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On Gunning’s Prime Form in Genus 2

David Grant

Abstract. Using a classical generalization of Jacobi’s derivative formula, we give an explicit expression
for Gunning’s prime form in genus 2 in terms of theta functions and their derivatives.

Let X be a compact Riemann surface of genus g > 0. Let X denote the univer-
sal cover of X, II: X — X denote the projection, and I" be the group of covering
transformations of X over X.

By a prime form for X we mean a function on X x X which is an analytic relatively
automorphic function for some prescribed factor of automorphy for the action of
T on each copy of X, and which has a simple zero on the diagonal of X x X and
its translates under I" x I" and has no other zeros. The classic prime form is due to
Klein, see [F] and [M]. In [Gul] Gunning introduced a different prime form, which
has a factor of automorphy that is more closely related to that of theta functions. For
applications see [Gul], [Gu2], [Gu3], [Gu4], [P].

Gunning’s prime form is only characterized up to a constant factor by its automor-
phic and vanishing properties. In [Gu5] Gunning gives an implicit normalization for
his prime form (see (2) below) that uses his theory of canonical coordinates on X
described in [Gu3].

The purpose of this paper is to give for ¢ = 2 an explicit expression for Gunning’s
prime form in terms of genus 2 theta functions and their derivatives. We do so in the
Theorem below up to sign: it may well be that the method described below will also
suffice to determine the requisite sign, but it seems like a lengthy and perhaps unen-
lightening exercise to do so. The keys are to use the function theory on the Jacobian
of the curve and a generalization of Jacobi’s derivative formula due to Rosenhain.

We first recall some basic facts about compact Riemann surfaces and their Jaco-
bians, following the exposition in [Gul]. A marking on X consists of a fixed point z,
of X, and a canonical basis {A;, ..., Ay, By, ..., Bg} of H(X,Z). We let Py = II(z).
With this marking we get an identification between I' and the fundamental group of
X based at Py, through which we can consider Ay, ..., Ag, By, ..., By as generators
forT.

For any holomorphic differential ¢ on X, IT*(¢) is a holomorphic differential on
the simply connected space X, hence IT*(¢)) = dw, where w is some analytic function
on X which we normalize so that w(zy) = 0. Since IT*(¢) is [-invariant, we get a
corresponding map ¢: I' — C defined by ¢(y) = w(yz) — w(z) forany z € X.

Let {¢1,. .., Py} be the basis for the space of holomorphic differentials on X nor-
malized so that ¢;(A;) = d;;. Let wjj = ¢i(B;). Then Q = [wjj];j=1,. g is the
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period matrix of the marked Riemann surface. A standard calculation shows that
Q) is a symmetric g X g matrix with positive definite imaginary part. Let ‘m de-
note the transpose of a matrix m, and set ® = *(¢y, ..., gﬁg), and L = ®(I"). Then
L = 78 + Q78 is a lattice in €. The torus C8/L is the Jacobian J(X) of X. Let
II*(¢;) = dw; with w;(z9) = 0. We then define a map w: X — (£ by setting
w(z) = t(wl(z), ... ,Wg(z)) . This induces an embedding X — J(X) by setting
w(P) = w(z) mod L, where z € X is any point such that II(z) = P. The image
of X under w is denoted W1, and for s < g we write W for the sum of the s terms
Wi + -+ -+ W;. We extend w to a map on divisor classes of X by linearity.

Forany v ='(vi,...,v) € (8, a,b € %Zg, we define the genus g theta function
with characteristic [§] and period matrix €2 as

(1) 6[2] (V) — a[z] (‘V, Q) — Z e7ri[(n+u)§2(n+a)+27rit(n+a)(v+b)'

nerzs

Note that 6[3](v) is analytic in v. We let (v) = 6[3](v). Also [5](—v) =
etmi'abg[9](v), so A[¢](v) is even or odd depending on whether ¢*™
the characteristic [§] is called even or odd accordingly.

