such that
V may be defined over L. The proof uses a consideration of Brauer groups, and we refer to the
discussion in [Sim92, Lemma 4.8].

We have
VL/Q ⊗Q C =

⊕
σ:L→C

Vσ.

If σ : L → C then it extends to σK′ : K ′ → C which then restricts to an embedding σK : K → C,
and Vσ ∼= VσK . Therefore, our hypothesis that the VσK are VHS of weight k implies that the Vσ
are VHS of weight k.

Our hypothesis says that for any σ, the Hodge types of Vσ can be chosen within {(p, q) :
p + q = k and p, q > 0}. There could be a choice to be made in assigning the Hodge types, for
instance if Vσ is unitary then it has only a single Hodge type and that could be put at any (p, q)
in the desired set.

As noted in the discussion of [CS08, § 10.2] we may choose the Hodge types in such a way
that there is a Q-polarization. We may do the analogue of [CS08, Lemma 10.3] for the general
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case as follows. Let cL : L → L and c : C → C denote the complex conjugation automorphisms.
For σ : L → C put σ := c ◦ σ = σ ◦ cL. Choose a collection of embeddings σ1, . . . , σd : L → C
such that the σi are distinct from the σj and the collection

{σ1, . . . , σd, σ1, . . . , σd}

is equal to the full collection of embeddings. For each i choose a structure of VHS for Vσi , and
then put

V p,q
σi

:= V q,p
σi .

This determines the structures of VHS for Vσi in such a way that the property of [CS08,
Lemma 10.3] holds.

As in [CS08, Proposition 10.2], there is a form

Φ : VL × VL → L

which is Q-bilinear, and L-linear in the first variable and L-cL-antilinear in the second variable
that is to say Φ(u, λv) = cL(λ)Φ(u, v). Also we may assume that it is cL-(−1)k-symmetric:
Φ(v, u) = (−1)kcLΦ(u, v) by multiplying by a purely imaginary element if necessary to get this
sign right. The form Φ is unique up to multiplying by an element of F ∗.

Put ΦQ := TrL/Q ◦ Φ, giving a Q-bilinear form

ΦQ : VL/Q × VL/Q → Q

that is (−1)k-symmetric. This will be our polarization form, after having first adjusted Φ by
multiplying by an appropriate element of F ∗ to be chosen below. Let

ΦC : (VL/Q ⊗Q C)× (VL/Q ⊗Q C) → C

be the induced C-bilinear form. We would like to say that ΦC pairs Vσ with Vσ.
To see this, let v 7→ z.v be the action of z ∈ L upon v ∈ VL/Q. This extends to an action of L

on VL/Q ⊗Q C by C-linear automorphisms. Then Vσ ⊂ VL/Q ⊗Q C is the subset of vectors such
that

z.v = σ(z)v

for z ∈ L. We have

Φ(z.u, v) = Φ(u, (cL(z)).v).

Thus, if u ∈ Vσ and v ∈ Vτ then

ΦC(z.u, v) = ΦC(σ(z)u, v) = σ(z)ΦC(u, v) = ΦC(z, (cL(z)).v)

= ΦC(u, τ(cL(z))v) = τ(cL(z))ΦC(u, v) = τ(z)ΦC(u, v).

Therefore, if σ(z) 6= τ(z) then this expression must be zero. For σ 6= τ there is a z ∈ L with
σ(z) 6= τ(z) and we obtain ΦC(u, v) = 0. We conclude that ΦC pairs Vσ with Vσ.

The complex conjugation on VL/Q ⊗Q C also sends Vσ to Vσ, indeed if z.v = σ(z)v then

z.v = z.v = σ(z)v = σ(z)v.
The Hodge types on VC := VL/Q ⊗Q C are defined by

V p,q
C :=

⊕
σ

V p,q
σ .
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With our choice of Hodge types satisfying the property of [CS08, Lemma 10.3], the complex

conjugation operation satisfies V p,q
C = V q,p

C .
We get the hermitian form (u, v) 7→ ΦC(u, v) on Vσ induced by ΦQ. As the hermitian forms

on the irreducible local system Vσ are unique up to multiplication by a real scalar, we deduce
that this hermitian form is either a polarization, or minus a polarization of the complex VHS
Vσ. By uniqueness, the hermitian form has a pure Hodge type, and this type has to be (k, k)
otherwise the Hodge types of Vσ and Vσ could not be symmetric under (p, q) 7→ (q, p).

In order for ΦQ to define a polarization to get a Q-variation of Hodge structure on VL/Q, we
need these forms on Vσ to define polarizations rather than minus polarizations. This problem of
fixing the sign, by multiplying our original form Φ by an element of the totally real field F ∗, was
discussed in [CS08, Lemma 10.4] and we refer there for the proof, which just uses the fact that
F is dense in F ⊗Q R.

