ASSOCIATIVITY OF THE TENSOR PRODUCT OF SEMILATTICES

by GRANT A. FRASER and JOHN P. ALBERT

(Received 19th March 1984)

The tensor product of semilattices has been studied in [2], [3] and [5]. A survey of this work is given in [4]. Although a number of problems were settled completely in these papers, the question of the associativity of the tensor product was only partially answered. In the present paper we give a complete solution to this problem.

For terminology and basic results of lattice theory and universal algebra, consult Birkhoff [1] and Grätzer [6], [7]. The join and meet of elements a_1, \ldots, a_n of a lattice are denoted by $\sum_{i=1}^{n} a_i$ and $\prod_{i=1}^{n} a_i$ respectively. All semilattices considered are join-semilattices. The reader is referred to [2] for definitions and results concerning the tensor product $A \otimes B$ of semilattices A and B. In fact, much of [2] is concerned with the special situation in which A and B are distributive lattices, and $A \otimes B$ is obtained by considering A and B as join-semilattices.

We will need the following results from the earlier papers [2, Theorem 2.5; 3, Theorem 1].

Theorem 1. Let A and B be the distributive lattices and let $a, a_i \in A$ and $b, b_i \in B$ for $i=1,\ldots,n$. Let n be the set $\{1,\ldots,n\}$. Then $a \otimes b \leq \sum_{i=1}^n (a_i \otimes b_i)$ in $A \otimes B$ if and only if there exist non-empty subsets S_1,\ldots,S_m of n such that $a \leq \sum_{j=1}^m \prod_{i \in S_j} a_i$ and $b \leq \prod_{j=1}^m \sum_{i \in S_i} b_i$.

Theorem 2. Let A and B be semilattices and let $a, a_i \in A$ and $b, b_i \in B$ for i = 1, ..., n. Then $a \otimes b \leq \sum_{i=1}^{n} (a_i \otimes b_i)$ in $A \otimes B$ if and only there is an n-ary lattice polynomial p such that $a \in p((a_1), ..., (a_n))$ and $b \in p^*((b_1), ..., (b_n))$.

Here (x) denotes the principal ideal generated by x and p^* is the polynomial obtained by interchanging the lattice operations in p.

Now the partial result on associativity of the tensor product obtained earlier is the following [2, Theorem 5.1].

Theorem 3. Let A, B and C be finite distributive lattices. Then $(A \otimes B) \otimes C$ is isomorphic with $A \otimes (B \otimes C)$.

We shall extend this result first to arbitrary distributive lattices and then to arbitrary semilattices.

Theorem 4. Let A, B and C be distributive lattices. Then $(A \otimes B) \otimes C$ is isomorphic with $A \otimes (B \otimes C)$.

Proof. Every element of $(A \otimes B) \otimes C$ can be written in the form $\sum_{i=1}^{n} [(a_i \otimes b_i) \otimes c_i]$, where $a_i \in A$, $b_i \in B$ and $c_i \in C$ for $i=1,\ldots,n$. Let $\varphi:(A \otimes B) \otimes C \to A \otimes (B \otimes C)$ be defined by $\varphi(\sum_{i=1}^{n} [(a_i \otimes b_i) \otimes c_i]) = \sum_{i=1}^{n} [a_i \otimes (b_i \otimes c_i)]$. We prove that φ is an isomorphism by showing that for all a_i , $e_j \in A$, b_i , $f_j \in B$, c_i , $g_j \in C$, $i=1,\ldots,n$, $j=1,\ldots,m$, we have $\sum_{i=1}^{n} [(a_i \otimes b_i) \otimes c_i] \leq \sum_{j=1}^{m} [(e_j \otimes f_j) \otimes g_j]$ if and only if $\sum_{i=1}^{n} [a_i \otimes (b_i \otimes c_i)] \leq \sum_{j=1}^{m} [a_j \otimes (f_j \otimes g_j)]$. Clearly it suffices to prove that $(a \otimes b) \otimes c \leq \sum_{j=1}^{n} [(a_i \otimes b_i) \otimes c_i]$ if and only if $a \otimes (b \otimes c) \leq \sum_{j=1}^{n} [a_i \otimes (b_i \otimes c_i)]$. In view of the symmetry of this assertion, it is enough to prove it in one direction.