For v € T, any factor of automorphy x (¢, v) for the action of L on €8 induces the
factor of automorphy x(v,z) = X( D(vy), W(z)) for the action of I on X. For s € %,

islor —1,and

we define the factor of automorphy p; for the action of L on € by p ( <I>(A,-)) =1,
p5(<I>(Bi)) = ™, Let ( be the factor of automorphy for the action of I' on X
defined in [Gu2] by ((Aj,2) = 1, ((Bj,2) = e~ 2milmjtritwi@)/g where r,m € 8
are defined by m; = Zizl wirand r; = §:1 Lszu w;(2)II*(¢r)(2). Let e € C2 be
defined by ¢; = w;; /2.

We can now define Gunning’s prime form g(z;, z;). It is described up to a constant
factor as an analytic function on X x X such that forall v € T,

4(v21,22) = Puz (V)C(Y, 21)9(21, 22),

and
q9(z1,22) = —q(22,21).
To normalize g, Gunning requires that for any z,zy, . .., z, € X,
2) O(r—e+m+wz)—wz)—-—wz) [] a2
1<j<k<g
= det(wj(z0) e, 1] atz2),
T <igy

where the derivatives are taken with respect to the “canonical coordinates” described
in [Gu3]; that is
. wilz) — wilz)
wi(z) = lim = ke
2/ =z q(Zk,Zk)
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Since the transformation g — xq takes w]’. (z) to w]’. (zk)/K» (2) determines g up to a
(§)-th root of unity.

It follows directly from (1) that for any p € 3, the factor of automorphy of
O(v — pu — ¢€) for the action of L on €8 is

(3) & (2(4),v) = 1,6,(®(By),v) =™ H.
It follows immediately that
(4) é—r—m = (%, Euvs = psgu-

A fundamental result is Riemann’s vanishing theorem, which says that the zeros
of § modulo L are —W,_; + r — €. Since 6 is an even function, —W,_; +r — € =
W,y_1 — 1 + ¢, so by the Riemann-Roch theorem, 2(r — €) = k, where k is the image
under w of any canonical divisor of X.

Now let X be the Riemann surface defined by the complex points of the genus 2
curve

C:y* =x +bix* + by’ + bsx* + byx +bs, b; € C.

Every genus 2 Riemann surface arises in this way. We first choose an ordering P; =
(a;,0), 1 < i <5, for the affine Weierstrass points of X. Then we choose a marking
for X so that II(zy) = Py is the point at infinity on the normalization of C, and the
canonical homology basis is the traditional one employed for hyperelliptic curves
with a given ordering of Weierstrass points [M, p. 3.76].

We will be combining the uniformization of X with that of its Jacobian. Most of
what we need is given in [M].

Since Py is a Weierstrass point, k is the origin of J(X), so r—e+m = Qa+b, for some
a,be %Zz, and Riemann’s vanishing theorem now says that that [;](v) vanishes for

1/2)

any v in Wi modulo L. With the traditional choice of canonical basis, a = (| 7

mod 1,and b = (1}2) mod 1 [M, p. 3.82], and [7] is an odd theta characteristic.
dx
Let o be the matrix such that o(,) = (ﬁ;) . Following [M], we define the differ-
.

ential operators ,
B1=—o[%].
v,
Thenifz € X — I 1(Py),
Dx(z) = D, + x(z)D,

is a differential operator such that if we choose an appropriate local coordinate z(p)
centered at z, then

d
(5) Daaf) = o f (v +w@ = w(ep) )| -
Similarly, if z € II7!(Py), then Do, = D; has the property corresponding to (5). It
follows immediately from Riemann’s vanishing theorem that for the correct choice
of local coordinate z(p) centered at z, that
d

Docf(af + b) = d—p@(aﬂ + b+ wizy) — w(zo(p))) ‘p:o —0.
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And again, since H(aQ +b+ w(z)) vanishes identically, Do (H(aQ +b+ w(z)) )

has the factor of automorphy ¢_,_,, = (¢? for the action of I' on X. In [Gul]
it is shown that there exists a relatively analytic function h for the factor of
automorphy ¢ which vanishes simply at II"!(Py) and has no other zeros, hence

Do (0 ( aQ+b+ W(z)) ) /h2 is a function on X with at most a single, simple pole, so

is a constant. Hence D, (9((19 +b+ W(z)) ) has a double zero at II"'(P,) and no
other zeros, and has a well-defined square root ¢(z). There is an ambiguity of a sign
in the definition of ¢(z), but the ambiguity will disappear in the formula (6) below.