Once this adjustment has been made, we obtain a polarization form ΦQ, such that with our
choice of Hodge decompositions we obtain a Q-variation of Hodge structure VL/Q of weight k. 2

Remark. In the situation of the proposition, notice that the original irreducible local systems
VσK for σK : K → C, are among the complex direct factors Vσ of the Q-variation that was
constructed. That was pointed out during the proof.

Lemma 7.2. Suppose in the situation of the previous proposition, that we know furthermore the
traces Tr(ρ(γ)) are algebraic integers for γ ∈ π1(X,x). Then the Q-VHS constructed there is a
Z-VHS.

Proof. By Bass–Serre theory [Bas80], there is a projective OL-module P such that VL = P ⊗OL
L

(speaking here about the fiber over the basepoint which is a representation of π1(X,x)). Then
P gives a local system of free Z-modules forming a lattice inside the Q-local system VL/Q. 2

Corollary 7.3. Let X be a smooth complex projective variety. Suppose V is a rank 3 local
system over an algebraic number field K such that:

(i) the monodromy group is Zariski-dense in SL(3,K);

(ii) V is integral, in the sense that Tr(ρ(γ)) ∈ OK for any group element γ (here ρ being the
monodromy representation); and

(iii) for any σ : K → C the induced C-local system Vσ is a VHS.

Then either V projectively factors through an orbicurve, or else the Vσ are direct factors of the
monodromy of a family of abelian varieties.

Proof. Assume that V does not projectively factor through an orbicurve. The same holds for
each Vσ. Then by Theorem 5.1, we can conclude that the VHS Vσ are not of type (1, 1, 1),
because the first case of the theorem is ruled out by our hypothesis that the monodromy group
is Zariski-dense.

Therefore, the VHS Vσ may be chosen to have a set of Hodge types contained in {(1, 0), (0, 1)}.
Indeed, if Vσ is unitary we can just choose one of them; if not, it must have Hodge numbers
(1, 2) or (2, 1) since (1, 1, 1) is ruled out. In either case we can arrange the Hodge types within
{(1, 0), (0, 1)}. In other words, each Vσ has a structure of VHS of weight 1.

We may now apply Proposition 7.1 to conclude that the Vσ is a direct factor in the
monodromy of a Q-VHS of weight 1 denoted VL/Q. By Lemma 7.2 using our hypothesis (i),
it is a polarized Z-VHS of weight 1. This corresponds to a family of abelian varieties [Del71]. 2
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Remark 7.4. Let V be a rank 1 local system defined over an algebraic number field K, integral

and such that for each embedding σ : K → C the associated local system Vσ is a polarizable

VHS. Then Vσ is unitary so Kronecker’s theorem implies that the monodromies of V are roots

of unity. In other words, V is of finite order (cf. proof of Proposition 2.10).

Lemma 7.5. If for some n > 1 there exists a rigid representation ρ : π1(X,x) → GL(n,C) then

the moduli space of rank 1 local systems is a torsion abelian group. In particular, a rigid local

system of rank 1 is of finite order.

Proof. If the moduli space of rank 1 local systems has positive dimension then its connected

component of identity is divisible by n and there exists a non-isotrivial family of rank 1 local

systems W containing the trivial system and such that W⊗n is also a non-isotrivial family.

If Vρ ⊗ W1 ' Vρ ⊗ W2 for some rank 1 local systems W1 and W2 then the determinants coincide

and W⊗n1 ' W⊗n2 . Therefore the family Vρ ⊗ W of rank n local systems is non-isotrivial. Since

it contains Vρ, we get a contradiction with rigidity of ρ.

It follows that H1(X,Q) = 0 and the moduli space of rank 1 local systems is a torsion abelian

group, so for any rigid ρ the system detVρ is of finite order. 2

Definition 7.6. Let ρ : π1(X,x) → GL(n,C) be a representation. The geometric monodromy

group Mgeom(ρ) of ρ is the Zariski closure of the image of ρ in GL(n,C). We say that ρ is properly

rigid if ρ : π1(X,x) → Mgeom(ρ) is rigid.

Note that any rigid representation is properly rigid. On the other hand, a properly rigid

representation might be non-rigid. For example, it could happen that H1(X,Q) 6= 0. Therefore,

it is more general to consider properly rigid representations.

Given a rigid representation into GL(n,C), by the previous lemma the identity component

Mgeom(ρ)0 of its geometric monodromy group is contained in SL(n,C). In the following we are

interested in properly rigid representations with the largest possible geometric monodromy group.

More precisely, we are interested in representations ρ : π1(X,x) → GL(n,C) which satisfy one

of the following equivalent conditions:

(i) Mgeom(ρ) contains SL(n,C) as a subgroup of finite index;

(ii) Mgeom(ρ)0 = SL(n,C);

(iii) Lie Mgeom(ρ) = sl(n,C).