Suppose that $(a \otimes b) \otimes c \leq \sum_{i=1}^{n} [(a_i \otimes b_i) \otimes c_i]$. Then by Theorem 1, there are non-empty subsets S_1, \ldots, S_m of n such that

$$a \otimes b \leq \sum_{j=1}^{m} \prod_{i \in S_{j}} (a_{i} \otimes b_{i}) = \sum_{j=1}^{m} \left(\prod_{i \in S_{j}} a_{i} \right) \otimes \left(\prod_{i \in S_{j}} b_{i} \right)$$

and

$$c \leq \prod_{j=1}^{m} \sum_{i \in S_j} c_i. \tag{1}$$

Again using Theorem 1, we have that there exist non-empty subsets T_1, \ldots, T_p of m such that

$$a \leq \sum_{k=1}^{p} \prod_{j \in T_k} \left(\prod_{i \in S_i} a_i \right) \tag{2}$$

and

$$b \leq \prod_{k=1}^{p} \sum_{j \in T_k} \left(\prod_{i \in S_j} b_i \right). \tag{3}$$

Now for k=1,...,p, let $U_k = \{i \in S_j : j \in T_k\}$. Then $U_1,...,U_p$ are non-empty subsets of n. Then by (2) we have

$$a \leq \sum_{k=1}^{p} \prod_{i \in U_k} a_i. \tag{4}$$

Using (1) and (3) we have that for $k=1,\ldots,p,$ $b \leq \sum_{j \in T_k} \prod_{i \in S_j} b_i$ and $c \leq \prod_{j \in T_k} \sum_{i \in S_j} c_i$. Then it follows by Theorem 1 that for $k=1,\ldots,p$, we have $b \otimes c \leq \sum_{i \in U_k} (b_i \otimes c_i)$. Hence $b \otimes c \leq \prod_{k=1}^p \sum_{i \in U_k} (b_i \otimes c_i)$. Applying Theorem 1 to the preceding result and (4), we obtain $a \otimes (b \otimes c) \leq \sum_{i=1}^n [a_i \otimes (b_i \otimes c_i)]$.

Theorem 5. Let A, B and C be semilattices. Then $(A \otimes B) \otimes C$ is isomorphic with $A \otimes (B \otimes C)$.

Proof. The initial remarks made in the proof of Theorem 4 remain valid in this case and we define the map φ in the same way as before. Again it suffices to prove that if $(a \otimes b) \otimes c \leq \sum_{i=1}^{n} [(a_i \otimes b_i) \otimes c_i]$ then $a \otimes (b \otimes c) \leq \sum_{i=1}^{n} [a_i \otimes (b_i \otimes c_i)]$. Now it follows

by Theorem 2 that this assertion is equivalent to the statement: if there is an *n*-ary polynomial p such that $a \otimes b \in p((a_1 \otimes b_1), \ldots, (a_n \otimes b_n))$ and $c \in p^*((c_1), \ldots, (c_n))$, then there is an *n*-ary polynomial t such that $a \in t((a_1), \ldots, (a_n))$ and $b \otimes c \in t^*((b_1 \otimes c_1), \ldots, (b_n \otimes c_n))$.

We will prove this statement by induction on the complexity of the polynomials involved. It is clearly true for polynomials of length 1. Now assume that the statement holds for the *n*-ary polynomials p and q. Let $a \otimes b \in (p+q)((a_1 \otimes b_1), \ldots, (a_n \otimes b_n))$ and $c \in p^*q^*((c_1), \ldots, (c_n))$. Then $a \otimes b \leq \sum_{i=1}^k (x_i \otimes y_i) + \sum_{i=k+1}^m (x_i \otimes y_i)$ where $x_i \in A$ and $y_i \in B$ for $i = 1, \ldots, m$ and

$$\sum_{i=1}^{k} (x_i \otimes y_i) \in p((a_1 \otimes b_1), \dots, (a_n \otimes b_n))$$

and

$$\sum_{k=1}^{m} (x_i \otimes y_i) \in q((a_1 \otimes b_1), \dots, (a_n \otimes b_n)).$$

