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ASSOCIATIVITY OF THE TENSOR PRODUCT OF
SEMILATTICES

by GRANT A. FRASER and JOHN P. ALBERT

(Received 19th March 1984)

The tensor product of semilattices has been studied in [2], [3] and [5]. A survey of
this work is given in [4]. Although a number of problems were settled completely in
these papers, the question of the associativity of the tensor product was only partially
answered. In the present paper we give a complete solution to this problem.

For terminology and basic results of lattice theory and universal algebra, consult
Birkhoff [1] and Gratzer [6], [7]. The join and meet of elements a1,...,an of a lattice
are denoted by YA = I 0 ' an(^ 0"=ia* respectively. All semilattices considered are join-
semilattices. The reader is referred to [2] for definitions and results concerning the
tensor product A ® B of semilattices A and B. In fact, much of [2] is concerned with the
special situation in which A and B are distributive lattices, and A®B is obtained by
considering A and B as join-semilattices.

We will need the following results from the earlier papers [2, Theorem 2.5; 3,
Theorem 1].

Theorem 1. Let A and B be the distributive lattices and let a, a{ e A and b, b{ e B for
i = l , . . . , n . Let n be the set {l,...,n}. Then a<g>b^Jj = i(ai®bi) in A®B if and only
if there exist non-empty subsets Sl,...,Sm of n such that a^Yj = i ELes ai

Theorem 2. Let A and B be semilattices and let a,a(eA and b,bteB for i = l,...,n.
Then a®b^Yj = i(ai®^i) i n A®B if and only there is an n-ary lattice polynomial p
such that aep((ai),...,(an)) and b6p*((b,), . . . ,(y.

Here (x) denotes the principal ideal generated by x and p* is the polynomial obtained
by interchanging the lattice operations in p.

Now the partial result on associativity of the tensor product obtained earlier is the
following [2, Theorem 5.1].

Theorem 3. Let A, B and C be finite distributive lattices. Then (A®B)<g)C is
isomorphic with A ® (B ® C).

We shall extend this result first to arbitrary distributive lattices and then to arbitrary
semilattices.

Theorem 4. Let A, B and C be distributive lattices. Then (A®B)®C is isomorphic
with A®(B®C).
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Proof. Every element of (/I® B)®C can be written in the form YJ = I [('
where ateA, bteB and c^C for i=l,...,n. Let <p:(A®B)®C^>A®(B®C) be defined
by 9(YJ = I C(ai® ki)®c;]) = £"=i [fli®(^i®Ci)]- We prove that <p is an isomorphism by
showing that for all a,, ejeA, bh / ; e B , c(, gjeC, i=l,...,n, j=l,...,m, we have

]. Clearly it suffices to prove that {a®b)®c^Y!i [iai®bi)®ci'] if
and only if a®(b®c)^YH [Oi®(&i®Cj)]. In view of the symmetry of this assertion, it
is enough to prove it in one direction.

Suppose that (a®fr)®c^£" [ (a ,®^)®^] . Then by Theorem 1, there are non-
empty subsets Su...,Sm of n such that

= 1 \ieS.

and

J = l >€S.
(1)

Again using Theorem 1, we have that there exist non-empty subsets Tu...,Tp of m such
that

*i n(ru)
and

(2)

(3)

Now for k = l,...,p, let Uk = {ieSj:jeTk}. Then UU...,UP are non-empty subsets of «.
Then by (2) we have

(4)

Using (1) and (3) we have that for k = l,...,p, b^j^nYli^Sjbi and c^Y\JeTkYJiesJci.
Then it follows by Theorem 1 that for k = l,...,p, we have b®c^^iet; j t(fe1®c,). Hence
b<g>c^Ylk = iY,ieuk(bi®Ci). Applying Theorem 1 to the preceding result and (4), we
obtain £

Theorem 5. Let 4̂, B and C be semilattices. Then (A ® B) ® C is isomorphic with
A®(B®C).

Proof. The initial remarks made in the proof of Theorem 4 remain valid in this case
and we define the map <p in the same way as before. Again it suffices to prove that if

cI] then a®(ft®c)^£"=1[ai®(b,-®c,-)]. Now it follows
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by Theorem 2 that this assertion is equivalent to the statement: if there is an n-ary
polynomial p such that a®bep((a1®b1),...,(an®bn)) and cep*^^,...,(cn)), then there
is an n-ary polynomial t such that aetda^,...^)) and b®cet*((b1®c1),...,(bn®cn)).

We will prove this statement by induction on the complexity of the polynomials
involved. It is clearly true for polynomials of length 1. Now assume that the statement
holds for the n-ary polynomials p and q. Let a®be(p + q)((ai(S)bl),...,(an®bn)) and
cep*q*((c1),...,(cm)). Then a®^X?=1(xi<S>yi)+I>=* + i(*,®y.) where xteA and
yt e B for i=l,...,m and

k

YJ(xi®yi)ep((al®bl),...,(an®bn))
I

and

Thus a®b:g£'J1(x;®y,), where for each i either x,®yiepd^^bi),...,(an<B)bn)) or
^i®y.£«((ai®''i),---.K®bn)). Since c6p*((c,),...,(c,)) and c e ^ C i ) , . . . , ^ , ) ) it fol-
lows that for all i there is an n-ary polynomial s (where s is either p or q) such that

y; e s^ci! ®b1),...,(an® bn))

and

C6S*((C,) (C,».

Now by the inductive hypothesis, for each i there is an n-ary polynomial u, such that

and

Since a®6^^™(Xi®y,) it follows by Theorem 2 that there is an n-ary polynomial r
such that aer((x1),...,(xn)) and fcer*((y1),...,(yn)). Let t be the n-ary polynomial
r{uu...,un). Since x,6«i((ai),...,(aB)) for all i, it is easy to see that aet((a!),...,(an)).
Also since bsr*{{y^,...,{yn)) it is readily verified that

b®cer*((yl®c),...,(yn®c)).

It follows that

b®cer*(ut,...,uMbi®cl),...,(bn®cn))

Thus the statement holds for the polynomial p + q.
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Finally, assume the statement holds for p and q and suppose that

a®be(pq){{al®bl),...,(an®bn))

and

ce(p* + q*)((Cl),...,(cm)).

Then

a<3>bep((a1®bl),...,(an®bn)),

a<S)beq((a1®bl),...,(an<S>bn)),

and there exist xeA and yeB such that c^x + y where x e p * ^ ) , . . . , ^ ) ) and
yeq*^^,...,(cn)). Now by the inductive hypothesis there exist polynomials r and s
such that

aer((a1),...,(an)),b®xer*((b1®c1),...,(bn®cn)),

and

aes((ai),...,(an)),b®yes*((bl®cl),...,(bn®cn)).

Let t be the polynomial rs. Then aet((a1),...,(an)) and

so that

Thus the statement holds for the polynomial pq.
This completes the induction and the Theorem is now established.
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