If any of these conditions is satisfied then the composition

ρ : π1(X,x)
ρ−→ GL(n,C)

det−→C∗

maps onto the group of mth roots of unity µm, where m is the index of Mgeom(ρ)0 in Mgeom(ρ).

Then the surjection π1(X,x) → µm gives rise to a degree m étale Galois covering f : Z → X

such that Mgeom(f∗(ρ)) = SL(n,C).

Corollary 7.7. Let V be an irreducible complex local system of rank 3. Assume that the

corresponding representation is integral, properly rigid and that the geometric monodromy group

of V contains SL(3,C) as a subgroup of finite index. Then either V projectively factors through

an orbicurve, or V comes as a direct factor in the monodromy of a family of abelian varieties.
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Proof. Rigidity implies that V is defined over an algebraic number field K and it implies that for
any σ : K → C the induced local system Vσ is a VHS (see [Sim92, Lemma 4.5]). By the above,
we can find a finite étale covering f : Z → X such that Mgeom(f∗(ρ)) = SL(n,C). Therefore
f∗(ρ) satisfies Hypothesis (i) of Corollary 7.3. Clearly, f∗Vσ is also a VHS for any σ so f∗(ρ)
also satisfies Hypothesis (iii). Hypothesis (ii) is provided by our assumption that V is integral.
Hence, Corollary 7.3 implies that f∗V projectively factors through an orbicurve, or else the f∗Vσ
are direct factors of the monodromy of a family of abelian varieties.

We may descend these conclusions back to X. Lemma A.6 says that if f∗V projectively
factors through an orbicurve, then V does so. If on the other hand f∗V comes from a family of
abelian varieties, then taking the product of the Galois conjugates of the family gives a family
which descends back to X, and V is a direct factor in the monodromy of this family. 2

Corollary 7.8. If V is any local system of rank 3 for which the geometric monodromy group
contains SL(3,C) as a subgroup of finite index, then either it projectively factors through an
orbicurve, or it comes from a family of abelian varieties, or else there is a non-constant equivariant
map from the universal cover of X to a two-dimensional building.

Proof. If the representation is non-rigid, or non-integral, then there is a non-constant equivariant
map from the universal cover of X to a two-dimensional building (see [GS92] and [CS08, § 4]).
Otherwise, the previous corollary applies. 2

Let us recall that by Lemma 7.5 a rigid local system V has det(V ) of finite order.

Corollary 7.9. Suppose V is an irreducible rank 3 local system. If V is integral and properly
rigid with det(V ) of finite order, then it is of geometric origin.

Proof. Let us first assume that the geometric monodromy group contains SL(3,C) as a subgroup
of finite index. If V projectively factors through an orbicurve, then the factoring representation is
rigid. As was shown in [CS08] using Katz’s theorem, it follows that the factoring representation
is of geometric origin. Let us recall briefly the argument here. If an orbicurve admits a rigid
representation, then its coarse moduli space is the projective line and there is an open subset
of the orbicurve that is isomorphic to P1 − {t1, . . . , tk}. By modifying the monodromy at one
point, we may assume that we have an SL(3,C)-local system on the orbicurve, pulling back
to a local system projectively equivalent to our original one. It is still rigid as a local system
on the orbicurve, which implies also that it is rigid as a local system on P1 − {t1, . . . , tk} with
fixed (semi-simple, finite-order) monodromy transformations at the points ti. Therefore, Katz’s
theorem [Kaz01] says that the new local system has geometric origin. We may now complete the
proof of this case: the last part of Proposition 2.10 shows that our original representation was of
geometric origin.

If V does not projectively factor through an orbicurve then Corollary 7.7 implies that V is
a direct factor in the monodromy of a family of abelian varieties, so it is of geometric origin.

If the geometric monodromy group is not a group containing SL(3,C) then it is either finite,
isogenous to SL(2,C), or isogenous to a positive-dimensional torus. Note however that in the
case of a monodromy group isogenous to a positive-dimensional torus, the representation is
not rigid, indeed a rigid representation to a finite extension of a torus must have finite image.
A representation with finite monodromy group has geometric origin, see Proposition 2.10. For
monodromy groups isogenous to SL(2,C) the result of [CS08] shows that rigid integral local
systems are of geometric origin. 2
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Proof of Theorem 1.3. We note that the statement of Theorem 1.3 is a special case of

Corollary 7.9. Indeed, assume the hypotheses of Theorem 1.3 hold, then since any rigid

representation is properly rigid, and a representation into SL(3,C) automatically has determinant

of finite order, the hypotheses of Corollary 7.9 hold so the local system is of geometric origin. 2

We leave it to the reader to formulate some other variants on these corollaries. For instance,

one could say that a rigid integral representation of rank 3 comes (projectively) by pullback from

a curve or a Shimura modular variety.

The hypothesis of rigidity could be replaced by a hypothesis that the representation is a

point of a zero-dimensional stratum of a stratification by, say, dimensions of cohomology groups

or singularities of the moduli space.