We can now calculate Gunning’s prime form for X up to constant factor. Let
flz1,22) = H(W(Zl) —w(z) + Qa+ b) . We then define

f(zl , Zz)e—4wi’aw(zz)

(6) Qz1,2) = D))
@) 0 (w(z) — w(z))
B Y(21)%(2)

where we set E(Z) _ e‘fri’uQa/2+7ri'ah+27riraw(z),lp(Z)) 0
(8) £(2)’ = @™ ODo 0[5 (w(2)

Since f(z1, zp) vanishes, Q(z;, z;) is analytic. From (3) and (4) we have that the factor
of automorphy of f(z;, z,) under the action of ' on z; is Py(z,)¢*. So (6) shows that

Q(vz1,22) = Puw(z)C(7,21)Q(z1, 22),

and (7) shows that Q is skew-symmetric. Hence ¢ = CQ for some constant C which
we now determine up to sign.

Remarks 1) A particular odd theta characteristic was singled out in the definition
of Q because we assumed a particular marking for X.

2) Formula (6) is similar to one given in [Gu5], where the derivatives are taken
with respect to canonical coordinates.

Theorem ) )
Pl aSQda+2mi ab det(a)H[Z] (W(Zl) _ W(Zz))

D,0[3](0)X(z1)%(22)

q(ZhZz) ==+

Proof We will use (2) to compute =C. It follows directly from (1) that changing n’
or n'’ by an integer vector at most changes the sign of 9[:///] (v). Since we will only
be computing £C, we will identify theta characteristics modulo 1, and this will not
affect any of the formulas that follow. For 1 < i < 5, we define theta characteristics
n; by setting

w(P;) = Qn/ +n/" mod L,
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and n; = [7;7}’,]. Let 6 = [;] mod 1. It is standard [Gr] that the six odd theta
characteristics are 6,9 +m;, 1 < i < 5,and the 10 even theta characteristics are
d+mi+n;,1<i<j< 5.Alsozi5:1ni =0 mod 1.

We will use the following generalization of Jacobi’s derivative formula. If vy, v, are
distinct odd theta characteristics, then

4

= +7° [ ] 6104100),

n=1

2 b))

9) det( B

1<m,n<2

for some set {p,} of even theta characteristics. This is due to Rosenhain, and was
generalized to all hyperelliptic Riemann surfaces by Thomae. For a modern reference
and further generalizations, see [I].

It can be shown (see [C]) thatif vy = §, v, = § + 7;, then

{on} = {0 +mi+mj 0+ i + e, 6+ 15 + 70, + 705 + T}
where {i, j, k,¢,m} = {1,2,3,4,5}. If v; = § +m;, v = § +nj, then
{on} = {0+ mi +1j, 0+ 1k + 70, 6+ M+ Ny 6+ 790 + 7}
Now plugging g = CQ into (2), we get for any z, z;, z, € X that

G(Qa +b+w(z) —w(z) — w(zz)) 0[%] (W(Zl) — w(zz)) Y(2)?

(10) = Cdet(w/(z))) ;. ,0[5](W(2) — w(21)) O[] (w(2) — w(z2)) -
Now
) o owilz) —wilz) N(z)? wi(zj) — wi(z})
wi(z;) = lim ; = im — ;
z{ =z q(ZJ"Zj) C z2j =z H[b](W(Zj) o W(Zj))
Y(zj)? 1
(11) - (é]) legl 9 pra wi(z;)—wi(z)) 9 pra wa(zj)—wa(z]) *
e %e[b](mm + %e[b](O)m
Using
Zj M
.y
lim ——— = x(z;),
zj’—>Zj fz.’) % !
]
we get

wi(z;) — WI(Z]/‘) _on+t o12x(2;)

im = .
zl—z; wy(z5) — Wz(Zjl-) 021 + 022x(2))
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So
det< lim wilzj) Wi(z]{) )
z/=z 0[] (w(z;) — W(Z]‘)) 1<i,j<2
det (011 +o1x(z1) o+ Ulzx(Zz))
_ 091+ 020x(z1) 091 + 022x(22)
[T (200100 (o1 + ri2x(z)) + L 01(0) (21 + 022(z)) )
_ det(c) (x(z2) — x(z1))
[T2_, (—D:6151(0) — x(2,)D10141(0))
(12) = det(c) (x(2) — x(z1)) / (D20[§1(0)) g