Thus $a \otimes b \leq \sum_{1}^{m} (x_i \otimes y_i)$, where for each i either $x_i \otimes y_i \in p((a_1 \otimes b_1), \dots, (a_n \otimes b_n))$ or $x_i \otimes y_i \in q((a_1 \otimes b_1), \dots, (a_n \otimes b_n))$. Since $c \in p^*((c_1), \dots, (c_n))$ and $c \in q^*((c_1), \dots, (c_n))$ it follows that for all i there is an n-ary polynomial s (where s is either p or q) such that

$$x_i \otimes y_i \in s((a_1 \otimes b_1), \dots, (a_n \otimes b_n))$$

and

$$c \in s^*((c_1), \ldots, (c_n)).$$

Now by the inductive hypothesis, for each i there is an n-ary polynomial u_i such that

$$x_i \in u_i((a_1),\ldots,(a_n))$$

and

$$y_i \otimes c \in u_i^*((b_1 \otimes c_1), \ldots, (b_n \otimes c_n)).$$

Since $a \otimes b \leq \sum_{i=1}^{m} (x_i \otimes y_i)$ it follows by Theorem 2 that there is an *n*-ary polynomial r such that $a \in r((x_1), \ldots, (x_n))$ and $b \in r^*((y_1), \ldots, (y_n))$. Let t be the *n*-ary polynomial $r(u_1, \ldots, u_n)$. Since $x_i \in u_i((a_1), \ldots, (a_n))$ for all i, it is easy to see that $a \in t((a_1), \ldots, (a_n))$. Also since $b \in r^*((y_1), \ldots, (y_n))$ it is readily verified that

$$b \otimes c \in r^*((y_1 \otimes c), \dots, (y_n \otimes c)).$$

It follows that

$$b \otimes c \in r^*(u_1^*, \dots, u_n^*)((b_1 \otimes c_1), \dots, (b_n \otimes c_n))$$
$$= t^*((b_1 \otimes c_1), \dots, (b_n \otimes c_n)).$$

Thus the statement holds for the polynomial p+q.

Finally, assume the statement holds for p and q and suppose that

$$a \otimes b \in (pq)((a_1 \otimes b_1), \dots, (a_n \otimes b_n))$$

and

$$c \in (p^* + q^*)((c_1), \ldots, (c_n)).$$

Then

$$a \otimes b \in p((a_1 \otimes b_1), \ldots, (a_n \otimes b_n)),$$

$$a \otimes b \in q((a_1 \otimes b_1), \ldots, (a_n \otimes b_n)),$$

and there exist $x \in A$ and $y \in B$ such that $c \le x + y$ where $x \in p^*((c_1), ..., (c_n))$ and $y \in q^*((c_1), ..., (c_n))$. Now by the inductive hypothesis there exist polynomials r and s such that

$$a \in r((a_1), \ldots, (a_n)), b \otimes x \in r^*((b_1 \otimes c_1), \ldots, (b_n \otimes c_n)),$$

and

$$a \in s((a_1), \ldots, (a_n)), b \otimes y \in s^*((b_1 \otimes c_1), \ldots, (b_n \otimes c_n)).$$

Let t be the polynomial rs. Then $a \in t((a_1), \ldots, (a_n))$ and

$$b \otimes c \leq b \otimes (x+y) \in (r^*+s^*)((b_1 \otimes c_1), \dots, (b_n \otimes c_n))$$

so that

$$b \otimes c \in t^*((b_1 \otimes c_1), \ldots, (b_n \otimes c_n)).$$

Thus the statement holds for the polynomial pq.

This completes the induction and the Theorem is now established.

REFERENCES

- 1. G. Birkhoff, Lattice theory, 3rd ed. (Amer. Math. Soc. Colloq. Publ., Vol. 25, Amer. Math. Soc., Providence, R.I., 1967).
- 2. G. Fraser, The semilattice tensor product of distributive lattices, *Trans. Amer. Math. Soc.* 217 (1976), 183-194.
 - 3. G. Fraser, The tensor product of semilattices, Algebra Universalis 8 (1978), 1-3.
- 4. G. Fraser, Tensor products of semilattices and distributive lattices, Semigroup Forum 13 (1976), 178-184.
- 5. G. Fraser and A. Bell, The word problem in the tensor product of distributive semilattices, Semigroup Forum 30 (1984), 117-120.
 - 6. G. Grätzer, Universal algebra, 2nd ed. (Springer, New York, 1979).
 - 7. G. GRÄTZER, General lattice theory (Academic Press, New York, 1978).

CALIFORNIA STATE UNIVERSITY

I OS ANGELES, CALIFORNIA 90032

University of Chicago Chicago, Illinois 60637