We do not know how to show the conjecture ‘rigid implies integral’. One could hope that in

some kind of very heuristic sense the argument for the (1, 1, 1) case could motivate us to analyze

what happens when we have a map to a two-dimensional building.

Corollary 7.10. Let X be a smooth projective variety such that for i = 1, 2, 3 we have

H0(X,SymiΩX) = 0. Then any representation π1(X,x) → GL(3,C) is of geometric origin.

Proof. If X is a smooth projective variety such that H0(X,SymiΩX) = 0 for i = 1, 2, 3, then

any representation π1(X,x) → GL(3,C) is rigid and integral (see [Kli13, Theorem 1.6 and

Corollary 1.8]). Corollary 7.9 implies that it is of geometric origin. 2

Interesting examples of such varieties come from [Kli13, Theorem 1.11]. Namely we can take

the ball quotient Γ\Bn
C for a torsion-free Kottwitz lattice Γ ⊂ SU(n, 1) for n > 4 such that n+1 is

prime. But these varieties are simple Shimura varieties, so probably for such varieties our result

follows easily in a different way.

Our results give geometric origin for two-dimensional ball quotients (that is to say, any

smooth projective surfaces of general type with c2
1 = 3c2), provided we know integrality.

Corollary 7.11. Suppose Γ ⊂ PU(2, 1) is a torsion-free cocompact lattice that is integral,

i.e. such that the traces of its elements are algebraic integers. Let X = B2/Γ be the ball quotient

which is a smooth projective variety. Then the standard representation of π1(X) = Γ is of

geometric origin.

Proof. The standard representation ρ is cohomologically rigid (see below), by [Wei62], so all of

its conjugates ρσ for σ ∈ Gal(C/Q) are cohomologically rigid, and hence they are variations of

Hodge structure. There exists a finite possibly ramified covering Z → X such that ρZ = ρ|π1(Z)

lifts to SU(2, 1) (Lemma 2.6), in other words, it is a rank 3 local system. It is clearly Zariski-dense.

Furthermore, ρZ is a variation of Hodge structure where the period map is the composition

Z̃ → X̃ ∼= B2,

in particular the differential of this period map at a general point has rank 2. Therefore, ρZ
cannot factor through an orbicurve. Now apply Corollary 7.3 to get that ρZ has geometric

origin, and by Proposition 2.10 ρ is of geometric origin (meaning that its composition with any

linear representation of PU(2, 1) has geometric origin). 2
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Remark 7.12. A vector bundle E with an integrable connection ∇ on X/C is called
cohomologically rigid if H1(X, End0(E,∇)) = 0. A local system is cohomologically rigid if
the corresponding vector bundle with an integrable connection is cohomologically rigid. Esnault
and Groechenig prove that a cohomologically rigid local system is integral [EG17]. This means
that in many of our statements above we can remove the integrality hypothesis if we assume
cohomological rigidity.

An important special case is that this allows us to remove the hypothesis of integrality
in Corollary 7.11. Indeed for two-dimensional ball quotients the standard representation
Γ → PU(2, 1) is cohomologically rigid by [Wei62], therefore [EG17] applies to provide the
hypothesis of integrality needed to apply Corollary 7.11. We conclude that the standard
representation is of geometric origin, for any smooth projective surface of general type with
c2

1 = 3c2.

Acknowledgements
The authors would like to thank the referees for their remarks. This collaboration started during
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Appendix A. The factorization theorem

The main aim of this appendix is to prove Theorem 3.3. Before giving a proof of this theorem, we
need a few auxiliary results. The first one is a strong version of Proposition 2.7 and Remark 2.8
in case of representations into SL(n,C).

Proposition A.1. Let X be a smooth complex quasi-projective variety with an irreducible
representation ρ : π1(X,x) → SL(n,C). Suppose f : X → C is a fibration (cf. § 1.1) over an
orbicurve such that for a general fiber F = f−1(c), the restriction of ρ to F is reducible. Then
one of the following holds:

(i) ρ projectively factors through f ;

(ii) there exists a finite étale cover CZ → C, which by base change induces a finite étale
cover p : Z → X such that p∗ρ is tensor decomposable. In particular, ρ is virtually tensor
decomposable;

(iii) there exists a finite étale cover CZ → C, which induces a finite étale cover p : Z → X such
that p∗ρ is reducible. In particular, ρ is virtually reducible.

Proof. Some arguments in the following proof are similar to the one used, e.g. in [Kaz01,
pp. 92–93].