Hence putting together (10), (11) and (12), we have

(13)
CH(Qa +b+w(z) —w(z) — w(zz)) 0[3] (w(zl) — w(zz)) E(z)z(Dzﬂ[i](O)) :

= (det(0)) (x(z2) — x(21)) X(21)*B(2)*0[5] (w(z) — w(z1)) O3] (w(2) — w(z)) .
Since from (1)
i@ —w@)=w@) g (Qa + b+ w(z) — w(z) — w(z))
= e~ ATbY 1] (w(2) — wzn) — w(22))
using (8) repeatedly we get from (13) that

L0151 (w(z) — w(z1) — w(22)) DooO[§] (w(2)) 0151 (w(z1) — w(z2))
0151 (w(z) — w(21)) 0[5 (w(z) — w(z2))  DooBI}](w(21)) DcO[E](w(z2))

(14) — (det(0)) (x(z2) — x(21)) /(D26151(0))

whereC’ _ Ce*ﬂ'itaQafhrirah‘

At this point we square (14), and let z, z;, z; be any points such that II(z) =
Py, II(z)) = P;, Il(z;) = Pj, for distinct 4, j, k € {1,2,3,4,5}. Then using (1)
repeatedly, from (14) we have

(2104 1 ] 07 D1 + )02 016 +m; + n;1(0)?
016 + i + 1] (02016 + 1, + 7 (0)2 DogB[0 + 177](0)2Doc B3 + 17;1(0)2
(15) = (det(0)) *(a; — a;)2/ (D,0161(0)) *,
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where {i, j,k,I,m} = {1,2,3,4,5}. We will now apply Rosenhain’s formula (9).
Since Do, 0[8](0) = 0, we have

D,0[61(0)*Doc[6 + m] (0)% = det < ,0[61(0)  Dy6[8 + i) (0 )

0[01(0)  D16[6 + 1] (0)

[610) 2000 +nk](0>)2
0

0
. on
— (det(a)) det < 0181(0) 52018 + i) (0)

de
(16) = (det(0)) 4016 + mi + 01 (002015 + i + 1;1(0)*
016 + ik + 1) (0)°6[8 + Mk + 11 ] (0)°.
Similarly, (5) and Riemann’s vanishing theorem imply that D, 6[ + n;](0) = 0, so
D,,0[0 +n;1(0) = (a; — a;)D0[6 + 1;](0). Hence, reasoning as in (16), by (9),
DooB10 +1i1(0)* D818 +1,1(0)*
= (a; — aj) "Dy, 06 + 1;1(0)*D,, 016 + 1;](0)*

_ - D,0[8 +n:1(0)  D,0[8 +n;1(0)\
= (a; = a) " det (D?a[é +n](0) Dufls + n§1<0>>

010 +n;1(0) 9[5+77]](0))
010 +n;1(0) 010 +n;](0)

(17) = (a; — a;)"2(det(e)) *7*015 +1; + n;1(0)
016 + 1 +1e](0)*018 + 1 + 11 (0)*0[8 + m¢ + 111 (0)*.

— (a; — a;)"(det(0))* det <8w

Combining (15), (16), and (17) we get

(C")? = (det(0)) "/ (D2018)(0))
$0 C = gmi aa+2mi'ab det(0)/D,0[6](0), which gives us our theorem.

Remarks 1) Although affine transformations (x, y) — (a?x+ 3, @’y) of our curve
affect the differential operators D;, D,, they leave det(c)/D,0[6](0)X(z;)%(z,) in-
variant.

2) The constant D,0[](0) is related to the discriminant of our curve: see [Gr].
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