Let Vρ denote the local system associated to ρ. Write the isotypical decomposition

Vρ|F =
⊕

Vi ⊗ Wi,

where Vi are distinct irreducible representations of π1(F, x) and Wi are vector spaces. By
hypothesis, either there is more than one factor, or there is a single factor but W1 has
dimension > 1.
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Use the homotopy exact sequence (Theorem 2.1), assuming that C has the maximal orbifold
structure such that f is a morphism, and letting x ∈ F . Let Φ denote the image of π1(F, x)
in π1(X,x), which is also the kernel of π1(X,x) → π1(C, c). Then π1(C, c) acts by outer
automorphisms on Φ (more precisely, we have a homomorphism from π1(C, c) to the group
of outer automorphisms of Φ). The above isotypical decomposition is a decomposition of the
restriction of ρ to Φ, and inner automorphisms of Φ preserve the isomorphism type of the Vi.
Therefore, π1(C, c) acts on the set of isotypical components {Vi} by its conjugation action.

Assume that there is more than one different isotypical component. As there are only finitely
many isotypical components, there exists a subgroup of finite index in π1(C, c) that stabilizes
each isotypical component. Therefore there exists a finite étale covering p : Z → X obtained by
base change from a finite étale covering CZ → C defined by the above subgroup, such that when
we pull back the above picture to Z, the isotypical components are preserved by the action of
π1(CZ , c

′). Then the decomposition is preserved by the full monodromy action of π1(Z, z). So
Vρ|Z becomes reducible, and in that case ρ is virtually reducible.

We may therefore now suppose that there is only a single isotypical component in the above
decomposition, that is to say

Vρ|F = V1 ⊗ W1,

where n1 = rkV1 > 1 and m1 = dimW1 > 2.

Lemma A.2. There exists a finite étale covering CZ → C of the orbicurve C such that for the
induced étale covering p : Z → X inducing pF : FZ → F , the local system p∗F (V1) extends to a
local system V ′1 on Z.

Proof. Let Φ ⊂ π1(X,x) be the image of π1(F, x) and let ϕ : Φ → GL(n1,C) be the irreducible
representation corresponding to V1. The homomorphism ϕ factors through the almost-simple
subgroup G := {A ∈ GL(n1,C) : (detA)m1 = 1}. For each element g ∈ π1(X,x) we can consider
the representation ϕg : Φ → G ⊂ GL(n1,C) given by ϕg(h) = ϕ(ghg−1) and the corresponding
Φ-module Vϕg . By definition, Vϕ ⊗ W ' Vϕg ⊗ W and Vϕ is a simple Φ-module. Therefore there
exists a non-zero map from one of the simple factors in the Jordan–Hölder filtration of Vϕg to
Vϕ. By Schur’s lemma, this factor is isomorphic to Vϕ. But Vϕ and Vϕg have the same dimension
over C, so Vϕg is simple and the Φ-modules Vϕ and Vϕg are isomorphic. Therefore for each fixed
g ∈ π1(X,x), we can choose Ag in G ⊂ GL(n1,C) such that

ϕ(ghg−1) = Agϕ(h)A−1
g

for all h ∈ Φ. The map τ̄ : π1(X,x) → PGL(n1,C) defined by sending g to the class of Ag,
is a projective representation extending the projective representation π1(F, x) → PGL(n1,C)
associated to V1.

We distinguish two cases. By [BN06, Proposition 5.5] (see also [CS08, 2.2]), either the
orbicurve is spherical, or it has a finite étale covering that is a usual curve with infinite
fundamental group.

In the spherical case, there is a finite étale covering of C whose fundamental group is trivial.
After pulling back to this covering we are in the situation where Φ = π1(X,x) and the claim
follows.

We may therefore assume that there is a finite étale covering of C that is a usual curve
not equal to P1 or A1. Pulling everything back to this covering, we may assume that C has no
orbifold structure.
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We can choose an analytic neighborhood U ⊂ C of c = f(x) isomorphic to a disk and such
that the induced fibration f−1(U) → U is trivial in the usual topology (cf. [Nor83, Lemma 1.5A]).
If C is compact then we choose a point c′ ∈ U − {c}. The fiber F ′ of f over c′ is smooth and
homeomorphic to F . Then we define the Zariski open subcurve C∗ = C −{c′} ⊂ C. In case C is
non-complete we set C∗ = C. Let us also set X∗ = f−1(C∗). By construction, the fundamental
group π1(C∗, c) is free.

Now for some elements g1, . . . , gs ∈ π1(X∗, x) whose images are free generators of π1(C∗, c),
we can consider the semi-direct product

Φ n 〈g1, . . . , gs〉

with gi acting on Φ by conjugation. This group is isomorphic to π1(X∗, x). Then we can extend
ϕ to a representation ϕ̃ : π1(X∗, x) → G by setting

ϕ̃(hga11 · · · g
as
s ) = ϕ(h)Aa1g1 · · ·A

as
gs .

The short exact sequence
1 → µl → G → PGL(n1,C) → 1,

where l = n1m1, leads to an exact sequence of (non-abelian) group cohomology

H1(π1(X);G) → H1(π1(X); PGL(n1,C))
δ

→H2(π1(X);µl),

where the map δ sends the 1-cocyle [τ̄ ] = {Ag}g∈G to the 2-cocycle [ ] : π1(X) × π1(X) → µl
given by

[g, h] = AgAhA
−1
gh .

The sequence above shows that this 2-cocycle is the obstruction to lifting τ̄ to a representation
π1(X,x) → G.

Let Φ∗ ⊂ π1(X∗, x) be the image of π1(F, x). We claim that the canonical surjection Φ∗ → Φ
is in fact an isomorphism. By van Kampen’s theorem π1(X,x) is isomorphic to the amalgamated
product of π1(X∗, x) and π1(f−1(U), x) ' π1(F, x) over π1(X∗ ∩ f−1(U), x) ' π1(F, x)×Z. This
implies that Φ∗ ' Φ.

Therefore we have a commutative diagram

1 // Φ // π1(X,x) // π1(C, c) // 1

1 // Φ // π1(X∗, x)

OOOO

// π1(C∗, c)

OOOO

// 1

that leads to the following commutative diagram.

H2(π1(X,x);µl)

��

res // H2(Φ;µl)

H2(π1(X∗, x);µl)
res∗ // H2(Φ;µl)

Note that the class δ([τ̄ ])|X∗ ∈ H2(π1(X∗, x);µl) is zero, since the representation τ̄ |X∗ : π1

(X∗, x) → PGL(n1,C) lifts to ϕ̃ : π1(X∗, x) → G. Therefore the above diagram shows that δ([τ̄ ])
lifts to a class η in the kernel of res. Now, by the Lyndon–Hochschild–Serre spectral sequence

Hp(π1(C, c);Hq(Φ;µl))⇒ Hp+q(π1(X,x);µl),
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so this kernel fits into the following commutative diagram.

H2(π1(C, c);µl)

��

// ker(res)
ε //

��

H1(π1(C, c);H1(Φ;µl))

��
H2(π1(C∗, c);µl) // ker(res∗)

ε∗ // H1(π1(C∗, c);H1(Φ;µl))

Now we need to kill ε(η) by passing to a finite étale cover of C. Let us first remark that
A := H1(Φ;µl) = Hom(Φ;µl) = Hom(Φ/[Φ,Φ];µl) is a finite abelian group. This is clear since
π1(F, x), and hence also Φ, are finitely generated. Passing to the finite étale covering defined by
the finite index subgroup

⋂
a∈A π1(C, c)a ⊂ π1(C, c) obtained by intersecting all the stabilizers

of π1(C, c)-action on A, we can assume that A is a trivial π1(C, c)-module. Then

H1(π1(C, c);A) = Hom(π1(C, c), A) = Hom(π1(C, c)/[π1(C, c), π1(C, c)], A)

is a finite abelian group. Let us consider a finite index subgroup of π1(C, c) defined by

H :=
⋂

ϕ∈Hom(π1(C,c),A)

kerϕ ⊂ π1(C, c).

It is clear from the definition that the induced restriction map H1(π1(C, c), A) → H1(H;A) is
zero, so H ⊂ π1(C, c) defines a finite étale cover of C which kills the class ε(η). Therefore we can
assume that η lifts to a class η̃ ∈ H2(π1(C, c);µl).

By assumption C is not spherical, so the universal cover C̃ of C is contractible. So the
spectral sequence

Hp(π1(C, c);Hq(C̃, µl))⇒ Hp+q(C, µl)

degenerates to Hp(π1(C, c);µl) = Hp(C, µl).
If C is not projective then there is nothing to prove as H2(C, µl) = 0. So we can assume

that C is projective of genus g > 1. For any finite abelian group A any element α ∈ H2(C,A)
can be killed after passing to a finite étale cover π : C ′ → C. This follows from the fact that
H2(C,A) ' A and π∗ : H2(C,A) → H2(C ′, A) is multiplication by the degree of π and π1(C, c)
has a subgroup of index equal to the order of A. But π1(C, c) contains subgroups of arbitrary
finite index, so applying the above remark to the class η̃, we can find a connected degree n finite
étale covering CZ → C such that the pullback of η̃ is zero in H2(π1(CZ , c

′);µl) = H2(CZ , µl). So
letting Z be the pullback of this covering over X we get that our class in H2(π1(X,x);µl) pulls
back to the zero class in H2(π1(Z, z);µl). Therefore, when pulled back to Z, the representation
lifts to G. 2

Let fZ denote the map from Z to CZ . Let us consider

V ′1 ⊗ Hom(V ′1 , Vρ|Z) → Vρ|Z .

Note that V ′1 |FZ
is irreducible, since pF : FZ → F is an isomorphism (this is why we need

p : Z → X to be induced from a finite covering of the curves CZ → C). So after restricting the
above map to the fiber FZ we get an isomorphism. Since this map is a map of local systems on
Z, it must be an isomorphism.

If the rank of V ′1 is >2 this gives a tensor decomposition over Z so ρ is virtually tensor
decomposable. Finally, if V ′1 has rank 1 then V1 has rank 1, so the restriction of ρ to π1(F, x)
projects to the trivial representation in PGL(n,C). This means that ρ projectively factors
through f . This finishes proof of Proposition A.1. 2
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The proof of the next lemma uses projectivity of the base manifold.

Lemma A.3. Let X be a smooth complex projective variety of dimension >2. Let ρ : π1(X,x)
→ SL(n,C) be a representation with an infinite image. Assume that ρ virtually projectively
factors through an orbicurve. Then there exists a fibration h : X → B over a smooth projective
curve B such that the restriction of Vρ to a general fiber of h has finite monodromy.

Proof. By assumption there exists an alteration p : Z → X for which p∗ρ projectively factors
through a fibration f : Z → C over an orbicurve C. Let Zy ⊂ Z denote the fiber over y ∈ C.
Choose a ∈ C at which the stabilizer group is trivial and the fiber Za is smooth.

Let us consider g = (p, f) : Z → X×C. Let Y ⊂ X×C be the image of g and let r1 : Y → X
and r2 : Y → C denote the corresponding projections.

Claim. We have p(Za) ∩ p(Zy) = ∅ for general y ∈ C.

Proof. Assume that p(Za) ∩ p(Zy) 6= ∅ for general y ∈ C. Then Y ∩ (p(Za) × C) contains
an irreducible component that dominates C. So we can choose a complete irreducible curve
D ⊂ Z such that g(D) is contained in Y ∩ (p(Za) × C) and f(D) = C. Let ν : D̃ → D ↪→ Z
be composition of the normalization of D with the canonical inclusion. Then D̃ is a smooth
projective curve, p ◦ ν maps D̃ into p(Za) but f ◦ ν : D̃ → C is surjective. The situation can be
summed up in the following diagram.

C

D̃

ν

''//

f ◦ ν
++

p ◦ ν
..

D �
� // Z

g //

f
22

p

,,

Y �
� //

r1

$$

r2

::

X × C

��

OO

p(Za)
� � // X

If p(D) is a point then ν∗p∗(Vρ) is a local system with finite (in fact, trivial) monodromy on
D̃. If D′ := p(D) is a curve then we can choose an irreducible curve D′′ ⊂ Za mapping onto D′.
Since p∗ρ projectively factors through f , the monodromy of the pullback of Vρ to Za is contained
in the center of SL(n,C), so it is finite. Therefore the monodromy of the pullback of Vρ to the

normalization D̃′′ of D′′ is also finite. Since D̃′′ → Z → X factors through the normalization
D̃′ of D′, the image of π1(D̃′′) in π1(D̃′) has finite index. Therefore the local system Vρ, pulled

back to the normalization D̃′, has finite monodromy. The map p ◦ ν : D̃ → X factors through
D̃′. Therefore, also in this case ν∗p∗(Vρ) is a local system with finite monodromy on D̃.

On the other hand, the image of π1(D̃) in π1(C) has finite index (since f ◦ g : D̃ → C is
surjective), the image of ρ is infinite and p∗ρ projectively factors through f . Therefore the image
of π1(D̃) in SL(n,C) cannot be finite, a contradiction. 2

By the above claim, we can choose three distinct, smooth fibers Za, Zb, Zc of f such that
their images in X are pairwise disjoint divisors. Since Za, Zb and Zc are algebraically equivalent,
the corresponding cycles p∗Za, p∗Zb and p∗Zc are also algebraically equivalent. In particular, the
corresponding cohomology classes of p(Za), p(Zb) and p(Zc) lie on the same line in H2(X,Q).
Therefore by [Tot00, Theorem 2.1] there exists a fibration h : X → B over a smooth curve B
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such that p(Za), p(Zb) and p(Zc) are fibers of h. Moreover, by [Tot00, Lemma 2.2] for general
y ∈ C, the image p(Zy) is a fiber of h. In particular, p(Zy) is smooth for general y ∈ C. Since the
monodromy group of the pullback of Vρ to Zy is finite and π1(Zy) has finite index in π1(p(Zy)),
we conclude that the restriction of Vρ to a general fiber of h has finite monodromy. 2

Now we can prove Theorem 3.3, which we recall as follows.

Theorem A.4. Let X be a smooth complex projective variety. Let us fix an irreducible
representation ρ : π1(X,x) → SL(n,C) for some n > 2. Suppose that ρ is not virtually tensor
decomposable, and not virtually reducible. Then the following conditions are equivalent:

(i) ρ projectively factors through an orbicurve;

(ii) ρ virtually projectively factors through an orbicurve;

(iii) there exists a non-constant map f : X → C to an orbicurve and a smooth fiber F = f−1(y),
such that the restriction of ρ to π1(F, x) becomes reducible;

(iv) there exists an alteration p : Z → X such that the previous condition holds for the pullback
p∗ρ.

Proof. Let us first remark that the image of ρ is infinite. Indeed, if the image of ρ is finite
then there exists a finite étale covering X ′ → X such that the pullback of ρ to X ′ is trivial,
contradicting our assumption that ρ is not virtually reducible. In the following we assume that
X has dimension > 2, as otherwise the theorem is trivial. Clearly, the implications (i)⇒ (ii) and
(iii) ⇒ (iv) are trivial. Let us assume (ii). Then by Lemma A.3 there is a map h : X → B to
an orbicurve, such that the restriction of Vρ to a general fiber of h has finite monodromy. Apply
the homotopy exact sequence (Theorem 2.1), making sure that the orbicurve structure of B is
the necessary one so that it works. Let F denote a general fiber. Assume that the basepoint x
belongs to F and denote by b := f(x) the basepoint in B. We get the exact sequence

π1(F, x) → π1(X,x) → π1(B, b) → 1.

Now we need the following group-theoretic lemma.

Lemma A.5. If H ⊂ SL(n,C) is finite and irreducible then the normalizer of H in SL(n,C) is
finite.

Proof. Since H is a closed subgroup of SL(n,C), its normalizer G := NH SL(n,C) is also closed
in SL(n,C). Let us fix an element h ∈ H. Since the identity component G0 normalizes H, the
map ϕh : G0

→ SL(n,C) defined by ϕh(g) = ghg−1h−1 has image in H. Since G0 is connected
and H is finite, ϕh is constant. Hence, G0 commutes with H. Since H is irreducible, elements
commuting with H are contained in the center Z(SL(n,C)) of SL(n,C). Therefore G0 is finite.
Since G0 is of finite index in G, G is also finite. 2

Let Φ ⊂ π1(X,x) denote the image of π1(F, x). Suppose that the restriction ϕ := ρ|Φ is
irreducible and let H ⊂ SL(n,C) denote the image of ϕ. Since Φ is a normal subgroup of
π1(X,x), for any s ∈ π1(X,x), ρ(s) is contained in the normalizer of H in SL(n,C). Therefore,
by the above lemma, the image of ρ is finite, contradicting our hypothesis.

Thus the restriction Vρ|F to a general fiber is reducible, proving the implication (ii) ⇒ (iii).
Now let us assume (iii). Passing to the Stein factorization and using Theorem 2.1, we can

assume that f is a fibration over an orbicurve, and the restriction Vρ|F to a general fiber of
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f is reducible. In view of the hypothesis that ρ is not virtually tensor decomposable and not
virtually reducible, Proposition A.1 implies that ρ projectively factors through f . This completes
the proof of the implication (iii) ⇒ (i).

The fact that (iii) ⇒ (i) shows that (iv) ⇒ (ii). Indeed, in the situation of (iv), the pullback
of ρ to Z satisfies all the hypotheses: it is irreducible because we assumed that ρ was not virtually
reducible, and the hypotheses of not being virtually tensor decomposable and not being virtually
reducible are conserved. Over Z we are in the situation of (iii) so we have shown that ρ|Z factors
through an orbicurve. This shows (iv) ⇒ (ii) which completes the proof. 2

In order to optimize the statements of our corollaries in § 7, we need a result concerning
groups lying between SL(3,C) and GL(3,C). For notational reasons we do this separately here,
rather than modifying the previous discussion to take into account such groups. However, one
can easily check that the proofs of Proposition A.1 and Theorem A.4 work also in this more
general case with just minor notational changes.

Suppose G ⊂ GL(3,C) is a subgroup such that SL(3,C) ⊂ G is of finite index. Let µm :=
G/ SL(3,C) denote the quotient group which is a finite cyclic group of some order m.

Lemma A.6. Suppose ρ : π1(X,x) → G is a representation with Zariski-dense image. Let Z →X
be the cyclic covering determined by the composed representation π1(X,x) → µm, and let

ρZ : π1(Z, z) → SL(3,C)

denote the pullback representation. If ρZ projectively factors through a map to an orbicurve
then ρ projectively factors through a map to an orbicurve.

Proof. Consider the composed representation

π1(X,x) → G → PGL(3,C)
ad
→ SL(8,C),

where the last arrow is the adjoint action on the Lie algebra sl(3) ∼= C8. Call this representation ζ.
Our hypothesis tells us that the monodromy group of ζ is PGL(3,C), and that its restriction ζZ
to Z factors through an orbicurve. As PGL(3,C) has no finite-index subgroups, the monodromy
group of any pullback to a finite cover is still PGL(3,C). In particular, ζ is not virtually reducible,
and not virtually tensor decomposable. By Theorem A.4 we conclude that ζ projectively factors
through an orbicurve. However, the composed map

PGL(3,C) → SL(8,C) → PGL(8,C)

is injective. Therefore, ζ factors through an orbicurve. This factorization gives the projective
factorization of ρ through an orbicurve, that we are looking for. 2
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